JPS5957446A - Electrostatic adsorption type substrate holder - Google Patents

Electrostatic adsorption type substrate holder

Info

Publication number
JPS5957446A
JPS5957446A JP16765982A JP16765982A JPS5957446A JP S5957446 A JPS5957446 A JP S5957446A JP 16765982 A JP16765982 A JP 16765982A JP 16765982 A JP16765982 A JP 16765982A JP S5957446 A JPS5957446 A JP S5957446A
Authority
JP
Japan
Prior art keywords
substrate
dielectric film
film
baked
electrode patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16765982A
Other languages
Japanese (ja)
Other versions
JPS6219060B2 (en
Inventor
Fumio Muramatsu
村松 文雄
Ryoji Tsunoda
角田 良二
Genichi Kanazawa
金沢 元一
Makoto Ozawa
誠 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP16765982A priority Critical patent/JPS5957446A/en
Publication of JPS5957446A publication Critical patent/JPS5957446A/en
Publication of JPS6219060B2 publication Critical patent/JPS6219060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

PURPOSE:To enable retaining from the back side of a substrate, and to keep the surface of the substrate clean by applying and baking a dielectric film having high permittivity on a conductor pattern applied and baked on the substrate and baking a glass group dielectric film to the upper section of the dielectric film. CONSTITUTION:Electrode patterns 3 are applied and fast stuck on the ceramic substrate 4, the warpage (irregularity) of the surface thereof is limited within + or -10mum through the polishing of the surface, in approximately 10mum thickness by using thick-film printing technique. A metal such as an Ag-Pd alloy is used as a material for the electrode patterns 3, and the printed electrode patterns 3 are dried and baked at 900 deg.C. The dielectric film 2-2 having high permittivity epsilons (epsilons= approximately 2,000) is applied on the electrode patterns 3, and dried and baked at 950 deg.C. Interelectrode voltage required for positively holding a silicon wafer of a 126mm. diameter from the back extends over 1,500-2,000V, and the thickness of the glass film 2-1 is formed in 40-60mum in order to obtain dielectric resistance against said voltage, and the glass film is baked at 500 deg.C.

Description

【発明の詳細な説明】 半導体装置のLSI化が進むにつれてその製造装置の自
動fヒが急速に進んでいる。特に近年基板の大口径化が
進むにつれて基板を同じ栄件下で1枚ずつ処理する傾向
があり、1枚毎の基板の搬送、移し替えなどの方法、手
段の確立が望まれている。
DETAILED DESCRIPTION OF THE INVENTION As the use of LSI semiconductor devices progresses, the automatic processing of manufacturing equipment is rapidly progressing. Particularly in recent years, as substrates have become larger in diameter, there has been a tendency to process substrates one by one under the same conditions, and it is desired to establish methods and means for transporting and transferring substrates one by one.

最近の代表的々加工装置であるプラズマエツチング装置
、マグネトロンスパッタリング装置等では、真空雰囲気
下で基板を傷つけることなく確実に保持して搬送したり
移し替えることが重要な技術となっている。本発明はこ
の分野に属するもので、静電吸着力を利用して基板ウェ
ハな裏面から吸着し基板ウェハに傷をつけることなく保
持する技術に関するものである。
In recent typical processing equipment such as plasma etching equipment and magnetron sputtering equipment, it is important to reliably hold, transport, or transfer substrates in a vacuum atmosphere without damaging them. The present invention belongs to this field, and relates to a technique for attracting a substrate wafer from the back side using electrostatic attraction force and holding the substrate wafer without damaging it.

従来の静電吸着式基板保持装置では吸着面に当る誘電体
膜にシリコンゴム系の膜を使用しているが、これは弾力
性があり基板ウェハへの密着性が良いため吸着性は良い
が、ゴムからの脱ガスのためin ’Torr台の高真
空下では使用できなかった。
Conventional electrostatic adsorption type substrate holding devices use a silicone rubber film for the dielectric film on the adsorption surface, but this has good adhesion because it is elastic and has good adhesion to the substrate wafer. However, due to degassing from the rubber, it could not be used under the high vacuum of an in' Torr table.

またioo℃以上の高温では脱ガスが激しい」二に基板
と電極との間の電気的絶縁が低下するため、冷却(水冷
など)する必要が生じ装置が複雑になることが欠点であ
る。
Moreover, at high temperatures of 100° C. or higher, outgassing is severe.Secondly, the electrical insulation between the substrate and the electrode is reduced, which requires cooling (water cooling, etc.), which complicates the apparatus.

