JPS5958882A - Thermocouple - Google Patents

Thermocouple

Info

Publication number
JPS5958882A
JPS5958882A JP57168577A JP16857782A JPS5958882A JP S5958882 A JPS5958882 A JP S5958882A JP 57168577 A JP57168577 A JP 57168577A JP 16857782 A JP16857782 A JP 16857782A JP S5958882 A JPS5958882 A JP S5958882A
Authority
JP
Japan
Prior art keywords
glass
thermocouple
thickness
wire
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57168577A
Other languages
Japanese (ja)
Inventor
Toshio Yamamoto
俊夫 山本
Takashi Kuze
久世 孝
Noriaki Yagi
典章 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57168577A priority Critical patent/JPS5958882A/en
Publication of JPS5958882A publication Critical patent/JPS5958882A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To enhance heat resistance at the strand part, and to improve acid resistance of a thermocouple by a method wherein the strand part other than the temperature detecting part of the thermocouple is covered with crystallized glass specified in the coefficient of thermal expansion and thickness. CONSTITUTION:An alumel wire 1 and a chromel wire 2 are connected to construct the temperature detecting edge part, and the strand part 3 extending therefrom over a terminal part is covered using glass 4. At this time, crystallized glass having the coefficient of thermal expansion of (5.0-40)X10<-6>/deg is used as the glass 4, and thickness thereof is also prescribed to 0.01-2mm. or 0.1-1.0mm.. By this construction, the mutually contradictory condition that although thermal conductivity is enhanced by making thickness of the glass thin, while mechanical intensity is reduced to destroy glass is regulated, and thermal resistance and acid resistance are enhanced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は熱′電対に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to thermocouples.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般的に従来使用されている熱電対は測定雰囲気に直接
露呈される構造を採用しているものが多いが、熱・電対
が裸の才ま測定雰囲気にさらされると、熱電対の酸化に
より寿命が短くなる。熱電対は温度検出の検出端部だけ
でなく、これ以外の部分でも、比較的高い温度になるた
め、これらの部分で劣化が起こりやすく、その防止が望
まれている1゜ 〔発明の目的〕 本発明は温度検出端部以外の素線部でも(1)  比較
的良好な耐熱性を有し、かつ(2)  耐酸化性を有す
る 熱電対を提供することを目的とする。
Many of the conventionally used thermocouples have a structure that allows them to be exposed directly to the measurement atmosphere, but if the thermocouple is exposed to the measurement atmosphere, the thermocouple will oxidize. Life expectancy will be shortened. Thermocouples have relatively high temperatures not only at the detection end for temperature detection but also at other parts, so deterioration is likely to occur in these parts, and it is desired to prevent this.1゜[Objective of the Invention] An object of the present invention is to provide a thermocouple that has (1) relatively good heat resistance and (2) oxidation resistance even in wire portions other than the temperature detection end.

〔発明の概要〕[Summary of the invention]

本発明に係る熱電対は素線部を熱膨張係数が約5.OX
l 0−6/d=y 〜40.X10−6/ds、ty
の範囲にあるガラスで被覆することにより、前記の目的
を達成することができる。
In the thermocouple according to the present invention, the wire portion has a thermal expansion coefficient of about 5. OX
l 0-6/d=y ~40. X10-6/ds, ty
The above object can be achieved by coating with a glass in the range of .

熱電対の素線部の耐酸化性を改善する為に本発明ではガ
ラスで素線部を被覆する。これにより耐酸化性は飛躍的
に向上する。父、素線部の被覆には加工が答易なガラス
が、適している。しかし、ガラスによっては耐熱性の点
で不十分となる場合を生する。
In order to improve the oxidation resistance of the wire portion of the thermocouple, the wire portion is coated with glass in the present invention. This dramatically improves oxidation resistance. However, glass, which is easy to process, is suitable for covering the strands. However, depending on the glass, the heat resistance may be insufficient.

そこで耐熱性をも兼ね備える為にガラスを調べた7、そ
の結果、5.0XIO6/dey 〜40XIQ−6/
dey の範囲の熱膨張係数を有するガラスを用いるこ
とにより、前記の要求を満たずことが分った。
Therefore, we investigated glass in order to have heat resistance as well7, and the result was 5.0XIO6/dey ~ 40XIQ-6/
It has been found that the above requirements are not met by using a glass having a coefficient of thermal expansion in the range dey.

