JPS59589B2 - Manufacturing method of clad plate - Google Patents

Manufacturing method of clad plate

Info

Publication number
JPS59589B2
JPS59589B2 JP10864281A JP10864281A JPS59589B2 JP S59589 B2 JPS59589 B2 JP S59589B2 JP 10864281 A JP10864281 A JP 10864281A JP 10864281 A JP10864281 A JP 10864281A JP S59589 B2 JPS59589 B2 JP S59589B2
Authority
JP
Japan
Prior art keywords
melting point
manufacturing
clad plate
base material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10864281A
Other languages
Japanese (ja)
Other versions
JPS589970A (en
Inventor
俊則 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMAGASAKI PAIPU SEISAKUSHO KK
Original Assignee
AMAGASAKI PAIPU SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMAGASAKI PAIPU SEISAKUSHO KK filed Critical AMAGASAKI PAIPU SEISAKUSHO KK
Priority to JP10864281A priority Critical patent/JPS59589B2/en
Publication of JPS589970A publication Critical patent/JPS589970A/en
Publication of JPS59589B2 publication Critical patent/JPS59589B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 本発明は、簡潔な製造手段によつて接合性及び機械的特
性の良好なクラッド材を製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cladding material with good bondability and mechanical properties by simple production means.

金属材料の使用に当つては、引張強さ、耐食性、導電性
、重量等の諸性質を考慮し夫々の用途及び使用環境に対
して最適の特性を兼ね備えた材料を選択することが必要
である。
When using metal materials, it is necessary to consider various properties such as tensile strength, corrosion resistance, conductivity, and weight, and select a material that has the optimal characteristics for each application and usage environment. .

ところが単一の金属や合金ではこのような錯綜した要求
を完全に満足することができない場合が多く異種金属を
組み合わせたクラッド材によつて前記要求に対処してい
る分野も多い。例えば基材として引張強さの優れた銅を
用い、表面材として耐食性の優れたニッケルクロム合金
を用いると、画材の長所が適材適所で生かされた耐食性
及び引張強さの両方に優れた材料を得ることができる。
クラッド材の組み合わせ例としては、この他枚挙にいと
まの無い程に多種類のものが知られている。このような
クラッド材を製造する方法としては爆着法、ガス溶接法
、拡散圧延溶接法等が知られている力ゝ いずれも−長
一短があり十分に満足できる状態には至つていない。
However, it is often not possible to completely satisfy these complex requirements with a single metal or alloy, and there are many fields in which these requirements are met by using a cladding material that is a combination of different metals. For example, by using copper, which has excellent tensile strength, as the base material and a nickel-chromium alloy, which has excellent corrosion resistance, as the surface material, you can create a material that has both excellent corrosion resistance and tensile strength, by utilizing the advantages of art materials in the right place. Obtainable.
As examples of combinations of cladding materials, there are many other known combinations, too many to list. Explosion bonding, gas welding, diffusion rolling welding, etc. are known methods for manufacturing such cladding materials, but each method has advantages and disadvantages and has not yet reached a fully satisfactory state. .

即ち爆着法においては素材の接合を爆発力によつて行な
うので安全面に充分な配慮を払う必要があり、製造に際
し多額の設備コストを要したり、特定の有資格者でなけ
れば取扱うことができず、又爆発音や振動の伴なう公害
問題もあり極めて制約の多い方法と言わなければならな
い。又ガス溶接法においては製造条件の維持殊に全クラ
ッド面に対する安定で一様な溶接温度の維持が必須であ
るが大型クラッド板では到底この条件は守り切れず安定
した品質のものを得るのが難しいという欠点があつた。
又最も一般的な方法とされている拡散圧延法においては
、母材及び合わせ材の接合面を夫々研磨しなければJな
らず、又拡散促進剤としてSn,Zn,Cu等の粉末や
板を介装させたり或いは母材や合わせ材の合わせ面をめ
つきしてから圧延するので圧延条件や介装物の純度によ
つては接合面に有害な金属間化合物が生成することもあ
る。
In other words, in the explosive bonding method, materials are joined using explosive force, so it is necessary to pay sufficient attention to safety, which requires a large amount of equipment cost during production, and can only be handled by specially qualified personnel. This method is extremely restrictive, as it is not possible to do so, and there are also pollution problems caused by explosion noise and vibrations. In addition, in the gas welding method, it is essential to maintain manufacturing conditions, especially to maintain a stable and uniform welding temperature on the entire cladding surface, but this condition cannot be maintained with large cladding plates, and it is difficult to obtain stable quality. It had the drawback of being difficult.
In addition, in the diffusion rolling method, which is considered the most common method, the bonding surfaces of the base material and the bonded material must be polished to prevent J, and powders or plates of Sn, Zn, Cu, etc. are used as diffusion promoters. Since the mating surfaces of the base material and the mating material are interposed or plated and then rolled, harmful intermetallic compounds may be formed on the joint surfaces depending on the rolling conditions and the purity of the interposed material.

