JPS5955053A - Semiconductor integrated circuit device and manufacture thereof - Google Patents

Semiconductor integrated circuit device and manufacture thereof

Info

Publication number
JPS5955053A
JPS5955053A JP57164841A JP16484182A JPS5955053A JP S5955053 A JPS5955053 A JP S5955053A JP 57164841 A JP57164841 A JP 57164841A JP 16484182 A JP16484182 A JP 16484182A JP S5955053 A JPS5955053 A JP S5955053A
Authority
JP
Japan
Prior art keywords
type
layer
impurity
semiconductor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57164841A
Other languages
Japanese (ja)
Inventor
Norio Anzai
安済 範夫
Hideki Yasuoka
秀記 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57164841A priority Critical patent/JPS5955053A/en
Publication of JPS5955053A publication Critical patent/JPS5955053A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to rapidly integrate a bipoloar C-MOS.IC by forming a semiconductor region which reduces the impurity density toward the depthwise direction and again increases the impurity density. CONSTITUTION:A doner for forming a high density n<+> type buried layer, e.g., Sb and an acceptor for forming an isolation part, e.g., B are introduced by means such as depositing or ion implanting or the like to the surface of a high specific resistance p<-> type Si substrate 1. Then, when an n type Si layer 7 is formed in a thickness of approx. 4mum by epitaxial treatment, the impurity such as Sb or B is ''side risingly'' diffused in an n type layer 7 to form an n<+> type buried layer 8, a p type buried layer 9 as part of the well and a p type buried layer 10 as part of the isolation part, thereby forming a p type well 14 and an isolation P type layer.

Description

【発明の詳細な説明】 本発明は・IC(半導体集積回路装置)、特に13’i
(バイポーラ→−C’M’OS (コンプリメンタリ□
金属酸化物半導体)ICの高集積化技術に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ICs (semiconductor integrated circuit devices), particularly 13'i
(Bipolar→-C'M'OS (Complementary□
(metal oxide semiconductor) IC technology.

Bi−0MO811ICは通常、高比抵抗p−型S・[
(シリしン)基体上にnff1si膚を部分的にn+型
埋込層を介してエピタキシャル成長させ。
Bi-0MO811IC is usually a high resistivity p-type S[
Nff1si skin was epitaxially grown on the (silicin) substrate partially through an n+ type buried layer.

n型りt層の一部にp型ウェルを形成し、′¥l型ウェ
ル表面にnチャネ:A/MO8拳FET(電界効果トラ
ンジメタ)をっくシ、n型St層表面(/c:pチ□ャ
ネルMo1l@FETとバイポーラnpn)ランジメタ
をつくる構成を有する。
A p-type well is formed in a part of the n-type T layer, and an n-channel: A/MO8 fist FET (field effect transistor) is placed on the surface of the n-type St layer (/c: It has a configuration that creates a p-channel Mo1l@FET and a bipolar npn) range meta.

と・ころでp型ウェルはn型siN表面からデクセプタ
としてB□(ボロン)等を深く拡散量ることによ多形成
するものであるが、エミッタ深さ5μm程度のバイポー
ラ素子を有するこれまでのBi・0MO8・ICの場合
、エピタキシャル成長させるn型りt層の厚さが10μ
m以上であるため、p型中エル形成時のn″−型埋込層
からの高濃度n型不純物の上方への拡散、いわゆる「わ
き上シ」は特に問題とならなかった。しかしBi−0M
O8・ICの高集積化に伴い、エミッタ深さ3μm以下
の微細化したバイポーラ素子を得るために4Jim程度
の厚さのエピタキシャルSi層に低濃度(C3”= I
 X 10” tyn−8)のp型ウェルを形成しよう
とすると、12001;で4〜6時間程度の拡散加熱処
理が必要で、その際にn++埋込層からのn型不純物(
Sb、pなど)のエピタキシャル層中への「わき上り」
が約3.5μmもあって、この部分の表面に例えばnチ
ャネルMO8FETやバイポーラトランジスタを形成す
る場合に耐圧不良等の問題がある。実際にはエピタキシ
ャル層厚は7μmが限界でそれ以下の厚さでBi−CM
O8@ICを形成することは困難とされていた。
By the way, p-type wells are formed by deeply diffusing B□ (boron) as a deceptor from the n-type siN surface, but conventional wells with bipolar elements with an emitter depth of about 5 μm In the case of Bi・0MO8・IC, the thickness of the epitaxially grown n-type T layer is 10 μm.
m or more, upward diffusion of high-concentration n-type impurities from the n″-type buried layer during formation of a p-type medium-well, so-called “side-up” did not pose a particular problem. However, Bi-0M
With the increasing integration of O8 ICs, a low concentration (C3''= I
When trying to form a p-type well of 12001; x 10" tyn-8), diffusion heat treatment for about 4 to 6 hours is required, and at that time, n-type impurities (
Sb, p, etc.) “rise” into the epitaxial layer
The surface area is about 3.5 μm, and when an n-channel MO8FET or a bipolar transistor is formed on the surface of this portion, for example, there are problems such as poor breakdown voltage. In reality, the epitaxial layer thickness is limited to 7 μm, and if it is less than that, Bi-CM
It has been considered difficult to form O8@IC.

