JPS5956783A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5956783A
JPS5956783A JP16693882A JP16693882A JPS5956783A JP S5956783 A JPS5956783 A JP S5956783A JP 16693882 A JP16693882 A JP 16693882A JP 16693882 A JP16693882 A JP 16693882A JP S5956783 A JPS5956783 A JP S5956783A
Authority
JP
Japan
Prior art keywords
layer
type
active layer
grown
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16693882A
Other languages
Japanese (ja)
Other versions
JPS6347356B2 (en
Inventor
Masaaki Oshima
大島 正晃
Katsuhiko Muto
勝彦 武藤
Noriyuki Hirayama
平山 則行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16693882A priority Critical patent/JPS5956783A/en
Publication of JPS5956783A publication Critical patent/JPS5956783A/en
Publication of JPS6347356B2 publication Critical patent/JPS6347356B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the yield and thus enable the control of a transverse mode by a method wherein an active layer, a P type closed layer, and a P type cap layer are grown by the second liquid epitaxial growth. CONSTITUTION:Three epitaxial layers 12, 9, and 10 of N, P, and N types are provided on an N type crystal substrate 11. A wafer is processed on the substrates 12, 9, and 10 to a depth of over the thickness at least to the P type layer 9 into reverse mesa stripe form by a means such as chemical etching. The active layer 15, the P type closed layer 13, and the P type cap layer 14 are grown therein by the second liquid epitaxial growth. Thereby, the mode is stable at a low threshold value, and then the expansion angle of a beam becomes small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、化合物半導体を用いた新規な横モードの安定
した、かつ低しきい値のレーザ素子に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel laser device that uses a compound semiconductor and has a stable transverse mode and a low threshold.

従来例の調成とその問題点 半導体レーザの基本モード化は、光ファイ・く−西信(
tこおける広・;11域、長距離伝送や低歪アナログ変
調等を可能とするためυ′こ不可欠のものである。
Preparation of conventional examples and their problems The fundamental mode of semiconductor lasers was developed by optical fiber Ku-Nishi Shin (
This is indispensable in order to enable wide-band, 11-band, long-distance transmission and low-distortion analog modulation.

そのための発掘モートの制御は、晶初、光の1”ti失
とむだな再結合を最小にする特定頭載に光エネルギ及び
注入電流をとじ、込める、いわゆる屯l11(ストライ
プレーザて実現された。その後、各種のストライプレー
ザが開発され現在に至っているが、いずれも、それぞれ
の欠点を有し行だt上手ど両足なものである。たとえば
、電極ストライプレーザ等単に電流分布のみ閉じ込めた
場合にはレーザ光は主として利得分布によりストライプ
方向に導かれるが、この利得による導波路作用は不安定
であり、電流を増加してゆくと容易に高次横モート発振
を起し更には電流−光出力特性が歪む場合も多い。
The control of the excavation mote for this purpose was first realized using a so-called tun l11 (stripe laser) that focuses and injects light energy and injected current into a specific head that minimizes 1"ti loss and wasteful recombination of light. Since then, various striped lasers have been developed and are still available today, but all of them have their own drawbacks. The laser light is mainly guided in the stripe direction by the gain distribution, but the waveguide effect due to this gain is unstable, and as the current increases, it easily causes higher-order transverse moat oscillation, and furthermore, the current-light output Characteristics are often distorted.

これは、これは、電極ストライプレーザが活性層の横方
向に対してキャリア及び光を閉じ込める構造となってい
ないためである。
This is because the electrode stripe laser does not have a structure that confines carriers and light in the lateral direction of the active layer.

そこで」二記の欠点をおぎなう試ケとして第1図に示す
ような、埋め込みへテロ調造が作られた。
Therefore, as an attempt to overcome the drawbacks mentioned above, an embedded heterostructure as shown in Figure 1 was created.

