JPS5957405A - Demagnetization method - Google Patents

Demagnetization method

Info

Publication number
JPS5957405A
JPS5957405A JP16751782A JP16751782A JPS5957405A JP S5957405 A JPS5957405 A JP S5957405A JP 16751782 A JP16751782 A JP 16751782A JP 16751782 A JP16751782 A JP 16751782A JP S5957405 A JPS5957405 A JP S5957405A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
curie temperature
shield case
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16751782A
Other languages
Japanese (ja)
Inventor
Eiji Horikoshi
堀越 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16751782A priority Critical patent/JPS5957405A/en
Publication of JPS5957405A publication Critical patent/JPS5957405A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To eliminate influence of weak external magnetic field such as geomagnetism, by a method wherein a magnetic material is entered in a magnetic shield case having Curie temperature higher than that of the magnetic material, and then heated to a temperature higher than Curie temperature of the magnetic material and lower than that of the magnetic shield case. CONSTITUTION:A magnetic material 2 is entered in a magnetic shield case 3 having Curie temperature higher than that of the magnetic material 2, and then the magnetic material 2 is heated to a temperature higher than Curie temperature of the magnetic material 2 and lower than that of the magnetic shield case 3. For example, the magnetic shield case 3 is made of Fe-Co alloy of Curie temperature 990 deg.C in cylindrical form. The magnetic material 2 to be demagnetized is made of permalloy and treated in an electric furnace 9 for 20-30min at a temperature of 500 deg.C higher than the Curie temperature being about 420 deg.C.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は磁性体の消磁方法、特に熱消磁方法に係る。[Detailed description of the invention] (1) Technical field of the invention The present invention relates to a method of demagnetizing a magnetic material, particularly a method of thermal demagnetization.

(2)従来技術と問題点 磁性体の磁化を消す消磁方法には、磁性体に交流減衰磁
界を印加して消磁する交流消磁法と。
(2) Prior art and problems The demagnetization method for demagnetizing a magnetic material includes the AC demagnetization method, which demagnetizes the magnetic material by applying an AC attenuation magnetic field.

磁性体をキュリ一温度Tcより高い温度に加熱して消磁
する熱消磁法とがある。しかし、いずnの方法において
も、消磁後に0.3〜0.40e程度の地磁気中にさら
さnるので、特に、磁場に敏感な軟質磁性材料などでは
、再び磁化さ7Lるという不都合がある。
There is a thermal demagnetization method in which a magnetic material is heated to a temperature higher than the Curie temperature Tc to demagnetize it. However, even in the above method, since it is exposed to earth's magnetic field of about 0.3 to 0.40 e after demagnetization, there is a disadvantage that especially soft magnetic materials that are sensitive to magnetic fields may become magnetized again. .

(3)発明の目的 そこで1本発明は5以上の如き従来技術に鑑み、地磁気
などの微弱な外部(へ(界による影響を回避した6n性
体の消磁方法を提供することを目的とする。
(3) Purpose of the Invention In view of the above-mentioned prior art, it is an object of the present invention to provide a method for demagnetizing a 6n material that avoids the influence of weak external (fields) such as terrestrial magnetism.

(4)発明の構成 そして、本発明は、上記目的?:達成するために、磁性
体をそのキュリ一温度より高いキュリ一温度を持つ(逃
気シールドケースに入れ、そしてそれを磁性体のキュリ
一温度より高くかつ磁気シールドケースのキュリ一温度
より低い温度に加熱することを特徴とする。
(4) Structure of the invention And is the present invention intended for the above-mentioned purpose? : To achieve this, put a magnetic material into an escape-shielded case with a Curie temperature higher than its Curie temperature, and place it at a temperature higher than the Curie temperature of the magnetic material and lower than the Curie temperature of the magnetic shielding case. It is characterized by being heated to.

即ち1本発明の方法においては、磁性体を熱消磁する際
、磁性体を収納している11歳気シールドケースが外部
磁界のUBa体への作用を遮断するので。
That is, in the method of the present invention, when the magnetic material is thermally demagnetized, the magnetic shield case housing the magnetic material blocks the effect of an external magnetic field on the UBa material.

消磁後の外部磁界の作用が回避さnる。ただし。The effects of external magnetic fields after demagnetization are avoided. however.

磁気シールドケースは磁性材料(好ましくは軟質磁性材
料)からなることによって磁気7−ルドをなすものであ
るから、磁性体を消磁するための熱で同時に消磁さして
はならない。従って、そのキュリ一温度は消磁温度、結
局、消磁される磁性体のキーリ一温度より高いものでな
け扛ばならないことになる。、磁気シールド材料として
は1例えば。
Since the magnetic shield case is made of a magnetic material (preferably a soft magnetic material) and forms a magnetic field, it must not be simultaneously demagnetized by the heat used to demagnetize the magnetic material. Therefore, the Curie temperature must be higher than the demagnetization temperature, which is ultimately higher than the Curie temperature of the magnetic material to be demagnetized. For example, one example is a magnetic shielding material.