次に本発明装置の具体的構造を説明する前に本発明の基
礎となる理論を説明する。高温、高真空下で脱ガスが少
く、低電圧で基板吸着力が大きい静電吸着装置を作るた
めには、装置(第3図)内の誘電体膜は基板ウェハに静
電誘導を起させるため高誘電率を有し高真空下で脱ガス
の少い拐質であることが必要である。ところが高温に耐
え脱ガスの少い誘電体は一般に誘電率が小さく厚さを非
常に薄くしないと吸着力が小さく実用に適さないことが
わかった。
Next, before explaining the specific structure of the device of the present invention, the theory underlying the present invention will be explained. In order to create an electrostatic adsorption device that produces less outgassing under high temperature and high vacuum conditions and has a large substrate adsorption force at low voltage, the dielectric film inside the device (Figure 3) must cause electrostatic induction to the substrate wafer. Therefore, it needs to be a particulate material with a high dielectric constant and less degassing under high vacuum. However, it has been found that dielectric materials that can withstand high temperatures and produce little outgassing generally have a low dielectric constant and are not suitable for practical use unless the thickness is made extremely thin.

第1図は静電式吸着装置における静′亀誘導の様子を示
す図、第2図は本発明を実施した基板保持装置用電極パ
ターンの3つの例をそれぞれ示すもので、第1図中1は
基板ウェハ、2は誘電体膜、5は対向する一対の電極を
構成する導体パターン、4はセラミック基板、5は直流
電源である。第1図において対向電極を構成する導体パ
ターン6を厚さdの誘電体膜2で覆い、その上に基板ウ
ェハ1を置くものとする。いま電極間に直流電源5より
電圧Vを加えると、基板ウェハ1中には対向する6中の
電極に帯電した電荷と反対の極性の電荷が第1図に示す
ように誘導され、ウェハ1と導体パターン6の間に吸引
力Fが働く。誘電体膜2の誘電率をε、ウェハ1と導体
パターン6の間隔をdとすればウェハ単位面積当りの吸
引力Fは次式%式% (1) (1)式から明らかなようにFはε v2 に比例しd
2に反比例する。従ってFを大きくするにはVを大きく
し、dを小さくすればよい。しかし一般にVを大きくす
るには材質を変えないとすればdを大きくすることが要
求、されるので、結果としてV/aを大きくすることは
困難でFを増すことはできない。
FIG. 1 is a diagram showing the state of static tortoise induction in an electrostatic adsorption device, and FIG. 2 is a diagram showing three examples of electrode patterns for a substrate holding device in which the present invention is implemented. 2 is a substrate wafer, 2 is a dielectric film, 5 is a conductor pattern forming a pair of opposing electrodes, 4 is a ceramic substrate, and 5 is a DC power source. In FIG. 1, it is assumed that a conductor pattern 6 constituting a counter electrode is covered with a dielectric film 2 having a thickness of d, and a substrate wafer 1 is placed on top of the dielectric film 2. Now, when a voltage V is applied between the electrodes from the DC power source 5, charges of the opposite polarity to the charges charged on the opposing electrodes 6 are induced in the substrate wafer 1 as shown in FIG. 1, and the wafer 1 and An attractive force F acts between the conductor patterns 6. If the dielectric constant of the dielectric film 2 is ε, and the distance between the wafer 1 and the conductor pattern 6 is d, then the attractive force F per unit area of the wafer is expressed by the following formula % Formula % (1) As is clear from the formula (1), F is proportional to ε v2 and d
is inversely proportional to 2. Therefore, in order to increase F, it is sufficient to increase V and decrease d. However, in general, in order to increase V, it is required to increase d unless the material is changed, and as a result, it is difficult to increase V/a and F cannot be increased.

従来は誘電体膜2にシリコンゴムを用いていたが、この
場合には直径126龍のシリコンゴムノ\(重さ約19
グラム)を吸着させるには、d=0.1mm 、 vは
約3000V位が必要であった。しかし半導体基板ウェ
ハではその中に作られている回路は高電界のために破壊
することがあるので、吸着装置に加える電圧はできるだ
け低くすることが望まれる。
Conventionally, silicone rubber was used for the dielectric film 2, but in this case silicone rubber with a diameter of 126 mm (weighing approximately 19 mm) was used.
gram), d = 0.1 mm and v of approximately 3000 V were required. However, in the case of semiconductor substrate wafers, the circuits formed therein may be destroyed due to the high electric field, so it is desirable to keep the voltage applied to the suction device as low as possible.

