JPS5956295A - Dynamic memory cell - Google Patents

Dynamic memory cell

Info

Publication number
JPS5956295A
JPS5956295A JP57167818A JP16781882A JPS5956295A JP S5956295 A JPS5956295 A JP S5956295A JP 57167818 A JP57167818 A JP 57167818A JP 16781882 A JP16781882 A JP 16781882A JP S5956295 A JPS5956295 A JP S5956295A
Authority
JP
Japan
Prior art keywords
potential
memory cell
cell
node
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57167818A
Other languages
Japanese (ja)
Other versions
JPH0410153B2 (en
Inventor
Kazuo Terada
寺田 和夫
Toshio Takeshima
竹島 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57167818A priority Critical patent/JPS5956295A/en
Publication of JPS5956295A publication Critical patent/JPS5956295A/en
Publication of JPH0410153B2 publication Critical patent/JPH0410153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent the destruction of stored information in a memory cell even in case of the incidence of one or more alpha particles or the like, by using a pair of field effect transistors (TRs) different in a conductive type as a selecting gate to store the signal electric charge in both electrodes of a cell capacity. CONSTITUTION:A cell capacity CS is connected between the respective sources of the first conductive-type, for example, a N-channel MOS TR T0, which has the gate connected to a word line WL0 and has the drain connected to a bit line B, and the second conductive-type, for example, P-channel MOS TR T2 which has the gate connected to a word line WL1 and has the drain connected to a reference potential power line. Minimum and maximum potentials used in a semiconductor device including memory cells are used as substrate potentials VN and VP of the MOS TRs T0 and T1, and the substrate potential VP is supplied to a reference potential power source line PS. Since both electrodes of the cell capacity are held in a floating state, the electric charge stored in the cell capacity is not lost even if the potential of one electrode is varied by the incidence of alpha particles, thus, the destruction of the stored contents is prevented.

Description

【発明の詳細な説明】 本発明は、ダイナミックメモリセル、特に、異なる導電
型を有する一対の電界効果トランジスタを用いたダイナ
ミックメモリセルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dynamic memory cell, and more particularly to a dynamic memory cell using a pair of field effect transistors having different conductivity types.

従来の夕”イナミ、クメモリセルは、ソースとワード線
に接続されたゲートとビット線に接続されたドレインと
を有する一;界効果トランジスタと、両電極のそれぞれ
が前記ソースと一定霜、位源とに接続されたセル8Mと
を含んで構成される。
A conventional memory cell is a field effect transistor having a gate connected to a source and a word line, and a drain connected to a bit line; The cell 8M is connected to the cell 8M.

次に、従来のダイナミックメモリセルについて、図面を
参照して詳細に説明する。
Next, a conventional dynamic memory cell will be described in detail with reference to the drawings.

第1図は従来の一例を示す回路図である。FIG. 1 is a circuit diagram showing a conventional example.

第illに示すダイナミックメモリセルは電界効果トラ
ンジスタとして1個のNチャネルのMO8トランジスタ
′vSを選択ゲートとして使用した1トランジスタ型の
ダイナミックメモリセルである。
The dynamic memory cell shown in ill is a one-transistor type dynamic memory cell using one N-channel MO8 transistor 'vS as a field effect transistor as a selection gate.

このダイナミックメモリセルはMOS)ランジスタT8
とセル容量C8からなり、記憶された情報がIQIであ
るか111であるかは、このセル答弁C8の節点SK蓄
えられる電荷幇と対応づけられる。
This dynamic memory cell is a MOS) transistor T8
and cell capacitance C8, and whether the stored information is IQI or 111 is associated with the charge stored at the node SK of this cell answer C8.

セル♀f釦C8の一力の電極は一定電位源に接続され一
定を位■Sに保持されている。
The single-power electrode of the cell ♀f button C8 is connected to a constant potential source and held at a constant potential ♀S.

MOS)ジンジスタ′vSのゲートに接続されたワード
線WLを逃択することで、MOS)ランジスタTSをメ
ン状態としMO8I−ランジスタT8のドレインに接続
されたビットwBL*介しだ記」駅情報のセル答鋤、C
8への引込みや胱出しが行われる。
By escaping the word line WL connected to the gate of the MOS transistor 'vS, the MOS transistor TS is set to the main state and the bit wBL* connected to the drain of the MO8I transistor T8 is inserted into the station information cell. answer plow, C
Retraction to 8 and bladder evacuation are performed.

