JPS5956781A - Thermo electric genetration material - Google Patents

Thermo electric genetration material

Info

Publication number
JPS5956781A
JPS5956781A JP57166025A JP16602582A JPS5956781A JP S5956781 A JPS5956781 A JP S5956781A JP 57166025 A JP57166025 A JP 57166025A JP 16602582 A JP16602582 A JP 16602582A JP S5956781 A JPS5956781 A JP S5956781A
Authority
JP
Japan
Prior art keywords
atom
boron
thermoelectric
content
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57166025A
Other languages
Japanese (ja)
Other versions
JPH021381B2 (en
Inventor
Isao Nishida
西田 勲夫
Takeshi Masumoto
剛 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP57166025A priority Critical patent/JPS5956781A/en
Publication of JPS5956781A publication Critical patent/JPS5956781A/en
Publication of JPH021381B2 publication Critical patent/JPH021381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the thermal shock property without deteriorating the thermoelectric characteristic of an iron silicide by a method wherein the material is composed of an alloy or a solid solution wherein boron at 0.3-4.6 atom% is contained to the iron silicide. CONSTITUTION:The thermal schock property becomes excellent from the content of boron at 0.3 atom% and then increases as the content increases; but the content over 4.6 atom% causes the decrease of the thermal shock property, and the thermal power decreases. Therefore, it is necessary that the content of boron is in the range of 0.3-4.6 atom%. Besides, the increase of weight in the case of heating the iron silicide containing boron at 0.3-4.6 atom% in the air at 900 deg.C for 200hr is 0.8mgcm<-2> or less, and the thermal resistance is also excellent.

Description

【発明の詳細な説明】 本発明は熱発電材料に関するものであり、更に詳しくは
熱衝撃九対して優れた特性を持っ鉄けい化物の熱発電材
料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermoelectric material, and more particularly to an iron silicide thermoelectric material having excellent properties against thermal shock.

熱を電気に直接変換する熱発電素子は、基本的には高温
接合部と低温接合部、およびp型熱発市相料(半導体)
の分枝とn型熱発′1)℃材料(半導体)の分枝とから
構成されている。
Thermoelectric power generation elements that directly convert heat into electricity basically consist of a high-temperature junction, a low-temperature junction, and a p-type thermogenic phase material (semiconductor).
It consists of a branch of n-type heat generating '1) °C material (semiconductor).

そして、高温接合部は一般にはp型とn型熱発?比材料
の分枝の一端を金属板で接合して構成されているが、熱
発電材料が鉄けい化物の場合には、耐熱性を劣化させな
いようにするため、p型とn型の熱発電材料の分枝端を
直接接合させたp −n接合になっている。低温接合部
はp型熱発亀材料とn型熱発゛成材料の各分枝端に導線
が接続されている。
And do high-temperature junctions generally generate p-type and n-type heat? It is constructed by joining one end of a branch of a specific material with a metal plate, but when the thermoelectric power generation material is iron silicide, in order to prevent deterioration of heat resistance, p-type and n-type thermoelectric generation It is a p-n junction in which the branched ends of the materials are directly joined. In the low-temperature junction, conductive wires are connected to each branch end of the p-type thermoforming material and the n-type thermoforming material.

高温接合部(p−n接合)が熱源、例えばガスあるいは
石油炎で加熱、または高温物質と接触により加熱される
と、高温接合部と低温接合部との間に温度差が生じ、低
温接合部の2つの熱発電材料分枝端に接続された導線か
ら熱起電カン1出ずことができる。
When a hot joint (p-n junction) is heated by a heat source, such as a gas or oil flame, or by contact with a hot substance, a temperature difference is created between the hot and cold joints, and the cold joint A thermovoltaic can can be produced from a conductive wire connected to the two thermovoltaic material branch ends of the thermovoltaic material.

この熱起心力は一般の金属熱電対より数十倍大きいので
各種ガス器具の安全弁用小型電源、またこれらを数対組
合せてガスまたは石油を熱源とするコードレス温風暖房
機の電源などに利用できる。
This thermal centripetal force is several tens of times larger than that of general metal thermocouples, so it can be used as a small power source for safety valves in various gas appliances, or as a power source for cordless hot air heaters that use gas or oil as a heat source by combining several pairs of these. .