り下に例としてI n P / I nGaA s P
  半導体を挙げ説明する。第1図において1はn−I
nP基板、2Hln−I n P第1クラッド層、3I
iInGaAsP  活性層(例えは1.371m発光
波長和尚)、4はP−InP第2クラット層、5はIn
GaAsP(例えば1.057z発光波長和尚)キャッ
プ層である。このような4層(苦1告エピタキノ−)−
ルウエーハを、ポトリソグラノイの手段によってマスク
をとりつけ、化学エツチングによって逆メサ状に不用部
分をとりのぞき、第2のエピタキノヤル成長によって、
P−InP埋込み層6、n−InP埋め込み層7を形成
する。
Below is an example of I n P / I nGaA s P
Let me explain by citing semiconductors. In Figure 1, 1 is n-I
nP substrate, 2Hln-I nP first cladding layer, 3I
iInGaAsP active layer (e.g. 1.371m emission wavelength Osho), 4 is P-InP second crat layer, 5 is In
It is a GaAsP (eg, 1.057z emission wavelength Osho) cap layer. 4 layers like this (epitachine)
A mask is attached to the wafer by potolithography, an unnecessary part is removed in the shape of an inverted mesa by chemical etching, and a second epitaxial growth is performed.
A P-InP buried layer 6 and an n-InP buried layer 7 are formed.

このような構造においては、活性層は上下・左右共に、
バンドギャップが大きく屈折率の小さいInP層でおお
われ、かつ、活性層幅W1が2μm前後と狭く、横方向
に光及びギヤリアのとじ込め効果があり、横モードの安
定な半導体レーザが得ら力、る。しかるに、上記埋め込
みへテロレーザでは、第1同目のエビクギ/−1−ル成
長において活性層かすでに成長され、これを選択的に、
化学エッチしたり、空気中にさらされる。さらに、この
1、・言出し/ζ活1′1層kL、第2の埋め込みエピ
タキノヤル成長の際、炉中て高温にさらされ、熱劣化の
危険が伴う。寸だ、電極での電気抵抗を極力減少さぜる
ため(で、第1図のように、Wl〈V′J2であり、エ
ツチングでこの形を形成する際オーバエッチず;?’L
 4−J、活性層から上はなくなってし丑い、寸だ、エ
ツチングか足りなけれは、Wlか充分狭くならないため
高次モードが発生ずることになる。以]二のよう(/′
C,S埋め込みへテロレーザは製造工゛程Vこおける不
安定さ、結晶成長過程での本質的な〜結晶性の低下、(
jig作歩留りの低下、等多くの問題点を含X7でいる
In such a structure, the active layer is located on both the upper and lower sides and the left and right sides.
It is covered with an InP layer with a large bandgap and a small refractive index, and the active layer width W1 is as narrow as around 2 μm, which has the effect of confining light and gear in the lateral direction, making it possible to obtain a semiconductor laser with a stable transverse mode. Ru. However, in the above-mentioned buried hetero laser, the active layer has already been grown in the first layer growth, and this is selectively grown.
Chemically etched or exposed to air. Furthermore, during the growth of the second buried epitaxial layer kL and the second buried epitaxial layer, it is exposed to high temperature in a furnace, and there is a risk of thermal deterioration. In order to reduce the electrical resistance at the electrode as much as possible (as shown in Figure 1, Wl<V'J2, and when forming this shape by etching, do not over-etch; ?'L
4-J: The area above the active layer is almost completely gone.If etching is insufficient, Wl will not be narrow enough, and higher-order modes will occur. ] 2-like (/'
C, S-embedded hetero lasers suffer from instability during the manufacturing process, an essential decrease in crystallinity during the crystal growth process, and (
X7 has many problems such as a decrease in jig production yield.

発明の目的 この発明は、上記のような従来からの埋め込みへテロ[
1η造の欠点をなりシ、歩留りのよい、かつ横モードの
制御を可能とした新規なるDHレーザ構造の半導体レー
ザを提1比するものである。
Purpose of the Invention The present invention is directed to the conventional implanted hetero [
This paper presents a semiconductor laser with a new DH laser structure that overcomes the drawbacks of the 1η structure, has a high yield, and enables control of the transverse mode.