このような従来のダイナミックメモリセルは節点Sに蓄
えられている情報すなわちb゛、荷がアルファ粒子線の
放射性粒子の入射によって失われるという不可避的な問
題を持っておシ、この現象はセル答λIC8が小さくな
シそこに蓄える電荷知が少くなる/よと渚しくダイナミ
ックメモリの大容廿化が進むにつれてよシ重犬な問題と
なってきている。
Such conventional dynamic memory cells have an unavoidable problem that the information stored at the node S, i.e., the charge b, is lost due to the incidence of radioactive particles of alpha particle beams, and this phenomenon is caused by the cell response. As the λIC8 becomes smaller, the amount of charge stored therein decreases.This problem is becoming more serious as the capacity of dynamic memories continues to increase.

すなわち、従来のダイナミックメモリセルは、アルファ
粒子の入射により記憶情べ・にが破壊されるという欠点
かあった。
That is, the conventional dynamic memory cell had a drawback in that the memory information was destroyed by the incidence of alpha particles.

本発明の目的はアルファ粒子か入射しても記憶Ti1i
 lliの破駅が防止できるダイナミックメモリセルを
提供することにある。
The purpose of the present invention is to store Ti1i even if alpha particles are incident.
An object of the present invention is to provide a dynamic memory cell that can prevent the failure of lli.

すなわち、本発明の目的(l−1,%アルファ粒子等の
放射性粒子かメモリセルに入射しても記憶情報が破壊さ
れず正常な斬、出しか行なえるダイナミックメモリセル
を提供することにある。
That is, an object of the present invention is to provide a dynamic memory cell which can perform only normal cutting and output without destroying stored information even if radioactive particles such as 1-1% alpha particles are incident on the memory cell.

本発明のダイナミックメモリセルは、ゲートが第1のワ
ード凱に接続され ドレインがビット線に接続された第
1の導電型の第1の電界効果トランジスタと、ゲートが
第2のワード線に接続されドレインが弄準電位電源線に
接続された前記第1の導餉:型と異なる第2の導η1西
りの第2の電界効果トランジスタと、前記第1の電界効
果トランジスタのソースと前記第2の霜、竹効果トラン
ジスタのソースとの間に接続されたセル答釦とを含んで
構成される。
The dynamic memory cell of the present invention includes a first field effect transistor of a first conductivity type, the gate of which is connected to a first word line, the drain of which is connected to a bit line, and the gate of which is connected to a second word line. a second field effect transistor whose drain is connected to the quasi-potential power supply line, and a second field effect transistor whose drain is connected to the quasi-potential power supply line; It consists of a cell answer button connected between the frost and the source of a bamboo effect transistor.

すなわち、本発明のダイナミックメモリセルは、セル容
量の両電極間に常に一定の市;向弁を記憶情報として蓄
えておき、一方のS極箱;位が変化してもセル容量−に
蓄えられた電荷框が/1は一定の捷ま維持し得るように
して、アルファ粒子等の入射による舵惰情報の破壊を防
ぐことに成功したものである。
That is, in the dynamic memory cell of the present invention, a constant value is always stored as memory information between both electrodes of the cell capacitor, and even if the position of one S pole box changes, it is not stored in the cell capacitor. By making it possible for the charge frame to maintain a constant deflection of /1, it was possible to prevent the rudder information from being destroyed due to the incidence of alpha particles, etc.

以下、理解を助けるために典型的な実施例を用いて本発
明を詳述する。
The present invention will now be described in detail using typical examples to aid understanding.

第2図は本発明の一実施例を示す回路図である。FIG. 2 is a circuit diagram showing one embodiment of the present invention.