本発明は上記した問題を解決したものであり、その目的
とするところは、Bt−0MO8・ICの高集積化、特
にエミッタ深さ3μmのバイポーラ素子を有するBi−
CMO8φICの提供にある。
The present invention has solved the above-mentioned problems, and its purpose is to increase the integration density of Bt-0MO8 ICs, and in particular to improve the integration of Bt-0MO8 ICs, especially Bi-
Provided by CMO8φIC.

以下本発明を実施例にそって詳述する。The present invention will be described in detail below with reference to Examples.

第1図乃至第7図はBi−0MO8・ICの製造プロセ
スに本発明を適用した場合の一実施例における要部の形
態を下記の工程(1)〜(7)にそって工程断面図で示
すものである。
Figures 1 to 7 are process cross-sectional views showing the form of essential parts in an embodiment in which the present invention is applied to the manufacturing process of Bi-0MO8 IC along the following steps (1) to (7). It shows.

(1)高比抵抗のp−型Si基板(サブストレート)1
を用意し、第1図に示すようにその一主面の表面に形成
した酸化膜(Sin2膜)2をマスクに高濃度n++埋
込層形成のためのドナ例えばSb(アンチモン)をデポ
ジット又はイオン打込み等の手段により導入する。同図
の点線3は導入された不純物sbを示ず。なお同図にお
いて、lはnチャネルMO8FETを形成するだめの領
域、■はノ(イポーラnpn)ランジメタを形成するた
めの領域である。
(1) High resistivity p-type Si substrate (substrate) 1
As shown in FIG. 1, a donor for forming a high concentration n++ buried layer, such as Sb (antimony), is deposited or ionized using the oxide film (Sin2 film) 2 formed on one main surface as a mask. It is introduced by means such as driving. The dotted line 3 in the figure does not indicate the introduced impurity sb. In the figure, 1 is a region for forming an n-channel MO8FET, and 2 is a region for forming an (ipolar npn) range meta.

(2)  新たな酸化膜マスク4によりp型ウェル及び
アイソレーション部形成のためのアクセプタ例えばB(
ボロン)をデポジット又はイオン打込み等の手段により
導入する。第2図において点線5は導入された不純物B
を示す。なお、同図に示すように新たな酸化処理により
、工程(1)で導入されたsbによるn 拡散層6が形
成されている。
(2) Using a new oxide film mask 4, an acceptor, for example B(
Boron) is introduced by means such as deposit or ion implantation. In Figure 2, the dotted line 5 indicates the introduced impurity B.
shows. Note that, as shown in the figure, an n diffusion layer 6 made of sb introduced in step (1) is formed by a new oxidation treatment.

(3)基板上全面にSt化合物の熱分解等の手段を用い
たエピタキシャル処理により第3図に示すようにn型り
t層7を約4μmの厚さに形成する。
(3) As shown in FIG. 3, an n-type T layer 7 is formed to a thickness of about 4 μm over the entire surface of the substrate by epitaxial treatment using a method such as thermal decomposition of an St compound.