発明の構成 かかる目的を達成するために、n型結晶基板上に、n型
、P型、n型の3層のエヒリキ/ヤル層を設け、このエ
ピタキシャル基板上に少なくともp )(j1層土での
厚み以−にの深さに、逆ノサストライブ状に、化学エツ
チング等の手段によ−って、つ工−ハ全加丁し、こIシ
tiこ、第2の液相エビタキ/ヤル成長によって活性層
、P型とじ込め層及びP型ギャノグ層を成長さぜる。
Structure of the Invention In order to achieve the above object, three epitaxial layers of n-type, p-type, and n-type are provided on an n-type crystal substrate. The hole is completely cut by means such as chemical etching in the form of reverse stripes to a depth equal to or greater than the thickness of the hole. An active layer, a P-type confinement layer, and a P-type Ganog layer are grown by the following steps.

実施例の説明 ;’Q 2図に示すとと(n41iす(001)InP
基板11上VCn型InP層12を厚さ4μm、P型I
nP層9を厚さ2ItmXn型InP層10を厚さ27
1mと、順次、液相エピタキシャル成長させた。次にコ
ノ」二つナエビタキシャルウェーハの(110)方向に
100μm間隔のストライプ状にSiC2全とりつけ、
1HBr:1HNO3:5H20からなるエツチング液
を月1いて選択的Vこ逆メサ状に不用の部分をとりのぞ
いた。この様子を第3図に示す。上記エツチング液の使
用によって第3図における角度θは約65°すなわちエ
ッチ面は(111)となる。
Explanation of the embodiment;'Q As shown in Figure 2, (n41i(001)InP
The VCn-type InP layer 12 on the substrate 11 has a thickness of 4 μm and a P-type I
The nP layer 9 has a thickness of 2Itm.The n-type InP layer 10 has a thickness of 27.
Liquid phase epitaxial growth was carried out successively to 1 m. Next, all SiC2 was attached in stripes at 100 μm intervals in the (110) direction of two Naevitaxial wafers.
An etching solution consisting of 1HBr:1HNO3:5H20 was applied once a month to selectively remove unnecessary portions in the form of an inverted mesa. This situation is shown in FIG. By using the above etching solution, the angle θ in FIG. 3 becomes approximately 65°, that is, the etched surface becomes (111).

なお8ば5IO2酸化膜マスクである。ここで重要なの
(徒、活性層成長層、わずかVこ未飽和溶液VこふオL
させることによって活性層の一部をとりのぞくことであ
る。すなわち、逆メサ状のウェー・・−Lに活性層を液
相エビタキ7ヤル成長すると、メザの平 周辺部で(dlその他の中相な部分に比へきわめて成長
速度が速く、この」=うな成長層を、未飽和溶液にふれ
さぜると、メザ周辺部の厚い部分のみを残し、他の部分
をとりのそくことがきわめて容易におこなえる。このよ
うにして形成された活性層は、従来のような薄板状のも
のから、三角柱状のものとなり21回折によるビーム広
がり角を小さくするとともに、発光スポットをほぼ円形
とし、きわめて安定な措モードの発振を(rする/こめ
の構造となりうる。
Note that the mask is an 8/5IO2 oxide film mask. What is important here is that the active layer growth layer is slightly saturated with unsaturated solution.
This is to remove a part of the active layer. In other words, when an active layer is grown in a liquid phase in an inverted mesa-shaped way...-L, the growth rate is extremely fast in the flat peripheral part of the mesa (compared to the middle phase parts such as dl). When the grown layer is exposed to an unsaturated solution, it is very easy to leave only the thick part around the meza and remove the other parts. It changes from a thin plate-like shape to a triangular prism-like shape, which reduces the beam spread angle due to 21 diffraction, makes the light emitting spot almost circular, and allows extremely stable oscillation in the mode.

このような活性層を、さらに、P型とじ込め層、P型キ
ャップ層を形成して、レーザ素子用エピタキンヤルウエ
ーハとする。このように加工されたウェーハを第2の液
相エピタキシャル成長に」=って寸ずn型の活性層15
をとりつける。この除、活性層15は、第4図に示すご
とく平坦部Aと角部Bとでは、厚みが著しく異なる。本
実癩例においてはIn2.j9に対してAsを4.64
a Lm%、Gaを0.83atm%Pを0.14at
m%からなる溶液を用い成長開始温度640℃より0.
5℃/rrunの降品速度で3秒の成長を行ったところ
、第4図に示す平坦部Aにおいては、厚みが約0.27
層mであったが角部Bに本・ける最も厚い部分H10,
6571mとなった。
Such an active layer is further formed with a P-type confinement layer and a P-type cap layer to form an epitaxial wafer for a laser device. The wafer processed in this way is subjected to second liquid phase epitaxial growth to form an n-type active layer 15.
Attach. Apart from this, the thickness of the active layer 15 is significantly different between the flat part A and the corner part B, as shown in FIG. In this case of leprosy, In2. As for j9 4.64
a Lm%, Ga 0.83 atm% P 0.14 at
Using a solution consisting of m%, the growth starting temperature was 640°C.
When growth was performed for 3 seconds at a drop rate of 5°C/rrun, the thickness of the flat part A shown in Figure 4 was approximately 0.27.
The thickest part H10 of the layer m, which is located at the corner B,
It became 6571m.