これば、ガラスの熱膨張係数が約5.OX]O−6/d
eg〜約40X10−6/dgy  の範囲に有ると、
比較的金属の係数に近似し、熱衝撃によるガラス層の剥
離が生じに<<、耐熱性の改善が図れる為である。
In this case, the coefficient of thermal expansion of the glass is approximately 5. OX]O-6/d
If it is in the range of eg to about 40X10-6/dgy,
This is because the coefficient is relatively close to that of metal, and the glass layer does not peel off due to thermal shock, and the heat resistance can be improved.

この種のガラスとしては、例えはソーダガラス、ホウ酸
アルミナガラス、石英カラス、結晶化ガラス等がある。
Examples of this type of glass include soda glass, boric alumina glass, quartz glass, and crystallized glass.

熱電対の温度検出部以外の素線部では、耐熱性及び耐酸
性が兼ねそなえられていれば、十分であるが、温度検出
端部では、更に速い熱応答性を求められる場合もある。
Although it is sufficient for the wire portions of the thermocouple other than the temperature detection portion to have both heat resistance and acid resistance, even faster thermal response may be required at the temperature detection end portion.

そこで熱伝導性を向上する方法として次の方法が考えら
れる。
Therefore, the following method can be considered as a method for improving thermal conductivity.

それは、被覆ガラスの厚さを薄くすることである。その
ことにより、熱伝導性を向上させることが可能である。
The goal is to reduce the thickness of the coated glass. Thereby, it is possible to improve thermal conductivity.

しかし、あまり薄すぎると、機械的強度が低下し、ガラ
スが破壊してしまう。
However, if it is too thin, the mechanical strength will decrease and the glass will break.

本発明では、これらの相反する要求について検討の結果
、ガラスの厚さの調整によりこれらの要求を満たずこと
が分った。
In the present invention, as a result of studying these conflicting demands, it was found that these demands could not be met by adjusting the thickness of the glass.

すなわち、被覆するガラスの厚さを約0.01朋〜2 
mmの範囲、好ましくは約Q、 l mtn〜1、Om
mの範囲にすると、両方の特性がかねそなえられること
がわかった。
That is, the thickness of the glass to be coated is approximately 0.01 to 2.
in the range of mm, preferably about Q, l mtn~1, Om
It has been found that both characteristics can be achieved by using a range of m.

更に被覆ガラス?こついて述べると、被覆ガラスは、被
覆作業中に熱電対を酸化させにくい方が望ましい。これ
は、被憬作業中、熱電対を酸化させやすい事による。
More coated glass? To be specific, it is desirable that the coated glass resist oxidation of the thermocouple during the coating process. This is because the thermocouple is easily oxidized during the work.

熱電対を酸化させにくいガラスとしては、例えば、結晶
化ガラスがある。結晶化ガラスは比較的低温の結晶温度
で融着可能であり、更にこの温度よりかなり高温の軟化
点まで固化状態を保つ。したがって、比較的低温で被覆
作業ができ、熱電対を酸化させにくい。又、結晶化ガラ
スは8500kg/−〜120001cg / 71I
i程度の弾性係数を有し、機械的強度に潰れる為、薄く
しやすく、熱応答性の改善に役立つ。結晶化カラスの組
成例の一部を第1表に示す。
Examples of glasses that do not easily oxidize thermocouples include crystallized glass. Crystallized glass can be fused at relatively low crystallization temperatures and remains solid up to its softening point, which is significantly higher than this temperature. Therefore, the coating can be performed at a relatively low temperature, and the thermocouple is less likely to be oxidized. Also, crystallized glass is 8500kg/-~120001cg/71I
It has an elastic modulus of about i and is crushed by mechanical strength, so it can be easily made thin and helps improve thermal response. Table 1 shows some composition examples of crystallized glass.