本発明ではそれらの対策としてεの大きな材質を用い1
.dを小さくおさえて低電圧で大きな吸引力Fを得るこ
とにした。そのため半導体基板ウェハに損傷を与えるこ
となく確実に保持することができる。
In the present invention, as a countermeasure against these problems, a material with a large ε is used.
.. We decided to keep d small and obtain a large attraction force F at low voltage. Therefore, it is possible to securely hold the semiconductor substrate wafer without damaging it.

捷だ最近の半導体装置製造技術においては、表面の/f
f浄度を保つことを目的とする他に、プラズマ(物理)
現象を装置製造技術として利用することを目的として、
真空状態で基板を取扱う械会が増えて来ている。真空状
態で基板ウェハな傷つけることなく確実に保持し搬送す
ることができれは、この分野の自動機械化が容易に実現
し、製品歩留りの向上、装置の特性の向上および大量生
産によるコスト低下も実現できる。
In modern semiconductor device manufacturing technology, /f on the surface
f In addition to maintaining purity, plasma (physics)
With the aim of utilizing the phenomenon as a device manufacturing technology,
The number of machinery companies that handle circuit boards in a vacuum is increasing. Being able to reliably hold and transport substrate wafers in a vacuum without damaging them will facilitate automated mechanization in this field, improve product yields, improve equipment characteristics, and lower costs through mass production. can.

本発明装置は上記のようにこの条件を満たすので、上記
の応用分野があり、構造が簡単で信頼度の高い自動機械
を実現するに欠くことができないものである。
Since the device of the present invention satisfies this condition as described above, it has the above-mentioned fields of application and is indispensable for realizing an automatic machine with a simple structure and high reliability.

次に本発明を実施した装置の構造と動作および効果を具
体的に説明する。
Next, the structure, operation, and effects of the device embodying the present invention will be specifically explained.

本発明は前記のように導体すなわち電極パターンを覆う
誘電体膜の構造と材質に関するものであるが、第2図(
a、)、(b)、(C)に例示したような電極パターン
(櫛形パターンとも呼ばれろ)の形状の相違が吸着力に
著しい影響を及ばずことはない。
As mentioned above, the present invention relates to the structure and material of the dielectric film covering the conductor, that is, the electrode pattern.
Differences in the shape of the electrode patterns (also called comb-shaped patterns) as exemplified in a, ), (b), and (C) will not have a significant effect on the adsorption force.

第5図は本発明による基板保持装置の構造を示す断面図
である。図中の1.5.4は第1図と共通であるが、表
面を研磨することにより表面のそり(凹凸)を±10μ
m以内に押えたセラミック基板4の上に電極パターン6
を厚膜印刷技術を使って厚さ約10μmに塗布密着させ
る。ずなわち導体である5の材料にはたとえばAg−P
d合金が用いられ、印刷された電極パターン3は乾燥後
900℃で焼成する。次に電極パターン5の上に第6図
に示すように高い誘電率ε8(ε8==+2000程度
)をもつ誘電体膜2−2を塗布し、乾燥後950℃で焼
成する。誘電体膜2−2はチタン酸バリウム系の材料で
比誘電率が2000にも達するが、静電吸引力Fを大き
くするに重要な部分である。実験によれば膜2−2の厚
さは10〜20μmが適当である。
FIG. 5 is a sectional view showing the structure of the substrate holding device according to the present invention. Items 1.5.4 in the figure are the same as in Figure 1, but by polishing the surface, the warpage (unevenness) of the surface can be reduced by ±10μ.
An electrode pattern 6 is placed on the ceramic substrate 4 held within m.
is applied to a thickness of approximately 10 μm using thick film printing technology. For example, the material 5, which is a conductor, is Ag-P.
d alloy is used, and the printed electrode pattern 3 is fired at 900° C. after drying. Next, as shown in FIG. 6, a dielectric film 2-2 having a high dielectric constant ε8 (ε8==+2000 approximately) is coated on the electrode pattern 5, dried and fired at 950°C. The dielectric film 2-2 is made of barium titanate material and has a dielectric constant of as high as 2000, and is an important part for increasing the electrostatic attractive force F. According to experiments, the appropriate thickness of the membrane 2-2 is 10 to 20 μm.