厚みの比B/Aば、第3図におけるエツチング角θが5
50のとき最も大きかった。なお、この成長層の組成は
InO,74Ga0.26 ASO,57PO,43で
ある。
If the thickness ratio B/A is used, then the etching angle θ in Fig. 3 is 5.
It was the biggest when I was 50. Note that the composition of this grown layer is InO, 74Ga0.26 ASO, 57PO, 43.

このような成長層を形成したあと、In2.9に対して
Asを約2atm%含む溶液に2秒間接触さぜ/こ。こ
の溶液に接触しメルトバックすることによって第S図に
示すように、活性層平坦部へはとり去られ角部Bにのみ
活性層15′を残すことかできる。内かられかるように
、この活性層15′の形状に[、はぼ三角形となってい
る。この部分の拡大図の例を第6図に示した。aは約0
 、8 /I m、bは約O057rmである。活性層
をメルトバックによって順次P−InP層13 、P 
 I n、o 、 89 Ga o 、 11 A S
 o 、23PO,7□層14を成長させ第7図に示す
ようなウェーハをイ尋た。
After forming such a growth layer, it was brought into contact with a solution containing about 2 atm % of As based on In2.9 for 2 seconds. By coming into contact with this solution and melting back, the active layer 15' can be removed from the flat portions, leaving only the active layer 15' at the corner B, as shown in FIG. As seen from within, the active layer 15' has a substantially triangular shape. An example of an enlarged view of this part is shown in FIG. a is about 0
, 8 /I m,b is approximately O057rm. The active layer is sequentially formed into P-InP layers 13 and P by melt-back.
I n, o, 89 Ga o, 11 A S
A 23PO, 7□ layer 14 was grown and a wafer as shown in FIG. 7 was prepared.

このウェー・・より5102酸化膜8をとりばずし第8
図のように成長層0IIIVc Au−Zn 5%オー
ミック電極16をとりつけ、基板flilK Au−3
n 10%オーミック電、極17をとりつけた。このよ
うなウェートより共振器長約300μm幅200μmの
チップにへき開によって切り出し、AuメッキしたCu
−・ノダーにInによってマウントした。このような素
子のAu−Zn側に」−9基板仙]を−とじて電流を流
すと常温に2いてしきい値20m Aで、波長1.29
μmの発振を示した。25mA以上においては、縦及び
措モード共に屯−となった。さらにビーム広がり角は、
通電方向に垂直、直角ともに約200でありきわめて円
形に近いものであった。
From this wafer, remove the 5102 oxide film 8.
As shown in the figure, a grown layer 0IIIVc Au-Zn 5% ohmic electrode 16 is attached, and the substrate flilK Au-3
n 10% ohmic electrode, pole 17 was attached. A chip with a resonator length of approximately 300 μm and a width of 200 μm was cut out from such a weight by cleavage, and a Cu plated with Au was cut out.
- Mounted on Nodder with In. When a current is passed through the Au-Zn side of such an element with a 9-substrate substrate connected to it, at room temperature, the threshold voltage is 20 mA, and the wavelength is 1.29.
It exhibited μm oscillation. At 25 mA or more, both vertical and negative modes became negative. Furthermore, the beam divergence angle is
Both perpendicular and perpendicular angles to the current direction were approximately 200, and the shape was extremely close to a circle.

なお上記実施例ではInP、InGaAsPについて述
べたが、GaAsやGaA4As系でも可能である。
In the above embodiments, InP and InGaAsP have been described, but GaAs and GaA4As may also be used.