このような熱発電素子を1覗源として使用(2ていると
き、水滴などの冷却物質が高温接合部に付着すると熱衝
撃によって破損される。従って、熱電1材料は耐熱性に
加えて熱衝9$注に優れていることが要求される。
When such a thermoelectric element is used as a source (1), if a cooling substance such as a water droplet adheres to the high-temperature joint, it will be damaged by thermal shock. It is required to be excellent at $9 notes.

遷移金、j7iけい化・吻は耐熱性であり、高温の大気
中で利用できる熱発成材料である。これらのうち、特に
鉄けい化物F’eSi2は大きな熱起電力が得られる点
で優れた熱電1に材料である(本発明者による特許第9
30733号)。しかしながら、鉄げい化物は熱衝撃性
が悪く、例えば、一端が900℃に加熱された状態で水
中に投入すると−11」で破壊される欠点があった。
Transition gold, J7i silicide, is a thermogenic material that is heat resistant and can be used in high temperature atmospheres. Among these, iron silicide F'eSi2 is an excellent thermoelectric material 1 in that it can generate a large thermoelectromotive force (Patent No. 9 by the present inventor).
No. 30733). However, iron hydrides have poor thermal shock resistance, and have the disadvantage that, for example, if one end is heated to 900° C. and thrown into water, it will break at -11''.

本発明のL1的は前記の欠点を解消し、鉄けい化物の熱
電特性を劣化させることなく、熱衝撃性を改善した熱発
電利料を提供するにある。
The first objective of the present invention is to eliminate the above-mentioned drawbacks and to provide a thermal power generation material with improved thermal shock resistance without deteriorating the thermoelectric properties of iron silicide.

急激な加熱冷却にも耐える特性を有するものとなし得る
こと、および熱電1に子を摺成するp型v3眠材料とし
て、更にこれに、Feより価電子が1飼少ないマンガン
元素周期表系列、またSlより価電子が1飼少ないアル
ミニウム元素周期表系列の元素から選ばれた1種または
2種以上をドープ材として陰ませ、n型発1料として、
Feより価電子が1個多いコバルト元素周期表系列、ま
たS+より価電子が1個多いSl)元素周期表系列の元
素から選ばれた1種または2種以上をドープ材として作
ませた合金または固溶体からなる熱電rt材料は前記と
同様な!特性を有することを知見し得、この知見に基づ
いて本発明を完成した。
It can be made into a material that can withstand rapid heating and cooling, and can be used as a p-type V3 material that forms a thermoelectric element. In addition, one or more elements selected from the elements of the periodic table of aluminum elements, which have one less valence electron than Sl, are used as a doping material, and as an n-type emitting material,
An alloy made with one or more elements selected as a dopant from the elements in the periodic table series of elements such as cobalt, which has one valence electron more than Fe, and Sl, which has one valence electron more than S+, in the periodic table series. The thermoelectric rt material consisting of a solid solution is similar to the above! The present invention was completed based on this knowledge.

1扶けい化物Fe S + 2中にボロンの含有量を変
化させて得られた熱発成材料の熱起電力、熱衝撃性を示
すと第1表の通りである。
Table 1 shows the thermoelectromotive force and thermal shock properties of thermogenerating materials obtained by varying the boron content in silicide Fe S + 2.

なお、熱起電力は温度差750℃で行い、破壊までの投
入回数は、一端または全体を900℃に加熱した状態か
ら水中に投入したときの破第1表 壊に至るまでの投入回数を示す。また熱電市材料は実施
例1と同様にして作った。
The thermoelectromotive force was measured at a temperature difference of 750°C, and the number of injections until failure indicates the number of injections until the first surface failure occurs when one end or the entire body is heated to 900°C and is placed in water. . Further, the thermoelectric city material was made in the same manner as in Example 1.

この第1表に示す結果から分かるように、ボロン元素の
含有量が0.30原子条より熱衝撃性が優れ、その含有
量が増加すると共に増加するが、4.6原子係を超える
と熱%Mi撃性が低下すると共に熱電力も低下Vる。従
って、ボロン元素の潔有喰は0.3〜4.6原子係の範
囲であることが必砦である。
As can be seen from the results shown in Table 1, the thermal shock resistance is better when the content of boron element is 0.30 atoms, and increases as the content increases, but when it exceeds 4.6 atoms, As the %Mi impactivity decreases, the thermal power also decreases. Therefore, it is essential that the value of the boron element is in the range of 0.3 to 4.6 atoms.