次に2−1はガラス系誘電体膜である。2−2のような
高誘電率の誘電体膜は多孔質で耐圧が低いため、その上
を緻密な材質の膜2−1で図のように覆ってやる必要が
ある。劃・6図のような構成で直径126間のプリコン
ウェハを裏面から確実に保持するに必要な電極間電圧は
1500〜2000Vで、これに対する耐圧を得るには
ガラス膜2−1の厚さは40〜60μmとし、500℃
で焼成する。
Next, 2-1 is a glass dielectric film. Since a dielectric film 2-2 with a high dielectric constant is porous and has a low breakdown voltage, it is necessary to cover it with a film 2-1 made of a dense material as shown in the figure. With the configuration shown in Figure 6, the voltage between the electrodes required to securely hold a precon wafer with a diameter of 126 mm from the back side is 1500 to 2000 V, and to obtain this voltage resistance, the thickness of the glass film 2-1 is 40-60μm, 500℃
Fire it with

いま第6図のように、上記構成の基板保持装置の上に基
板ウェハ1をウェハ裏面を下にしてのせ、電極間に電圧
を印加すると、十分な保持力で基板ウェハ1が保持され
、電圧を断てば保持力は除かれろ。
Now, as shown in FIG. 6, when the substrate wafer 1 is placed on the substrate holding device having the above structure with the back side of the wafer facing down and a voltage is applied between the electrodes, the substrate wafer 1 is held with sufficient holding force and the voltage is If you cut it off, the holding power will be removed.

第4図は本発明の基板保持装置の吸引力テストの結果を
示す図である。図中の(α)は第3図と同様な本発明装
置の断面略図で、ウェハ1をトルクメータで矢印の方向
に押しすべりカfsを測定した。
FIG. 4 is a diagram showing the results of a suction force test of the substrate holding device of the present invention. (α) in the figure is a schematic cross-sectional view of the apparatus of the present invention similar to that in FIG. 3, and the wafer 1 was pushed in the direction of the arrow with a torque meter to measure the sliding force fs.

(b)はその測定結果である。この結果から電極間電圧
1300Vですベリ力は約60gであることがわかる。
(b) is the measurement result. From this result, it can be seen that the inter-electrode voltage is 1300V and the force is approximately 60g.

たヌしくb)図はシリコンウェハ1が126φ(祠、電
極6の表面積6.2yrf(50關φ)、セラミック基
ζ4が59朋φの場合の2試料A 、 Bに対する実測
値である。さて直径126uのンリ:Iンウエハの重量
は約19gであるから、60gの保持力は基板保持力と
して十分である。
b) The figure shows the actual measured values for two samples A and B when the silicon wafer 1 is 126φ (the surface area of the electrode 6 is 6.2yrf (50mmφ), and the ceramic substrate ζ4 is 59mmφ. Since the weight of a wafer with a diameter of 126u is approximately 19g, a holding force of 60g is sufficient as a holding force for the substrate.

また更に低電圧電極を用いて60gの保持力を得るため
には、保持装置の有効表面積を増せばよい。たとえば電
極パターンの面積を上記の倍にすれば700vで100
gの保持力が容易に得られることが実験的に確められて
いる。しかもこのような低電圧下では半導体装置に発生
する傷害は大幅に減少する。
To obtain a holding force of 60 g using even lower voltage electrodes, the effective surface area of the holding device can be increased. For example, if the area of the electrode pattern is doubled as above, 100V will be generated at 700V.
It has been experimentally confirmed that a holding force of g can be easily obtained. Furthermore, damage to semiconductor devices is greatly reduced under such low voltages.

さらに本発明の基板保持装置に用いられる材料はすべて
高温に副えるものであって、焼成温度が最も低いガラス
系誘電体膜(2−1)でも500°Cで焼成が行われて
いるため、少(とも300〜400℃の高温雰囲気でも
脱ガスは非常に少い。
Furthermore, all the materials used in the substrate holding device of the present invention are used at high temperatures, and even the glass-based dielectric film (2-1), which has the lowest firing temperature, is fired at 500°C. There is very little degassing even in a high temperature atmosphere of 300 to 400°C.