BLは情報の1込み、読出しを行なうためのピッ1.、
WLO、WLlはメモリセルな選択するだめの1対のワ
ード線、TOはNチャネルMOSトランジスタ、TIは
PチャネルMOSトランジスタ、C8は極性を持たない
ようなセル各賞、C01C1は節点80.81に形成さ
れる寄生容量、P8はPチャネルのMOS)ランジスタ
T1のソースに基準電位を供給するだめの基準箱8位電
源線を示す。VN、VPはMOSトランジスタTO、T
lの基板電位である。以下、この基&霜、位VN、VP
は該メモリセルを含む半導体装餉に使用しているノ1哉
低電位、最高箱1位がそれぞれに用いられ、基準電位電
源線I) S Kは基板電位VPが供給されている場合
を例に説明する。
BL is a pin 1 for loading and reading information. ,
WLO and WLl are a pair of word lines for selecting memory cells, TO is an N-channel MOS transistor, TI is a P-channel MOS transistor, C8 is a cell with no polarity, and C01C1 is at node 80.81. The parasitic capacitance that is formed, P8, is a P-channel MOS transistor. VN, VP are MOS transistors TO, T
is the substrate potential of l. Below, this base & frost, place VN, VP
are the lowest potentials and highest potentials used in the semiconductor device including the memory cell, respectively, and the reference potential power supply line I) SK is an example where the substrate potential VP is supplied. Explain.

第31z1は第2図に示す実施例におりるダイナミック
メモリセルの構造断面図で%第2図に対応する部分に6
、同じ記号を用いている。
31z1 is a cross-sectional view of the structure of the dynamic memory cell according to the embodiment shown in FIG.
, using the same symbols.

第2図および第3図に示すダイナミックメモリセルはワ
ード&1WLOを為電位にし、ワード線WLIを低電位
にすることで選択され、チット線BLとの情報のやりと
シが可能になる。またワード梅WLQを低電位にし、ワ
ード線WLIを高電位にすれはMOS)ランジスタTo
 、TIがオフ状態とな夛メモリセルは保持状態となる
The dynamic memory cell shown in FIGS. 2 and 3 is selected by setting the word &1 WLO to a low potential and the word line WLI to a low potential, thereby allowing information to be exchanged with the chit line BL. Also, set word line WLQ to low potential and set word line WLI to high potential (MOS) transistor To
, TI is in the off state, and the memory cells are in the holding state.

以後、選択時にビットIIIIBL2節点Soを高電位
とするような電位関係を−1−情報、逆にビット線BL
、節点SO?11−低亀位とするような電位関係を#O
I情報と呼ぶ。
Thereafter, the potential relationship such that the bit line BL2 node So is set to a high potential at the time of selection is set to -1-information, and conversely, the bit line BL
, node SO? 11-Potential relationship that makes the position low is #O
It is called I information.

節点5O(n拡散層)にアルファ粒子等が入射すれば、
そのため発生する電荷により、寄生各州CO,CIが小
さいと、節点SOの節点電位■0が基板電位V N I
/CAlj・しくなることはよく知られている。
If an alpha particle etc. enters the node 5O (n diffusion layer),
Due to the charges generated, if the parasitic states CO and CI are small, the node potential ■0 of the node SO becomes the substrate potential V N I
It is well known that /CAlj・

ここで、通當、基&電位VNは低電位であるのでアルフ
ァ粒子等が節点SOに入射すれは、節点電位VOは低電
もLになる。
Here, since the base voltage VN is generally a low potential, when an alpha particle or the like is incident on the node SO, the node potential VO becomes L even at a low voltage.

従って、′01情報の保持状態でアルファ粒子が節点S
Oに入射してもIQI情報の状態は変化し4い。また、
′11外報の保持状態、ずなわち節点SOが尚電位の状
幅でアルファ粒子等が節点SOに入射すると、節点−、
位VOは高電位から低1i、位に低下する。このとき節
点80に注入される電荷量qVl 、A71 ’RJ、
位をVDDC>oV)、低電位’tovとt、た場合、
次の(1)式で示される。
Therefore, in the state of holding '01 information, the alpha particle moves to the node S
The state of IQI information does not change even if it enters O. Also,
'11 When the external signal is held, that is, when an alpha particle or the like enters the node SO while the node SO is still at a potential, the node -,
The potential VO decreases from a high potential to a low potential 1i. At this time, the amount of charge qVl injected into the node 80, A71'RJ,
When the potential is VDDC>oV) and the low potential is 'tov and t,
It is expressed by the following equation (1).

q:(−vDD)・(co+016C8/(c1+cs
))・・・・・・(1) まだ、WIJ点S1の節点電位■1′は、次の(21式
で表わされる′電位となる。
q: (-vDD)・(co+016C8/(c1+cs
))...(1) The node potential ■1' of the WIJ point S1 is still the potential expressed by the following equation (21).