即ちこれら3方法は、いずれも製造工程が煩雑である上
に品質上の問題も有りこれらに代る新しい方法が渇望さ
れていた。本発明はかかる事情に着目してなされたもの
であつて、可及的簡潔な手段によつて高品質のクラツド
板を製造することのできる方法の提供を目的とするもの
である。
That is, all of these three methods have complicated manufacturing processes and also have quality problems, and there has been a desire for a new method to replace them. The present invention has been made in view of this situation, and it is an object of the present invention to provide a method for producing high-quality cladding plates using the simplest possible means.

しかして本発明の製造方法とは、融点が50℃以上、好
ましくは100℃以上更に好ましくは200℃以上異な
る2種の金属から構成されるクラツド板の製造方法であ
つて、高融点側金属を母材とし該母材の上面に低融点側
金属からなる合わせ材を載置し、母材融点と合わせ材融
点の中間温度に昇温保持させた後、冷却する点に要旨が
あり、その結果、母材と合わせ材の接合性が良好なクラ
ツド板を簡素な製造設備及び簡潔な操作によつて製造す
ることに成功した。即ち本発明者は本発明を完成するに
当り、従来法とは全く異なる観点から種々検討する必要
があると考え対象金属となる母材及び合わせ材の物性の
違いを利用すべく種々検討した結果、融点の違いに着目
し本発明の完成に到達した。即ち高融点側の金属を母材
とし該母材上に低融点側の金属を合わせ材として載置し
、低融点側金属は溶融するが高融点側の金属が溶融しな
い温度(従つて前記の「中間温度」とは中央の1点では
なく両温度の間の任意の温度を意味する)まで加熱する
ことにより低融点側金属のみを溶融し融点近傍まで加熱
された高融点側金属組織内へ拡散浸透させて両金属間に
強固な接合を完成させるものである。尚本発明の対象と
なる素材は融点差が50℃以上のものであれば何でもよ
く特に限定されないが母材として鉄鋼製部品を用いると
きは鉄の融点より50℃以上低い融点を有する金属とし
て、例えばネーバル黄銅(融点880〜890℃),キ
ユプロニツケル(融点1120〜1180℃),アーム
ズプロンズ(融点1030〜1060℃)等が利用され
る。尚融点差が50℃以下では合わせ材と共に母材も軟
化溶融し始めるので本発明の目的は達成できない。又好
ましい融点差は100℃以上であり、更には200℃以
上の融点差であれば更に好適である。以下本発明を実施
例に基づいて説明する。
Therefore, the manufacturing method of the present invention is a method for manufacturing a clad plate composed of two metals with melting points different from each other by 50°C or higher, preferably 100°C or higher, and more preferably 200°C or higher, in which the higher melting point metal is The gist is that a laminate made of a metal with a low melting point is placed on top of the base material, the temperature is raised to an intermediate temperature between the melting point of the base material and the melting point of the laminate, and then it is cooled. We succeeded in manufacturing a clad plate with good bondability between the base material and the laminated material using simple manufacturing equipment and simple operations. That is, in completing the present invention, the present inventor believed that it was necessary to conduct various studies from a completely different perspective from conventional methods, and as a result of various studies to take advantage of the differences in physical properties of the base material and the composite material that are the target metals. The present invention was completed by focusing on the difference in melting point. That is, a metal with a higher melting point is used as a base material, and a metal with a lower melting point is placed on the base material as a laminate, and the temperature is set at a temperature where the metal with a lower melting point melts but the metal with a higher melting point does not. "Intermediate temperature" means any temperature between the two temperatures, not one point in the middle), melts only the low melting point metal and enters the high melting point metal structure that has been heated to near the melting point. It completes a strong bond between the two metals by diffusion and penetration. The material targeted by the present invention is not particularly limited as long as it has a melting point difference of 50°C or more, but when using steel parts as the base material, metals with a melting point 50°C or more lower than the melting point of iron, For example, naval brass (melting point 880-890°C), cupronickel (melting point 1120-1180°C), Arms Prones (melting point 1030-1060°C), etc. are used. If the melting point difference is less than 50° C., the base material as well as the laminated material will begin to soften and melt, making it impossible to achieve the object of the present invention. A preferable melting point difference is 100°C or more, and even more preferably a melting point difference of 200°C or more. The present invention will be explained below based on examples.