なお、ボロンな0.3〜4.6原子係を含んだ鉄けい化
物を大気中で900 ℃で200時間加熱した。場合に
おける重積増加は(1,8f!qcyn2以下であり、
耐熱性も優れた性質を有していた。
Note that an iron silicide containing 0.3 to 4.6 atoms of boron was heated in the air at 900°C for 200 hours. The intussusception increase in the case is less than (1,8f!qcyn2,
It also had excellent heat resistance.

また、鉄叶い化物にボロンの含有り七を変化さセルト共
ニ、マンガン、アルミニウム、コバルト、アンチモンの
ドープをき有させた場合の熱起電力と熱衝撃性の試験結
果は第2表の通りである。
Table 2 shows the thermoelectromotive force and thermal shock test results when the iron alloy is doped with boron, manganese, aluminum, cobalt, and antimony. It is.

第2表 なお、熱蔵″屯力は温度差800℃で行い、破壊までの
投入回数は、一端を900℃に加熱した状聾から水中に
投入したときの破壊に至るまでの投入回数を示す。また
熱電改利料は実施例2、実施βIJ3と同様にして作っ
た。
In Table 2, thermal storage capacity was measured at a temperature difference of 800°C, and the number of injections until destruction indicates the number of injections until destruction when one end was heated to 900°C and placed in water. .The thermoelectric conversion charge was made in the same manner as in Example 2 and Example βIJ3.

この第2表に示す結果から分かるように、ドープ材を加
えてもボロン含有酸が0.3原子係より熱%% Q’i
性が優れ、熱起電力も低下することがない。
As can be seen from the results shown in Table 2, even with the addition of the dopant, the boron-containing acid has a heat %% Q'i of 0.3 atom.
It has excellent properties and the thermoelectromotive force does not decrease.

この表ではマンガン、アルミニウム、コバルト、アンチ
モンを代表例としてあげたが、p型熱電屯材料としては
、Mnの周期表系列のTc1Re、アルミニウムの周期
表系列のC,Ga5Tn。
In this table, manganese, aluminum, cobalt, and antimony are listed as representative examples, but p-type thermoelectric materials include Tc1Re in the periodic table series of Mn, C, and Ga5Tn in the periodic table series of aluminum.

TIを、n型熱電取材料としては、COの周期表系列の
Rh、Ir、Sbの周期表系列のN、 P、 As、B
iもそれぞれ同様なドープ材効果が得られる。
TI is used as an n-type thermoelectric collection material such as Rh in the periodic table series of CO, Ir, N in the periodic table series of Sb, P, As, B.
A similar dopant effect can be obtained for i as well.

本発明の熱発電材料は、一般の鋳造法によって円柱や角
柱などの簡単な形状のものを得ることができるが、鋳造
法では鋳造孔(ピンホールや気泡)のない複雑な形状の
ものを得ることは極めて困難である。従ってこのような
ものを作るには粉末冶金法により製造することが好まし
い。以下の実施例は粉末冶金法で行ったものを示す。
The thermoelectric power generation material of the present invention can be obtained in simple shapes such as cylinders and prisms by general casting methods, but complex shapes without casting holes (pinholes and bubbles) can be obtained by casting methods. This is extremely difficult. Therefore, it is preferable to manufacture such a product by a powder metallurgy method. The following examples were carried out by powder metallurgy.

実施例1゜ 鉄、ボロン、金属シリコンをI” l−1B X S 
I 2.1の組成になるように秤量し、この混合物を高
周波炉を用いて溶解し、鉄製金型に鋳込んでBを0.3
〜5.57原子矛含有する鉄ゆい化物合金を作った。こ
の各合金をスタンプミルとボールミルを用いて粒径約2
μmの粉末にした。
Example 1゜Iron, boron, and metal silicon
Weigh the mixture so that it has a composition of I 2.1, melt this mixture using a high frequency furnace, and cast it into an iron mold to make B 0.3.
An iron halide alloy containing ~5.57 atoms was made. Each of these alloys was processed using a stamp mill and a ball mill to obtain particles with a particle size of approximately 2 mm.
It was made into a μm-sized powder.

この粉末に結合剤(硝脳、ポリビニールアルコール、バ
ラフィン等)を適址混合した後、冷間ブレスを行って長
方形の粉末成形体とした。
After a binder (nitrate, polyvinyl alcohol, paraffin, etc.) was appropriately mixed into this powder, it was cold pressed to form a rectangular powder compact.