発明の効果 以上述べたように、本発明の半導体レーザば、低しきい
値でかつモードが安定しており、ビームの広がり角が小
さいという効果がある。
Effects of the Invention As described above, the semiconductor laser of the present invention has the advantage of having a low threshold value, a stable mode, and a small beam divergence angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一実施例の埋め込みレーザの構成図、第
2図から第8図は本発明の一実施における°1′導体レ
ーザの構造と製造工程を示す図である。 8  ・・・−S i 02層、9−− P型InP層
、10・−n  7Vリ InP  層、  1 1−
 n  79p  InP 基4反、  12・・・=
・n型InP層、13−川−P −I nP層、14・
 ・P、In0.89  ”O,N  ASO,25P
O,77層、15−=・・・nノ1りの活性層。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第3図 第4図 第5図 第6図
FIG. 1 is a block diagram of a conventional buried laser according to an embodiment, and FIGS. 2 to 8 are diagrams showing the structure and manufacturing process of a 1' conductor laser according to an embodiment of the present invention. 8...-S i 02 layer, 9-- P type InP layer, 10.-n 7V Ri InP layer, 1 1-
n 79p InP group 4 anti, 12...=
・n-type InP layer, 13-Kawa-P-I nP layer, 14・
・P, In0.89 ”O, N ASO, 25P
O, 77 layers, 15-=... n no 1 active layer. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)(001)基板面上に第1のエピタキシャル成長
層を堆積し、該基板上の一部に、(111)面を構成し
、(O○り基板面と(111ン面となす角部に、活性層
を埋め込んだことを特徴とする半導体レーザ。
(1) A first epitaxial growth layer is deposited on the (001) substrate surface, a (111) plane is formed on a part of the substrate, and a corner formed by the (O○ substrate surface and the (111) plane) is formed. A semiconductor laser characterized by having an active layer embedded therein.
(2)上記エヒリキシャル層は、n型半導体によつザ0(2) The above epitaxial layer is made of an n-type semiconductor.
JP16693882A 1982-09-25 1982-09-25 Semiconductor laser Granted JPS5956783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16693882A JPS5956783A (en) 1982-09-25 1982-09-25 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16693882A JPS5956783A (en) 1982-09-25 1982-09-25 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5956783A true JPS5956783A (en) 1984-04-02
JPS6347356B2 JPS6347356B2 (en) 1988-09-21

Family

ID=15840427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16693882A Granted JPS5956783A (en) 1982-09-25 1982-09-25 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5956783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254987A (en) * 1985-09-04 1987-03-10 Hitachi Ltd Semiconductor laser
JPH08307010A (en) * 1996-04-22 1996-11-22 Hitachi Ltd Semiconductor laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214779A (en) * 1987-03-03 1988-09-07 Mita Ind Co Ltd Developer supply mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254987A (en) * 1985-09-04 1987-03-10 Hitachi Ltd Semiconductor laser
JPH08307010A (en) * 1996-04-22 1996-11-22 Hitachi Ltd Semiconductor laser

Also Published As

Publication number Publication date
JPS6347356B2 (en) 1988-09-21

Similar Documents

Publication Publication Date Title
US4425650A (en) Buried heterostructure laser diode
US4525841A (en) Double channel planar buried heterostructure laser
US4366568A (en) Semiconductor laser
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JPS6343387A (en) Semiconductor laser device and manufacture thereof
JPS58216486A (en) Semiconductor laser and manufacture thereof
JPH02288288A (en) Manufacture of buried hetero-structure laser diode
JPS5956783A (en) Semiconductor laser
JPH0461292A (en) Semiconductor laser
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JPH02156588A (en) Semiconductor laser and its manufacture
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2908480B2 (en) Semiconductor laser device
JPH01186688A (en) Semiconductor laser device
JP2814124B2 (en) Embedded semiconductor light emitting device
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPH0559594B2 (en)
JPH01162397A (en) Semiconductor laser element
JPS6152999B2 (en)
JPH02240988A (en) Semiconductor laser
JPH0443690A (en) Semiconductor laser element
JPS60235485A (en) Manufacture of semiconductor laser device
JPS60258987A (en) Semiconductor laser device and manufacture thereof
JPS6167285A (en) Semiconductor laser device