軟質磁性月利としてパーマロイ(キュリ一温度約400
〜500℃)、高いキュリ一温度の両性材料という観点
からFe−0G合金(組成;Fe約70ωtチ+00約
30ωを凱キュリ一温度:990℃)などを使用すると
よい。
Permalloy (curi temperature approx. 400
~500°C), and from the viewpoint of being an amphoteric material with a high Curie temperature, it is preferable to use Fe-0G alloy (composition: Fe about 70ωt + 00 about 30ω, Curie temperature: 990°C).

(5)発明の実施例 第1図は本発明の一実施例を説明するための図である。(5) Examples of the invention FIG. 1 is a diagram for explaining one embodiment of the present invention.

電気炉1の中に、消磁しようとする磁性体2を入2’t
た磁気シールドケース3を置いて。
Put the magnetic material 2 to be demagnetized into the electric furnace 1.
Place the magnetic shield case 3.

磁性体のキュリ一温度より高い温度に加熱する。Heat to a temperature higher than the Curie temperature of the magnetic material.

図中、4.5は台である。本実施例では磁気シールドケ
ース3を前述のFe−0G合金で円筒状に作製して用い
た。消磁する磁性体としてパーマロイを用い、そのキー
リ一温度(約420℃)より高い500℃の温度で20
〜30分間処理し、第2図に示すように、消磁した磁性
体2°の表面の磁束密度をホール素子6を用いて測定し
た。(i長性体試料210寸法は1 cm x 5 t
yh X 2 mmであり、その横方向(1偲幅方向)
の座標(図中のXで示した方向の座標)に関して測定し
た磁束密度全第3図に示す。第3図に、磁気シールドケ
ース3なしで、その他は上記の実施例と同じ処理を行な
った結果を。
In the figure, 4.5 is a stand. In this example, the magnetic shield case 3 was made of the aforementioned Fe-0G alloy and had a cylindrical shape. Permalloy is used as the magnetic material to be demagnetized, and at a temperature of 500°C, which is higher than its temperature (approximately 420°C),
After processing for ~30 minutes, the magnetic flux density on the surface of the demagnetized magnetic material 2° was measured using a Hall element 6, as shown in FIG. (The dimensions of the i-long body sample 210 are 1 cm x 5 t.
yh
The magnetic flux densities measured with respect to the coordinates (coordinates in the direction indicated by X in the figure) are all shown in FIG. FIG. 3 shows the results obtained by performing the same processing as in the above embodiment except without the magnetic shield case 3.

比較のために示した。熱油rin後、磁性体表面の中心
付近で、磁気シールドなしの場合には磁束密度8.5G
が得られたのに対し、磁気シールドを行なうと1.4G
の磁束密度になり、約6分の1以下の値になっているこ
とがわかる。
Shown for comparison. After rinsing with hot oil, the magnetic flux density is 8.5G near the center of the magnetic material surface without magnetic shielding.
was obtained, whereas with magnetic shielding, 1.4G was obtained.
It can be seen that the magnetic flux density is about 1/6 or less.

(6)発明の効果 以上の説明から明らかなように1本発明に依り、地磁気
等の外部磁場の影響を避けてflR性体を消磁すること
が可能になる。
(6) Effects of the Invention As is clear from the above description, according to the present invention, it is possible to demagnetize an flR material while avoiding the influence of external magnetic fields such as terrestrial magnetism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の概略図。 第2図は消磁した磁性体表面の(磁束密度の測定方法を
説明する図、 第3図は本発明及び従来の方法で消磁した磁性体表面の
磁束密度を示すグラフである。 1・・・炉、2.2′・・・磁性体、3・・・磁気シー
ルドケース、6・・・ホール素子。 特〆[出願人 富士通株式会社 特許出願代哩人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士 内  1) 幸 男 弁理士 山  口  昭 之
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the invention. Fig. 2 is a diagram illustrating a method for measuring the magnetic flux density on the surface of a demagnetized magnetic material, and Fig. 3 is a graph showing the magnetic flux density on the surface of a magnetic material demagnetized by the present invention and the conventional method.1... Furnace, 2.2'...Magnetic material, 3...Magnetic shielding case, 6...Hall element. Special [Applicant: Fujitsu Limited, patent attorney Akira Aoki, patent attorney Kazu Nishidate Patent Attorney 1) Yukio Patent Attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】 1 磁性体を該Oa磁性体キュリ一温度より高いキュリ
一温度を持つ磁気ノールドヶースに入れ。 そ扛を該(直性体のキュリ一温度より高くかつ該磁気シ
ールドク°−スのキュリ一温度より低い温度に加熱する
ことを特徴とする消磁方法。
[Claims] 1. A magnetic material is placed in a magnetic nord case having a Curie temperature higher than the Curie temperature of the Oa magnetic material. A degaussing method characterized by heating the magnet to a temperature higher than the Curie temperature of the straight body and lower than the Curie temperature of the magnetic shielding case.
JP16751782A 1982-09-28 1982-09-28 Demagnetization method Pending JPS5957405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16751782A JPS5957405A (en) 1982-09-28 1982-09-28 Demagnetization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16751782A JPS5957405A (en) 1982-09-28 1982-09-28 Demagnetization method