Vl’ =(1−画情■) VDD   ・・・・・・
(2)まだ、比較の便宜上、節点S1の節点知0位Vl
’を高%5位VDDにしたとき(hシ出1時にはセ9な
る)の加点SOの鴇、位■0′を求めると、次の(3)
式のようになる。
Vl' = (1-Picture■) VDD...
(2) For convenience of comparison, node knowledge 0th rank Vl of node S1
When ' is set to high% 5th place VDD (when h side comes out at 1, it becomes se9), and when calculating the additional point SO, place ■0', the following (3) is obtained.
It becomes like the expression.

VO’:VI)D、C8”/(CO+C3)−(CI+
C8)・・・・・・(3) 従って、アルファ粒子の入射によシ減少した信号量、へ
は節点SOのところで、次の(4)式のようになる。
VO':VI)D, C8"/(CO+C3)-(CI+
C8) (3) Therefore, the signal amount decreased by the incidence of alpha particles at the node SO is expressed as the following equation (4).

S、= 1− C8”/(CO+C8)・(C1+C8
)・・・(4)ここで、たとえば C0=C1=C8/10 とずれは、こiLtよ約174チとな951節点5O2
S1に蓄えられている全体の11号量sg、に比べれば
小さく約82.6%の(FJ号前が残ることになる。
S, = 1-C8”/(CO+C8)・(C1+C8
)...(4) Here, for example, C0=C1=C8/10 and the deviation is about 174 inches from this iLt, which is 951 nodes 5O2
Compared to the total No. 11 amount sg stored in S1, it is small and about 82.6% (before FJ remains).

従って、111輌報社破壊されないで保持されることが
わかる。
Therefore, it can be seen that 111 Hohosha is preserved without being destroyed.

一方、節点S1の顕)点電位Vl’は通常基板電位VP
と同じ高知1位であるから、アルファ粒子等がこの部分
に入射しても保持情報は破壊されない。
On the other hand, the actual point potential Vl' of the node S1 is the normal substrate potential VP
Since it is the same as Kochi No. 1, even if alpha particles etc. are incident on this part, the retained information will not be destroyed.

しかし、11″情報を保持している状態で角1点SOに
アルファ粒子等が入射して節点S1の節点4J1位がV
 1 /となった場合に、さらにアルファ粒子等が節点
S1に入射する場合もあシうる。この場合には節点S1
の節点電位がVl’からVDDに変化するものの、上記
の場合と同様に節点SOの1111位も谷量・カップリ
ングで高くなるため保持情報は破壊されない。
However, while holding the 11'' information, an alpha particle etc. enters one corner point SO, and the node 4J1 position of the node S1 becomes V
1/, it is possible that alpha particles and the like may further enter the node S1. In this case, node S1
Although the node potential changes from Vl' to VDD, the held information is not destroyed because the 1111th position of the node SO also becomes high due to the valley amount and coupling, as in the above case.

本発明のダイナミックメモリセルは、単一の電界効果ト
ランジスタの代9に異なる4霜、型を有する一対の電界
効果トランジスタを用いることによシ、セル容量の両電
極をフローティング状態に保持できるため、一方の電極
の電位がアルファ粒子の入射によシ変動してもセル容−
h1に蓄えられた電荷が失われないようにできるので、
記憶破壊が防止できるという効果がある。
Since the dynamic memory cell of the present invention uses a pair of field effect transistors having four different types than a single field effect transistor, both electrodes of the cell capacitance can be maintained in a floating state. Even if the potential of one electrode changes due to the incidence of alpha particles, the cell capacity
Since the charge stored in h1 can be prevented from being lost,
It has the effect of preventing memory destruction.