第1図に示す様(ζ例えば一般構造用炭素鋼(SS4l
)からなる母材1の周縁にステンレス鋼(SUS3O4
)からなる枠材2を溶接して設置する。母材1上面に例
えばネーバル黄銅(C−4621)からなる合わせ材3
を載置し更に合わせ材3が被包六れる様に還元性フラツ
クス4を散布する。還元性フラツクスとしては金属炭酸
塩や金属ホウ酸塩及びフツ化物等の単味又は混合物を例
示することができる。混合物として用いる場合には炭酸
塩50〜70%、ホウ酸塩10〜25%、弗化物1〜1
0%とするのが最良の処方であつた。これらのフラツク
スは後述の加熱によつて合わせ材の表面が酸化されるの
を防止する機能を発揮すると共に、母材及び合わせ材の
表面に付着した酸化物や異物を還元或いは溶解して該表
面を清浄にする役割をも果たすものである。尚加熱を略
完全な非酸化性雰囲気下で、且つ素材素面を十分に清浄
化して行なう場合には上記フラツクスの散布を省略する
こともできる。以上の様な組み合わせの構成物(以下ワ
ークという)5を第2図に示す様な加熱炉6に装入する
。加熱炉6は都市ガス等を加熱源とするものが一般的で
あり、炉体7上の支持レンガ8上にワーク5を載置し装
入後はシヤツタ一9を閉鎖して密閉状態下に昇温する。
昇温に当つては炉内温度を均一とする為、徐々に行なう
のが好ましく、例えば120分をかけて目的温度まで昇
温するがネーバル黄銅の融点が880〜890℃、鉄の
融点が1550〜1560℃であるから、本例では10
50〜1100℃を目標温度とした。尚加熱温度が高ま
り1100℃を越えると母材である鉄のネーバル黄銅中
への拡散速度が高まるので目標温度は1100℃までと
するのが好ましい。次いで15分間該温度に保持して加
熱を完了する。加熱完了後、フオーク10を用いて炉6
からワーク5を取り出し溶融状態にある合わせ材8a上
に保温材として乾留剤11を散布して合わせ材全面を被
包したのち冷却水槽12へ移す。冷却工程の実施に当つ
ては第3図の様に母材1の底面が冷却水水位に一致する
様に設定し、更に水槽12の下方から母材底面中央に指
向させて冷却水13を噴出接触させてワーク5を冷却す
る。水槽の設定水位を越えた水は槽流堰14から系外へ
排出される。第3図の冷却系においては溶融状態の合わ
せ材3aは中央部付近から冷却されるので凝固は中央部
から始まり、順次周辺方向へ凝固していくので、凝固時
のひけすは周辺部に分散し、表面張力によつて肉厚が大
きくなつている周辺部の厚みがひけす分だけ薄くなつて
全体の厚みがほぼ均一となる。凝固したワーク5は水槽
から取り出し周縁部の枠材をはずし、ひけすを内包する
端部は旋盤等で切削加工され最終製品とする。上記実施
例方法ではネーバル黄銅と一般構造用炭素鋼の組み合わ
せを取りあげて説明したが、合わせ材及び母材として選
択される金属の種類により製造条件殊に温度条件が異な
るのは当然である。
As shown in Figure 1 (ζFor example, general structural carbon steel (SS4l)
) is made of stainless steel (SUS3O4).
) is welded and installed. A laminating material 3 made of, for example, naval brass (C-4621) is placed on the upper surface of the base material 1.
The reducible flux 4 is then spread so that the laminated material 3 is covered. Examples of the reducing flux include metal carbonates, metal borates, fluorides, and the like alone or in mixtures. When used as a mixture, carbonate 50-70%, borate 10-25%, fluoride 1-1
The best prescription was 0%. These fluxes have the function of preventing the surface of the laminated material from being oxidized by heating, which will be described later, and also reduce or dissolve oxides and foreign substances adhering to the surfaces of the base material and the laminated material. It also plays a role in cleaning the water. Incidentally, if the heating is carried out in a substantially completely non-oxidizing atmosphere and the bare surface of the material is sufficiently cleaned, the above-mentioned scattering of the flux can be omitted. The components (hereinafter referred to as works) 5 having the above combination are charged into a heating furnace 6 as shown in FIG. The heating furnace 6 generally uses city gas or the like as a heating source, and the workpiece 5 is placed on supporting bricks 8 on the furnace body 7, and after loading, the shutter 9 is closed and the furnace is sealed. Increase temperature.
When raising the temperature, it is preferable to raise the temperature gradually in order to make the temperature inside the furnace uniform.For example, it takes 120 minutes to raise the temperature to the target temperature. ~1560℃, so in this example 10
The target temperature was 50 to 1100°C. Note that if the heating temperature increases to exceed 1100°C, the rate of diffusion of iron, which is the base material, into naval brass will increase, so it is preferable to set the target temperature to 1100°C or less. The temperature is then maintained for 15 minutes to complete heating. After heating is completed, use a fork 10 to heat the furnace 6.
The workpiece 5 is taken out, and carbonization agent 11 is sprinkled as a heat insulating material onto the molten laminated material 8a to cover the entire surface of the laminated material, and then transferred to the cooling water tank 12. When carrying out the cooling process, the bottom surface of the base material 1 is set to match the cooling water level as shown in Figure 3, and the cooling water 13 is jetted from the bottom of the water tank 12 toward the center of the base material bottom surface. The workpiece 5 is cooled by contacting it. Water exceeding the set water level of the water tank is discharged from the tank flow weir 14 to the outside of the system. In the cooling system shown in Fig. 3, the molten composite material 3a is cooled from near the center, so solidification starts from the center and solidifies sequentially toward the periphery, so shrinkage during solidification is dispersed to the periphery. However, the thickness of the peripheral portion, which is thicker due to surface tension, becomes thinner by that amount, and the overall thickness becomes almost uniform. The solidified workpiece 5 is taken out from the water tank, the frame material at the peripheral edge is removed, and the end portion containing the sinker is cut using a lathe or the like to form a final product. Although the above embodiment method has been explained by taking up the combination of naval brass and general structural carbon steel, it is natural that the manufacturing conditions, especially the temperature conditions, will differ depending on the type of metal selected as the laminated material and the base material.