このエピタキシャルn型りt層7の形成時に工程(11
(2+で導入されたsbやB等の不純物がn型層7中に
[−わき上シ」拡散されてn++埋込層8.ウェルの一
部であるp型埋込層9とアイソレーション部の一部であ
るp型埋込層10をつくる。なお、Bの拡散定数はsb
のそれに比して約6倍であるためp型層はエピタキシャ
ル層に、より深く拡散される。
During the formation of this epitaxial n-type T-layer 7, step (11)
(The impurities such as sb and B introduced in the 2+ are diffused into the n-type layer 7 into the n++ buried layer 8.The p-type buried layer 9, which is a part of the well, and the isolation part A p-type buried layer 10 is made, which is a part of the .The diffusion constant of B is sb
The p-type layer is diffused deeper into the epitaxial layer because it is about six times as large as that of the p-type layer.

(4)第4図に示すように表面に形成した酸化膜マスク
11を通してエピタキシャルSi層中にp型ウェル及び
アイソレーション拡散のためのBをイオン打込みにより
導入し、アニール処理によ#)st層中に引伸し拡散し
たp型埋込層9,10と接続させることにより、第5図
に示すp型ウェル14及びアイソレーションP型層15
を形成する。
(4) As shown in FIG. 4, B for p-type well and isolation diffusion is introduced into the epitaxial Si layer through an oxide film mask 11 formed on the surface by ion implantation, and annealing is performed to #)st layer. By connecting the p-type buried layers 9 and 10 stretched and diffused therein, a p-type well 14 and an isolation P-type layer 15 shown in FIG.
form.

(5)バイポーラ素子を形成する領域Hの表面の一部に
第5図に示すようにBの選択的デポジット(又はイオン
打込み)を行なってベースとなるp4型拡散層16を1
〜1.5μmの深さに形成する。
(5) As shown in FIG. 5, B is selectively deposited (or ion implanted) on a part of the surface of the region H where the bipolar element is to be formed to form a p4 type diffusion layer 16 that will serve as a base.
Form to a depth of ~1.5 μm.

このp4型ベース拡散と同時にアイソレーションp型層
150表面に重ねてp+型型数散層17形成する。
At the same time as this p4 type base diffusion, a p+ type scattered layer 17 is formed on the surface of the isolation p type layer 150.

(6)  領域■の表面に第6図に示すようにAs(ヒ
素)又はP(IJン)の選択的デポジット(又はイオン
打込み)を行なってエミッタとなるn+型型数散層18
コレクタクト部となるn+型型数散層19形成する。こ
のn++選択拡散と同時又は別のn++拡散によって同
図に示すように領域1側のp型ウェル表面にソース、ド
レインとなるn++拡散領域20.21を形成する。
(6) As shown in FIG. 6, As (arsenic) or P (IJ) is selectively deposited (or ion-implanted) on the surface of region (■) to form an n+ type scattered layer 18 that will become an emitter.
An n+ type scattering layer 19 which will become a collector portion is formed. Simultaneously with this n++ selective diffusion or by separate n++ diffusion, n++ diffusion regions 20 and 21, which will become the source and drain, are formed on the surface of the p-type well on the region 1 side, as shown in the figure.

(力 領域Iにおい・ては第7図釦示すようにソース。(In power area I, the source button is shown in Figure 7.

ドレイン間のp型ウェル表面にうすい酸化膜によルケー
ト絶縁膜22を形成する。この後、コンタクトホトエラ
tを行ない、AA(アルミ、二、ラム)。
A lucate insulating film 22 is formed using a thin oxide film on the surface of the p-type well between the drains. After this, contact photo erasure was performed and AA (aluminum, 2, ram) was applied.

X着(又はスパッタ)後、アニール処理、パターニング
エッチを行なって各領域にオーミックコンタクトするA
A電極23薔形成子ることで領域1′側にnチャネル間
O8FETを完成する一方、領域■側にバイポーラnp
nトランジスタを完成する。同図の1において、Sはソ
ース、Gはゲート。
After X deposition (or sputtering), annealing treatment and patterning etching are performed to make ohmic contact with each region A.
By forming the A electrode 23, an n-channel O8FET is completed on the region 1' side, while a bipolar np is formed on the region ■ side.
Complete the n-transistor. 1 in the same figure, S is the source and G is the gate.

Dはドレイン各電弊、■、においてはEはエミッタ。D is the drain voltage, and in ■, E is the emitter.