ガラス膜は一般に非常に緻密であるため、内部の材料か
らの脱ガスは完全に防止できろうすなわちガラス膜の上
にたとえば8102. S?:3N4.ポリシリコンな
どの絶縁膜2000〜3000人をOVD法でコーティ
ングすると脱ガスが一層減少する。
Since glass membranes are generally very dense, degassing from the internal material could be completely prevented, ie, for example 8102. S? :3N4. If 2,000 to 3,000 insulating films such as polysilicon are coated using the OVD method, outgassing will be further reduced.

このためたとえはスパッタエツチング用ウェハ保持装置
として使う場合に、ウェハの温度上昇があったとしても
有害なガス放出はなく雰囲気を清浄に保つことが可能で
、水冷などの冷却器は不要である。本発明の基板保持装
置を高真空用チャンバに設置し排気を行った結果では、
i x i o ’Torrの高真空が容易に得られる
ことがわかった。
For example, when used as a wafer holding device for sputter etching, even if the temperature of the wafer rises, no harmful gases are released and the atmosphere can be kept clean, eliminating the need for a cooler such as water cooling. The results of installing the substrate holding device of the present invention in a high vacuum chamber and evacuating it show that
It has been found that a high vacuum of ix io' Torr can be easily obtained.

以上詳しく述べた本発明装置の特徴と効果を抜き出して
示すと次のようで、実用上の効果が大きいことがわかる
The features and effects of the device of the present invention detailed above are summarized as follows, and it can be seen that the device has great practical effects.

1、 基板の裏面側からの保持を可能とし基板表面を清
浄に保つことができる。
1. It is possible to hold the substrate from the back side, and the surface of the substrate can be kept clean.

2 脱ガスの少い材料によって構成されているため高真
空下で使用可能である。
2. Can be used under high vacuum because it is made of a material with little degassing.

3.300”C〜400 ℃の高温下でも使用できる。3. Can be used at high temperatures from 300"C to 400°C.

4 低電圧で大きな保持力が得られるため基板ウェハ内
の回路に損傷を与えない。
4. Large holding force can be obtained with low voltage, so circuits inside the substrate wafer will not be damaged.

5 高温化でも冷却する必要がない。そのため構造が簡
単で小形の保持装置を構成できる。
5 No need to cool down even at high temperatures. Therefore, a holding device with a simple structure and a small size can be constructed.

な訃上記の説明では基板が半導体ウェハである場合を例
示したが、基板として薄いセラミックス石英、ガラス等
種々なものが用いられた場合にも本発明は適用できる。
Although the above description has exemplified the case where the substrate is a semiconductor wafer, the present invention can also be applied to cases where various materials such as thin ceramics, quartz, glass, etc. are used as the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は静電式吸着装置における静電誘導の説明図、第
2図は本発明を実姉した基板保持用電極パターン図、第
3図は本発明による基板保持装置の構造を示す断面図、
第4図は本発明装置の吸引力テストの結果を示す。 1・・・基板(ウェハ)、  2・・・誘電体膜、  
2−1・・・ガラス系誘電体膜、  2−2・・・高誘
電率の誘電体膜、  3・・・導体パターン、  4・
・・セラミック基板、 5川直流電源。 特1許出願人  国際電気株式会社 代理人 大塊 学 外1名 第  1  閃 第 2  閉 tol                (bl第  
3  図
FIG. 1 is an explanatory diagram of electrostatic induction in an electrostatic adsorption device, FIG. 2 is a diagram of an electrode pattern for holding a substrate according to the present invention, and FIG. 3 is a sectional view showing the structure of a substrate holding device according to the present invention.
FIG. 4 shows the results of a suction force test of the device of the present invention. 1... Substrate (wafer), 2... Dielectric film,
2-1... Glass dielectric film, 2-2... High dielectric constant dielectric film, 3... Conductor pattern, 4.
...Ceramic board, 5-channel DC power supply. Patent 1 Applicant Kokusai Denki Co., Ltd. Agent Daibu 1 person from outside the university
3 diagram

Claims (1)

【特許請求の範囲】[Claims] 平滑な表面に仕上げたセラミック等の基板上に塗布焼成
された導体パターンの上に高誘電率を有する誘電体11
カを塗布焼成し、さらにその上部にガラス系誘電体膜を
焼成してなることを特徴とする静電吸着式基板保持装置
A dielectric material 11 having a high dielectric constant is placed on a conductive pattern coated and fired on a substrate made of ceramic or the like with a smooth surface.
1. An electrostatic adsorption type substrate holding device characterized in that it is formed by coating and firing a glass dielectric film on top of the coating and firing a glass dielectric film.
JP16765982A 1982-09-28 1982-09-28 Electrostatic adsorption type substrate holder Granted JPS5957446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16765982A JPS5957446A (en) 1982-09-28 1982-09-28 Electrostatic adsorption type substrate holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16765982A JPS5957446A (en) 1982-09-28 1982-09-28 Electrostatic adsorption type substrate holder