以上の様にして製造されたタラツド板について引張強度
及び伸びを測定したところ第1表のような結果が得られ
た。
When the tensile strength and elongation of the Tallard plates manufactured as described above were measured, the results shown in Table 1 were obtained.

第1表に示すとおり、本発明方法によるクラツド板の引
張強度及び伸びは母材単独或いは合わせ材単独の規格値
を夫々十分満足しており、母材と合わせ材の接合によつ
て強度的な低下を起こすことはない。
As shown in Table 1, the tensile strength and elongation of the clad plate produced by the method of the present invention fully satisfy the standard values for the base material alone and the laminated material alone, respectively, and the strength is improved by bonding the base material and the laminated material. No deterioration will occur.

次に第4図A,b,cに示す手順に従つて剪断強度を測
定した。
Next, the shear strength was measured according to the procedure shown in FIGS. 4A, b, and c.

クラツド板の合わせ材3bを第4図bに示す様に幅W(
合わせ材厚さhの1.5倍)だけ残して削り取り、第4
図eに示す治具15,15aに挟持し、上方から荷重を
加えて合わせ材3bが破断する点を求めたところ第2表
の様になつた。第2表に示すとおり本発明方法によつて
製造されたクラツド板の剪断強さはいずれも十分に満足
できる結果を示している。
As shown in Fig. 4b, the width W (
Scrape off leaving only 1.5 times the thickness h of the mating material, and
The points at which the laminated material 3b breaks were determined by holding it between the jigs 15 and 15a shown in Figure e and applying a load from above, resulting in the results shown in Table 2. As shown in Table 2, the shear strength of the clad plates produced by the method of the present invention all show fully satisfactory results.