Publications (1)

Publication Number Publication Date
JPS5957405A true JPS5957405A (en) 1984-04-03

Family

ID=15851151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16751782A Pending JPS5957405A (en) 1982-09-28 1982-09-28 Demagnetization method

Country Status (1)

Country Link
JP (1) JPS5957405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243707A (en) * 1988-08-04 1990-02-14 Tokin Corp Method of demagnetization
JP2012134244A (en) * 2010-12-20 2012-07-12 Kobe Steel Ltd Manufacturing method of dust core, and dust core obtained by the same
WO2013182361A1 (en) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Thermoelectric element for converting energy between thermal energy and electrical energy and method for disassembling the thermoelectric element
JP2019036633A (en) * 2017-08-15 2019-03-07 株式会社Vicインターナショナル Magnetic shield fabric, method of manufacturing, and method of magnetic shielding of electronic equipment
CN109741902A (en) * 2019-01-08 2019-05-10 苏州腾凯金属材料有限公司 A kind of demagnetizing method of solenoid valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243707A (en) * 1988-08-04 1990-02-14 Tokin Corp Method of demagnetization
JP2012134244A (en) * 2010-12-20 2012-07-12 Kobe Steel Ltd Manufacturing method of dust core, and dust core obtained by the same
WO2013182361A1 (en) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Thermoelectric element for converting energy between thermal energy and electrical energy and method for disassembling the thermoelectric element
JP2019036633A (en) * 2017-08-15 2019-03-07 株式会社Vicインターナショナル Magnetic shield fabric, method of manufacturing, and method of magnetic shielding of electronic equipment
CN109741902A (en) * 2019-01-08 2019-05-10 苏州腾凯金属材料有限公司 A kind of demagnetizing method of solenoid valve

Similar Documents

Publication Publication Date Title
Mitera et al. Effect of silicon addition on the magnetic properties of Fe‐B‐C amorphous alloys
JPH0372702B2 (en)
JPS5957405A (en) Demagnetization method
Shaw et al. A comparison of archaeointensity results from Chinese ceramics using microwave and conventional Thellier's and Shaw's methods
Shilling Domain Structure During Magnetization of Grain‐Oriented 3% Si–Fe as a Function of Applied Tensile Stress
Shen et al. Anomalous depinning of magnetic domain walls within the ferromagnetic phase of the Weyl semimetal Co3Sn2S2
Arajs et al. Paramagnetic Susceptibility of Eu2O3 from 300 to 1300 K
Olsen Magnetic Properties of Uranium Digermanide
JPH0954167A (en) Magnetic detecting apparatus
Wiener et al. Cube texture in body centered magnetic alloys
Francombe et al. Faraday rotation and hysteresis properties of ferrite thin films
JPH0387365A (en) Sputtering device equipped with electromagnet for impressing parallel magnetic field
SU713915A1 (en) Thermomagnetic magnetoguide processing device
JP2004071853A (en) Heat treatment furnace in magnetic field, and heat treatment method using it
Moore et al. The effect of surface grain reversal on the AC losses of sintered Nd–Fe–B permanent magnets
JPH09131025A (en) Method of magnetizing permanent magnet
Bates et al. The adiabatic temperature changes accompanying the magnetization of cobalt in low and moderate fields
Grimm et al. A nuclear orientation study of hyperfine interactions in terbium
Schaf et al. Magnetotransport in Ni71Mn29 as a function of magnetic and atomic ordering
SU957091A1 (en) Magnetizing device
Herlach et al. Experimental and theoretical analysis of the heat distribution in pulsed magnets
JPH0243707A (en) Method of demagnetization
SU749910A1 (en) Method of thermomagnetic treatment of ferromagnetic materials
JPS6247167Y2 (en)
JPS6111443B2 (en)