Publications (2)

Publication Number Publication Date
JPS5957446A true JPS5957446A (en) 1984-04-03
JPS6219060B2 JPS6219060B2 (en) 1987-04-25

Family

ID=15853850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16765982A Granted JPS5957446A (en) 1982-09-28 1982-09-28 Electrostatic adsorption type substrate holder

Country Status (1)

Country Link
JP (1) JPS5957446A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156842A (en) * 1984-08-27 1986-03-22 Kokusai Electric Co Ltd Electrostatic attractive plate
JPS62157752A (en) * 1985-12-29 1987-07-13 Kyocera Corp Electrostatic chuck
JPS62264638A (en) * 1987-04-21 1987-11-17 Toto Ltd Manufacture of electrostatic chucking substrate
JPS62286247A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JPS62286248A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JPH0531239U (en) * 1991-10-02 1993-04-23 住友金属工業株式会社 Electrostatic check
US5384681A (en) * 1993-03-01 1995-01-24 Toto Ltd. Electrostatic chuck
KR100420456B1 (en) * 2000-01-20 2004-03-02 스미토모덴키고교가부시키가이샤 Wafer holder for semiconductor manufacturing apparatus, method of manufacturing wafer holder, and semiconductor manufacturing apparatus
CN106910703A (en) * 2017-03-10 2017-06-30 京东方科技集团股份有限公司 Microscope carrier and preparation method thereof, processing unit (plant) and its operating method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156842A (en) * 1984-08-27 1986-03-22 Kokusai Electric Co Ltd Electrostatic attractive plate
JPS62157752A (en) * 1985-12-29 1987-07-13 Kyocera Corp Electrostatic chuck
JPS62286247A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JPS62286248A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JPS62264638A (en) * 1987-04-21 1987-11-17 Toto Ltd Manufacture of electrostatic chucking substrate
JPH0531239U (en) * 1991-10-02 1993-04-23 住友金属工業株式会社 Electrostatic check
US5384681A (en) * 1993-03-01 1995-01-24 Toto Ltd. Electrostatic chuck
KR100420456B1 (en) * 2000-01-20 2004-03-02 스미토모덴키고교가부시키가이샤 Wafer holder for semiconductor manufacturing apparatus, method of manufacturing wafer holder, and semiconductor manufacturing apparatus
CN106910703A (en) * 2017-03-10 2017-06-30 京东方科技集团股份有限公司 Microscope carrier and preparation method thereof, processing unit (plant) and its operating method

Also Published As

Publication number Publication date
JPS6219060B2 (en) 1987-04-25

Similar Documents

Publication Publication Date Title
EP0049588B1 (en) Method and apparatus for dry etching and electrostatic chucking device used therein
US6781812B2 (en) Chuck equipment
US5539179A (en) Electrostatic chuck having a multilayer structure for attracting an object
US5847918A (en) Electrostatic clamping method and apparatus for dielectric workpieces in vacuum processors
WO2000072376A1 (en) Electrostatic chuck and treating device
JPH02288352A (en) Method of clamping wafer with insulated blades
KR20020030076A (en) Electrostatic chuck and its manufacturing method
JPS5957446A (en) Electrostatic adsorption type substrate holder
JPS63194345A (en) Electrostatic chuck
JPH10154745A (en) Electrostatic attracting device
JP3527823B2 (en) Electrostatic chuck
KR0171062B1 (en) Dry etching apparatus
JPH06177231A (en) Electrostatic chuck
JPH03204924A (en) Specimen holder
JPH0727961B2 (en) Method of manufacturing electrostatic chuck plate
US11195700B2 (en) Etching apparatus
JP2851766B2 (en) Electrostatic chuck
JP4416911B2 (en) Vacuum processing method
JP2000216228A (en) Substrate fixing stage
JPH0831917A (en) Electrostatic chuck and its manufacture
JP3218717B2 (en) Electrostatic chuck
JPH09321128A (en) Electrostatic chuck device
JPS63131519A (en) Dry etching apparatus
JP4166379B2 (en) Substrate transfer device
JPS63299137A (en) Sample holding device