第1表 結晶化ガラスの組成例 第1表に示されている組成を用いる場合、酸化亜鉛(Z
rLO)が結晶の核となり、結晶化ガラスが形成される
。そして、その結晶化温度は、成分の組成を変えること
により、約300℃〜850℃の範囲で変えることがで
きる。
Table 1 Composition Examples of Crystallized Glass When using the composition shown in Table 1, zinc oxide (Z
rLO) becomes a crystal nucleus, and crystallized glass is formed. The crystallization temperature can be varied within the range of about 300°C to 850°C by changing the composition of the ingredients.

〔発明の実施例1 実施例1 本発明の熱′1対の一実施例を図面を用いて説明する。[Embodiment 1 of the invention Example 1 An embodiment of the thermal pair of the present invention will be described with reference to the drawings.

アルメル線1にクロメル線2を接合した熱電対の素線部
3を、熱膨張係数が約90×10−6/day で、結
晶化温度が約620 ℃で軟化点が約960℃の結晶化
ガラス4で被覆する。その際、熱電対はほとんど酸化さ
れなかった。
The wire part 3 of the thermocouple, which is made by joining the alumel wire 1 and the chromel wire 2, is crystallized with a thermal expansion coefficient of about 90 x 10-6/day, a crystallization temperature of about 620 °C, and a softening point of about 960 °C. Cover with glass 4. At that time, the thermocouple was hardly oxidized.

この熱電対を用いて、大気雰囲気で、室温から約850
℃の温度範囲で耐酸化試験及び急冷試験を行なったとこ
ろ、ガラス被覆された素線部で耐熱性及び耐酸化性が良
好であることがわかった。
Using this thermocouple, approximately 850
When an oxidation resistance test and a quenching test were conducted in the temperature range of 0.degree. C., it was found that the glass-coated wire portion had good heat resistance and oxidation resistance.

実施例2 本発明の熱電対の他の一実施例を図面を用いて説明する
Embodiment 2 Another embodiment of the thermocouple of the present invention will be described with reference to the drawings.

アルメル線1にクロメル線2を接合した熱電対の素線部
3に熱膨張係数が約90X]0−’/ deyで、軟化
点が約960℃の結晶化ガラスを厚さ約0.9朋に被覆
する。
The wire part 3 of the thermocouple, which is made by joining the alumel wire 1 and the chromel wire 2, is made of crystallized glass having a thermal expansion coefficient of about 90X]0-'/dey and a softening point of about 960°C, with a thickness of about 0.9 mm. coated with

この熱電対を用いて、実施例1と同様な試験を行なった
ところ、耐熱性及び耐酸化性がガラス被覆された素線部
で良好であることがわかった。虹に熱応答性は常温から
沸騰している水の中にこの熱電対を入れ、電位差計で1
圧を測定し、常温と沸騰している水との温度差の90%
に相当する電圧に変化するまでの時間を計ることによっ
て調べられた。その結果、熱応答性は比較的良好であっ
た。
Using this thermocouple, a test similar to that in Example 1 was conducted, and it was found that the glass-coated wire portion had good heat resistance and oxidation resistance. The thermoresponsiveness of the rainbow is determined by placing this thermocouple in water that is at room temperature to boiling, and measuring 1 with a potentiometer.
Measure the pressure and find 90% of the temperature difference between room temperature and boiling water.
This was determined by measuring the time it takes for the voltage to change to the equivalent of . As a result, the thermal response was relatively good.

〔発明の効果〕〔Effect of the invention〕

本発明の熱電対は、素線部を、熱膨張係数が5.0X1
0−6/dす〜40X10−6/dayの範囲にあるガ
ラスで被覆することにより、比較的良好な耐酸化性及び
耐熱性を有することができる。
The thermocouple of the present invention has a wire portion with a thermal expansion coefficient of 5.0X1
Relatively good oxidation resistance and heat resistance can be achieved by coating with glass in the range of 0-6/day to 40×10-6/day.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の熱電対の一実施例を示す断面図である。 3・・・・・素線部 4・・・・・ガラス The drawing is a sectional view showing an embodiment of the thermocouple of the present invention. 3...Element wire part 4...Glass

Claims (1)