この成形体を真空中1170〜1180℃で3時間焼結
し、引続いて800℃で95時間熱処理して熱発電材料
(3x 3 x 30 w& )を得た。
This molded body was sintered in vacuum at 1170-1180°C for 3 hours, and then heat treated at 800°C for 95 hours to obtain a thermoelectric material (3 x 3 x 30 w&).

この熱発電材料の熱起電力、熱衝撃性は、第1表に示す
通りのものであった。
The thermoelectromotive force and thermal shock properties of this thermoelectric power generation material were as shown in Table 1.

実施例2゜ 実施例1で得られたB含有io、30原子チと2.5原
子係の各粉末に、Feより価電子が1何歩ないMr+を
3,3原子係、B含有量2.00原子係の粉末に、Sl
より価[E子が1何歩ないAIを2.00原子チ、B含
有量2.50原子チの粉末にMn1.7Jα子チとAI
l、00原子俤の組成のものとし、これらを実施例1と
同様な焼結および熱処理した。
Example 2゜Into each of the B-containing io powders obtained in Example 1, with a concentration of 30 atoms and a concentration of 2.5 atoms, Mr+, which has 1 step less valence electrons than Fe, was added to the powders containing 3.3 atoms and a B content of 2. .00 atomic powder, Sl
[Mn1.7Jα and AI are added to a powder with a B content of 2.50 atoms and 2.00 atoms of AI, which has an E content of 1 step.
The composition was sintered and heat treated in the same manner as in Example 1.

なお、焼成前の合金粉末は、FelMn、 AIおよび
Siを溶成した丙、粉砕した金ル1粉末でもよい。
Note that the alloy powder before firing may be a powder made of FeIMn, AI and Si melted, or a powder made of metal 1 which is pulverized.

このようにして得られた熱電ち、材料は、半導体のドー
グ材で予11jlJされるように、上記ドープ材1原子
当りのアクセプターの成牛率がBをドープ利とするドナ
ーの成牛率より太き(・ため、p型熱電電材月となる。
The thermoelectric material obtained in this way has a mating rate of the acceptor per atom of the doping material that is higher than that of the donor doped with B, as shown in the semiconductor Dog material. Because of its thickness, it becomes a p-type thermoelectric material.

この熱電[1も利料の熱起rlf、カ、熱衝撃1コ]ミ
は第2表に示す辿り優れたものであった。
The thermoelectric properties [1, 1, 1, 1, 1, 2, 1, 2] of thermal shock were excellent as shown in Table 2.

実施例3゜ 実施1+l 1で得[)れたB含付喰1.3原子係の粉
末に、l、m eよりI+lIi 成子が1個多いC0
Q1.7原子チ、またCo ]、O原子チおよびSbO
,8原子チを加えたものを、それぞれ実施例1と同様な
焼成および熱処理した。
Example 3゜In the B-containing powder obtained in Example 1+l 1 with a concentration of 1.3 atoms, C0 has one more I+lIi Seiko than l and m e.
Q1.7 atoms, also Co ], O atoms and SbO
, 8 atoms of CH were added and subjected to firing and heat treatment in the same manner as in Example 1.

得られた熱電4材料は、や導体のドープ材で予測される
ようにn型熱電市(オ料となる。この熱起電力および熱
衝繋試、験の結果は、第2表に示す通り優れたものであ
った。
The obtained thermoelectric material 4 becomes an n-type thermoelectric material (O material) as expected from a conductor doped material.The results of this thermoelectromotive force and thermal shock coupling test are shown in Table 2. It was excellent.

特許出願人 科学技術庁金爲材料技術研究所長手続補正
書 11g3和58年 3 月 77 日 特許庁長官 若杉和夫 殿 (特許庁審査官       #) 1jl’件ノi示11f’+和57年特訂願第161i
 025%2、発明の名称 熱発電材料 別紙 +1)  明細書第6頁上から6行目[アンチモンのド
ープjの次に1−材」を挿入する。
Patent Applicant: Science and Technology Agency, Materials Technology Research Institute Director-General Procedural Amendment 11g3, March 77, 2010, Director General of the Patent Office, Mr. Kazuo Wakasugi (Patent Office Examiner #), 1jl' Matter No. 11f' + 11f' Special Edition, 2007 Petition No. 161i
025%2, Title of the invention Thermoelectric power generation material Attachment +1) Page 6 of the specification, line 6 from the top [insert 1-material after antimony dope j].