すなわち、本発明のダイナミックメモリセルは異なる導
電型の一対の電界効果トランジスタを選択ケートとして
用い、セルR:mi:の画知、極に信号電荷を蓄えるこ
とでメモリセルの記憶情報か1つ以上のアルファ粒子等
の入射があっても破壊されることを防ぐことかできると
いう効果がある。
That is, the dynamic memory cell of the present invention uses a pair of field effect transistors of different conductivity types as selection gates, and stores signal charges in the polarities of the cell R:mi: to select one or more pieces of information stored in the memory cell. This has the effect of preventing destruction even if alpha particles, etc., are incident thereon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一例を示す回路図、第2図は本発明の一
爽施01゜Iを示す回路図、第3図は第2図に不す実施
例におりる榴造断面図である。 WL 、WLO、WLI・・・・・・ワード線、BL・
・・・・・ビット線、’rs、’ro・・・・・・MO
S)ランジスタ、T1・・・・・・MOSトランジスタ
、C8・・・・・・セル容量、CO,CI・・・・・・
寄生各音、PS・・・・・・基葦電位箱、原線、
Fig. 1 is a circuit diagram showing a conventional example, Fig. 2 is a circuit diagram showing a refreshing application 01゜I of the present invention, and Fig. 3 is a cross-sectional view of the structure of an embodiment other than that shown in Fig. 2. be. WL, WLO, WLI...Word line, BL・
...Bit line, 'rs,'ro...MO
S) Transistor, T1...MOS transistor, C8...Cell capacitance, CO, CI...
Parasitic sounds, PS... Basic potential box, original wire,

Claims (1)

【特許請求の範囲】[Claims] ゲートが第1のワード線に接続されドレインがビット線
に接続された第1の導電型の第1の電界効果トランジス
タと、ゲートが第2のワード線に接続されドレインが基
準電位電源線に接続された前記第1の導電型と異なる第
2の24電型の第2の電界効果トランジスタと、il」
配給1の電界効果トランジスタのソースと前記第2の電
界効果トランジスタのソースとの間に接続されたセル容
量とを含むことを特徴とするダイナミックメモリセル。
a first field effect transistor of a first conductivity type having a gate connected to a first word line and a drain connected to a bit line; a first field effect transistor having a gate connected to a second word line and a drain connected to a reference potential power supply line; a second field effect transistor of a second conductivity type different from the first conductivity type, and
A dynamic memory cell comprising a cell capacitor connected between the source of the first field effect transistor and the second field effect transistor.
JP57167818A 1982-09-27 1982-09-27 Dynamic memory cell Granted JPS5956295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167818A JPS5956295A (en) 1982-09-27 1982-09-27 Dynamic memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167818A JPS5956295A (en) 1982-09-27 1982-09-27 Dynamic memory cell

Publications (2)

Publication Number Publication Date
JPS5956295A true JPS5956295A (en) 1984-03-31
JPH0410153B2 JPH0410153B2 (en) 1992-02-24

Family

ID=15856661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167818A Granted JPS5956295A (en) 1982-09-27 1982-09-27 Dynamic memory cell

Country Status (1)

Country Link
JP (1) JPS5956295A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512576A (en) * 1978-07-12 1980-01-29 Nec Corp Integrated memory cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512576A (en) * 1978-07-12 1980-01-29 Nec Corp Integrated memory cell

Also Published As

Publication number Publication date
JPH0410153B2 (en) 1992-02-24

Similar Documents

Publication Publication Date Title
US6028784A (en) Ferroelectric memory device having compact memory cell array
EP0997911B1 (en) Voltage clamping method and apparatus for dynamic random access memory devices
JP3961651B2 (en) Semiconductor memory device
JPH05250881A (en) Nonvolatile storage element
US4375600A (en) Sense amplifier for integrated memory array
JPS6322395B2 (en)
KR20090105968A (en) Cmos sram/rom unified bit cell
US5757693A (en) Gain memory cell with diode
WO2000021092A1 (en) Semiconductor device
JPH0160789B2 (en)
US6737685B2 (en) Compact SRAM cell layout for implementing one-port or two-port operation
JPH02265097A (en) Semiconductor memory
EP0187246A2 (en) Precharge circuit for bit lines of semiconductor memory
US6438042B1 (en) Arrangement of bitline boosting capacitor in semiconductor memory device
JPH06309869A (en) Semiconductor storage device
JP2937719B2 (en) Semiconductor storage device
US5838606A (en) Three-transistor static storage cell
JPS5956295A (en) Dynamic memory cell
JP2005514723A (en) Method for increasing refresh cycle of semiconductor memory device
JPS6113500A (en) Semiconductor memory device
JPS5935114B2 (en) Width increase circuit
JPH0415558B2 (en)
JPH02154394A (en) Semiconductor memory device
US6930930B2 (en) Using isolated p-well transistor arrangements to avoid leakage caused by word line/bit line shorts
EP0284091B1 (en) Nonvolatile semiconductor memory device