【特許請求の範囲】 1、 素線部が5.OXl 0−6/del 〜40X
I O−’/de、qの範囲の熱膨張係数を有するガラ
スで被検された熱電対。 2、 被覆するガラスの厚さが0.01皿〜2朋の範囲
にある特許請求の範囲第1項に記載の熱電対。 3、 被覆するガラスの厚さがQ、 ] mrn〜1.
0開の範囲にある特許請求の範囲第1項に記載の熱電対
5 4、 カラスが結晶化ガラスである特許請求の範囲第1
項乃至第3項に記載の熱電対。
[Claims] 1. The strand portion is 5. OXl 0-6/del ~40X
A thermocouple tested in glass with a coefficient of thermal expansion in the range I O-'/de,q. 2. The thermocouple according to claim 1, wherein the thickness of the coated glass is in the range of 0.01 mm to 2 mm. 3. The thickness of the glass to be coated is Q, ] mrn~1.
Thermocouple 54 according to claim 1 in the range of 0 open, Claim 1 in which the glass is crystallized glass
Thermocouple according to items 1 to 3.
JP57168577A 1982-09-29 1982-09-29 Thermocouple Pending JPS5958882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168577A JPS5958882A (en) 1982-09-29 1982-09-29 Thermocouple

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168577A JPS5958882A (en) 1982-09-29 1982-09-29 Thermocouple

Publications (1)

Publication Number Publication Date
JPS5958882A true JPS5958882A (en) 1984-04-04

Family

ID=15870624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168577A Pending JPS5958882A (en) 1982-09-29 1982-09-29 Thermocouple

Country Status (1)

Country Link
JP (1) JPS5958882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145244A (en) * 2006-12-08 2008-06-26 Sukegawa Electric Co Ltd Thermocouple
JP2017050325A (en) * 2015-08-31 2017-03-09 学校法人東京理科大学 Thermoelectric transducer and manufacturing method therefor
KR20240050441A (en) 2021-10-21 2024-04-18 가부시키가이샤 후루야긴조쿠 thermocouple structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965880A (en) * 1972-10-24 1974-06-26
JPS572584A (en) * 1980-06-06 1982-01-07 Tdk Corp Thermoelectric element and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965880A (en) * 1972-10-24 1974-06-26
JPS572584A (en) * 1980-06-06 1982-01-07 Tdk Corp Thermoelectric element and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145244A (en) * 2006-12-08 2008-06-26 Sukegawa Electric Co Ltd Thermocouple
JP2017050325A (en) * 2015-08-31 2017-03-09 学校法人東京理科大学 Thermoelectric transducer and manufacturing method therefor
KR20240050441A (en) 2021-10-21 2024-04-18 가부시키가이샤 후루야긴조쿠 thermocouple structure

Similar Documents

Publication Publication Date Title
JP3858293B2 (en) Alkali-free glass substrate
JP3666608B2 (en) Alkali-free glass substrate
US4028196A (en) PH Responsive glass compositions and electrodes
JPS5958882A (en) Thermocouple
GB2063245A (en) Glass for sealing to molybdenum metal
JP4582679B2 (en) Crystallized glass for anodic bonding
US3479217A (en) Copper-coated glass article
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
US3369880A (en) Process for making humidity sensing device
JPS5958883A (en) Thermocouple
JPS6327298B2 (en)
JPH05223614A (en) Detector for thermal type flowmeter
JP2010066267A (en) Epitaxial soot sensor
JPH08193891A (en) Temperature measuring probe
KR101807283B1 (en) Temperature sensor element and preparation method thereof
RU2064700C1 (en) Thermistor manufacturing process
JPS5950323A (en) Thermocouple
JP2906582B2 (en) Porous titania ceramics, method for producing the same, and thiania sensor element using the same
CN1019896C (en) Platinum/gold thermocouple and manufacturing method thereof
KR20020011498A (en) Thermistor for Middle-High Temperature and Manufacturing Method thereof
JP2754405B2 (en) Method of manufacturing electronic component substrate
JPS60124802A (en) Glass-sealed type thermistor
JPS5984126A (en) Sheath thermocouple
JPS5870154A (en) Manufacture of cation sensor
JPH0534186A (en) Oil level sensor