Claims (2)

【特許請求の範囲】[Claims] (1)  鉄けい化物に0.3〜4,6原子外のボロン
元素を含有させた合金または固溶体からなる熱発心材料
(1) A thermocentering material consisting of an alloy or solid solution of iron silicide containing 0.3 to 4.6 atoms of boron element.
(2)鉄けい化’11に0.3〜4.6 )i子%のボ
ロン元素とマンガン、コバルト、アルミニウムおよびア
ンチモンの元素周期表系列から選ばれた1種または2種
以上の元素のドーグ材を含有させた合金または固溶体か
らなる熱発電材料。
(2) Iron silicide '11 with 0.3 to 4.6) i% of boron element and one or more elements selected from the periodic table of elements of manganese, cobalt, aluminum and antimony. A thermoelectric power generation material consisting of an alloy or solid solution containing a material.
JP57166025A 1982-09-25 1982-09-25 Thermo electric genetration material Granted JPS5956781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57166025A JPS5956781A (en) 1982-09-25 1982-09-25 Thermo electric genetration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57166025A JPS5956781A (en) 1982-09-25 1982-09-25 Thermo electric genetration material

Publications (2)

Publication Number Publication Date
JPS5956781A true JPS5956781A (en) 1984-04-02
JPH021381B2 JPH021381B2 (en) 1990-01-11

Family

ID=15823534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57166025A Granted JPS5956781A (en) 1982-09-25 1982-09-25 Thermo electric genetration material

Country Status (1)

Country Link
JP (1) JPS5956781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708789A1 (en) * 1993-08-04 1995-02-10 Technova Inc Thermoelectrical semiconductor material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485145A (en) * 1990-07-28 1992-03-18 Toyoda Gosei Co Ltd Box for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708789A1 (en) * 1993-08-04 1995-02-10 Technova Inc Thermoelectrical semiconductor material

Also Published As

Publication number Publication date
JPH021381B2 (en) 1990-01-11

Similar Documents

Publication Publication Date Title
JP7344531B2 (en) Thermoelectric conversion material and its manufacturing method
US4589918A (en) Thermal shock resistant thermoelectric material
CN106986315B (en) A kind of p-type bismuth telluride thermoelectric material and preparation method suitable for low-temperature electricity-generating
JP3504121B2 (en) Thermoelectric generation system
CN107195767B (en) Five yuan of N-type thermoelectric materials of one kind and preparation method thereof
CN104004935B (en) A kind of method of supper-fast preparation high-performance high manganese-silicon thermoelectric material
US3256702A (en) Thermoelectric unit and process of using to interconvert heat and electrical energy
US3086068A (en) Process for the preparation of thermo-electric elements
JP2004119647A (en) Thermoelectric conversion material and thermoelectric conversion element using it
US6403875B1 (en) Process for producing thermoelectric material
CN104627968B (en) The preparation technology of high temperature thermoelectric compound in a kind of p-type Mn-Zn-Te
CN104843654B (en) P-type Ga-Cd-S-Te quaternary compound middle temperature electrothermal alloy and preparation technology thereof
TW405273B (en) Manufacturing method of sintered material for thermo-electric converter elements, sintered materials for thermo-electric converter elements, and a thermoelectric converter element made by using the same
US3256699A (en) Thermoelectric unit and process of using to interconvert heat and electrical energy
WO2004001864A1 (en) β-IRON DISILICATE THERMOELECTRIC TRANSDUCING MATERIAL AND THERMOELECTRIC TRANSDUCER
JPS5956781A (en) Thermo electric genetration material
Tokushima et al. The CrSi 2-CoSi thermomodule and its applications
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
CN104762501B (en) Method for preparation of silver antimony telluride thermoelectric material by combining low temperature solid phase reaction with hot pressing process
TWI417248B (en) Thermoelectric material, method for fabricating the same, and thermoelectric module employing the same
CN105800569B (en) N types CuIn3Se5The non-equilibrium preparation technology of base high temperature thermoelectric semiconductor
US3285018A (en) Two-phase thermoelectric body comprising a silicon-carbon matrix
CN101307393A (en) Process for preparing silicon-germanium-based thermoelectric material by liquid quenching cooperated with spark plasma sintering
JP7054925B2 (en) Thermoelectric conversion material
CN108511587B (en) P-type Cu with excessive copper3.9Ga4.2Te8Medium-temperature thermoelectric material and preparation process thereof