更に曲げ特性具体的には表曲げ、裏曲げ及び側曲げの場
合にはR=2T(T:厚板)とし、裏曲げの場合にはR
=1.5Tとした。試験の結果を参考写真1,2,3に
示すとおりであり、湾曲部の外側におけるさけ傷やその
他の欠陥は皆無であり、合わせ材と母材の接合強度が十
分に高いものであることが確認できた。本発明方法は以
上の様に構成されているので、ほぼ目的とする形状に仕
上げた母材に合わせ材を溶着して一気に目的形状のクラ
ツド材を製造することができる。更に合わせ材が母材に
十分拡散浸透するので両材間の接合も十分強固なものと
なる。そして拡散圧延法の様にインサート材を必要とし
ないので接合面に有害な金属間化合物を生成することが
無く、接合面の均一性が格別に優れた良質のクラツド材
を得ることができる。
Furthermore, the bending characteristics are as follows: Specifically, in the case of front bending, back bending, and side bending, R = 2T (T: thick plate), and in the case of back bending, R = 2T (T: thick plate).
= 1.5T. The test results are shown in Reference Photos 1, 2, and 3, and there were no scratches or other defects on the outside of the curved part, indicating that the bonding strength between the laminated material and the base material was sufficiently high. It could be confirmed. Since the method of the present invention is constructed as described above, a cladding material having the desired shape can be manufactured all at once by welding the laminated material to the base material that has been finished into approximately the desired shape. Furthermore, since the laminating material sufficiently diffuses and permeates into the base material, the bond between the two materials becomes sufficiently strong. Unlike the diffusion rolling method, no insert material is required, so there is no generation of harmful intermetallic compounds on the joint surfaces, and a high-quality cladding material with particularly excellent uniformity of the joint surfaces can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2,3図は本発明に係る実施例の手順を示す説明
図であり、特に第1図はワーク部分、第2図は加熱炉部
分、第3図は冷却槽部分の説明図及び第4図はクラツド
板合わせ材料部剪断試験方法の説明図である。
Figures 1, 2, and 3 are explanatory diagrams showing the procedure of an embodiment according to the present invention, in particular, Figure 1 is an explanatory diagram of a workpiece part, Figure 2 is a heating furnace part, and Figure 3 is an explanatory diagram of a cooling tank part. FIG. 4 is an explanatory diagram of a shear test method for the clad plate mating material.

Claims (1)

【特許請求の範囲】 1 融点が50℃以上異なる2種の金属から構成される
クラッド板の製造方法であつて、高融点側金属を母材と
し、該母材の上面に低融点側金属からなる合わせ材を載
置し、母材融点と合わせ材融点の中間温度に昇温保持さ
せた後、冷却することを特徴とするクラッド板の製造方
法。 2 昇温前の合わせ材上に還元性フラックスを被包して
行なう特許請求の範囲第1項に記載のクラッド板の製造
方法。 3 母材と合わせ材の周縁に枠材を設けて行なう特許請
求の範囲第1又は2項に記載のクラッド板の製造方法。 4 枠材が保持温度より高融点で且つ合わせ材の拡散浸
透を受けない金属で形成されてなる特許請求の範囲第3
項に記載のクラッド板の製造方法。 5 冷却前の合わせ材上面に保温剤を被包して行なう特
許請求の範囲第1〜4項のいずれかに記載のクラッド板
の製造方法。 6 奪熱点を母材底面中央部の一点として冷却する特許
請求の範囲第1〜5項のいずれかに記載のクラッド板の
製造方法。 7 高融点側金属が一般構造用炭素鋼、低融点側金属が
ネーバル黄銅、キユプロニツケル、アームズブロンズか
ら選択される1種である特許請求の範囲第1〜6項のい
ずれかに記載のクラッド板の製造方法。
[Scope of Claims] 1. A method for producing a cladding plate composed of two metals having melting points different by 50°C or more, wherein a high melting point metal is used as a base material, and a low melting point metal is formed on the upper surface of the base material. 1. A method for manufacturing a clad plate, which comprises: placing a laminated material, raising and maintaining the temperature at an intermediate temperature between the melting point of the base material and the melting point of the laminating material, and then cooling. 2. The method for manufacturing a clad plate according to claim 1, which is carried out by encapsulating a reducing flux on the laminated material before the temperature is raised. 3. The method for manufacturing a clad plate according to claim 1 or 2, which comprises providing a frame material around the periphery of the base material and the laminated material. 4. Claim 3 in which the frame material is made of a metal that has a melting point higher than the holding temperature and is not subject to diffusion and penetration by the laminating material.
The method for manufacturing the clad plate described in Section 1. 5. A method for manufacturing a clad plate according to any one of claims 1 to 4, which is carried out by encapsulating a heat insulating agent on the upper surface of the laminated material before cooling. 6. The method for manufacturing a clad plate according to any one of claims 1 to 5, wherein the heat absorption point is set as one point in the center of the bottom surface of the base material. 7. The clad plate according to any one of claims 1 to 6, wherein the high melting point metal is general structural carbon steel, and the low melting point metal is one selected from naval brass, Cypronickel, and Arms bronze. Production method.
JP10864281A 1981-07-10 1981-07-10 Manufacturing method of clad plate Expired JPS59589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10864281A JPS59589B2 (en) 1981-07-10 1981-07-10 Manufacturing method of clad plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10864281A JPS59589B2 (en) 1981-07-10 1981-07-10 Manufacturing method of clad plate

Publications (2)

Publication Number Publication Date
JPS589970A JPS589970A (en) 1983-01-20
JPS59589B2 true JPS59589B2 (en) 1984-01-07

Family

ID=14489968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10864281A Expired JPS59589B2 (en) 1981-07-10 1981-07-10 Manufacturing method of clad plate

Country Status (1)

Country Link
JP (1) JPS59589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158034A (en) * 1997-08-25 1999-03-02 Chuetsu Gokin Chuko Kk Joining method of ferrous material and high tension brass alloy and composite material joined by the method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057067B (en) * 2014-07-01 2016-08-17 合肥工业大学 A kind of method suppressing magnesium/Al bimetal liquid-solid composite interfacial brittle compound
CN110773719A (en) * 2019-10-18 2020-02-11 郑州机械研究所有限公司 Preparation method of silver-copper composite belt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158034A (en) * 1997-08-25 1999-03-02 Chuetsu Gokin Chuko Kk Joining method of ferrous material and high tension brass alloy and composite material joined by the method

Also Published As

Publication number Publication date
JPS589970A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
KR100773218B1 (en) Nickel-plated brazing sheet product, an assembly of the brazing product, method of manufacturing the assembly, and method of use of an aluminium clad alloy
US3957194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure
US20070099023A1 (en) Aluminium alloy strip for brazing
US3703763A (en) Method of making a composite metal article
US3854194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure and product using nickel-copper, silver bridging material
US2145248A (en) Method of producing steel clad with a copper base metal and the product thereof
CN103243234B (en) A kind of Electronic Packaging soldering serial low silver leadless solder and preparation method thereof
US2821495A (en) Brazing and heat treatment of aluminum base alloy castings
KR101570949B1 (en) Method for plane brazing of aluminum alloy members
JPS59589B2 (en) Manufacturing method of clad plate
US3894678A (en) Method of bonding sintered iron articles
WO2018186385A1 (en) Cylindrical sputtering target, and production method therefor
JP5713452B2 (en) Aluminum alloy brazing sheet and manufacturing method thereof, and brazing method of aluminum heat exchanger
FR2568050A1 (en) IMPLEMENTATION OF OXYGEN-FREE ELECTROLYTIC COPPER, BORON OR LITHIUM DEOXIDE, FOR HOLLOW PROFILES AND METHOD OF MANUFACTURE
US3167858A (en) Process of lead cladding
US2193246A (en) Composite metal product
US3244553A (en) Process of lead cladding using molten lead
JPS5910462A (en) Production of copper or copper alloy clad steel
US2376581A (en) Brazing alloy
JP3016030B2 (en) Electrode manufacturing method
JPS60206587A (en) Production of clad steel plate
JP2742595B2 (en) Manufacturing method of plating electrode
JPS6353911B2 (en)
US2376580A (en) Brazing alloy
JPS6033578B2 (en) Aluminum alloy brazing sheet that suppresses the diffusion of Si in the skin material into the core material