Bはベース、Cはコレクタの各電極を示している。B indicates the base electrode, and C indicates the collector electrode.

第9図は上記プロセスによシ製造きれたnチャネルM 
O,S F E’Tの下部の断面(第6図めA、−、A
断面)における不純物濃度プロファイルを示すも以上実
施例で述べたように、呆発明はBt−CMO,Sl、C
のプロセスにおいて、エピタキシャル層へのp型ウェル
の形成にあたって、n++埋込層に重ねてp型不純物で
栃るBを導入してお門Jエピタキシャル層成長後にそめ
上下面からp□型拡散を行なう覗ので′あるからウェル
拡散の時間を大幅に短縮することかでき、n+′型埋込
層の「わき上り」拡散を少なくして糧ビタキシ苓ル層の
□厚さが小さい場合にも素子の形成が可能となったり・
本発明方法によれば埋込まれたp型層の不純物濃度怖p
′型ウェルとなる□エピタキシャル層の表面側のシース
・ドレイン耐圧も落ちない程度に選ぶことができ、ウェ
ル拡散時間は1/3位に短縮することが可能となる。し
たがってn++埋込層の1わき上り」は−171,7位
にとソめることができる。
Figure 9 shows the n-channel M manufactured by the above process.
Cross section of the lower part of O, S F E'T (Fig. 6 A, -, A
As described in the examples above, the present invention shows the impurity concentration profile in Bt-CMO, Sl, C
In the process, when forming a p-type well in the epitaxial layer, B as a p-type impurity is introduced over the n++ buried layer, and after the epitaxial layer grows, p□-type diffusion is performed from the upper and lower surfaces. Since there is a transparent hole, the well diffusion time can be significantly shortened, and the "upward" diffusion of the n+' type buried layer can be reduced, making it possible to improve the device performance even when the thickness of the bitaxy layer is small. It became possible to form
According to the method of the present invention, the impurity concentration of the buried p-type layer is
The sheath/drain breakdown voltage on the surface side of the □ epitaxial layer, which becomes a 'type well, can be selected to such an extent that it does not drop, and the well diffusion time can be shortened to about ⅓. Therefore, the "1 rise of the n++ buried layer" can be placed at -171,7th place.

前述したように従来のウェル形成方法ではエピタキシャ
ル層の厚さを実質的に7μm以下にするポーラ素子の実
現は困難であったが、本発明によればBi−0MO8I
Cのエピタキシ・ヤル層として上下よシのウェル拡散法
を採用することにょシ4μm程度の厚さが可能となシ、
その結果パイポ集積度を6倍(面積比)に向上すること
が期待できる。
As mentioned above, it was difficult to realize a polar device with an epitaxial layer thickness of substantially 7 μm or less using conventional well forming methods, but according to the present invention, Bi-0MO8I
It is possible to achieve a thickness of about 4 μm by using the well diffusion method from top to bottom for the epitaxial layer of C.
As a result, it can be expected that the piezo integration degree will be improved by six times (area ratio).

において、上下よシのウェル拡散工程をアイソレーショ
ン拡散工程と共世:する゛ことによシアイソレージ目ン
面積を縮小し、それkよっても集積度1を”’E’j1
.Yu*=二ニー64゜、73]°響:、T:ττ::
−1::、:二富6p型ウェル14の下側にn 、型埋
込層を設けなやでp−型基板1と直結させた帯金め例を
示す。□この場合n+型りレインの耐圧7%大きぐなる
。た蛇し、p型ウェル(14)の電位は接地電位となる
In this process, the well diffusion process in both the upper and lower sides is coexisted with the isolation diffusion process: by doing so, the area of the shear isolation area can be reduced, and the integration degree 1 can also be reduced by
.. Yu*=two knees 64°, 73]° Hibiki:, T:ττ::
-1::,:: An example of plating is shown in which an n-type buried layer is provided on the lower side of the Futomi 6 p-type well 14 and the p-type substrate 1 is directly connected to the p-type substrate 1. □In this case, the breakdown voltage of the n+ type rain increases by 7%. However, the potential of the p-type well (14) becomes the ground potential.

本発明の各実施□例はpni合一を用いたプレーナ構造
で示した。がLOCO8(低温選択酸化膜技術)又はl
5OPI、ANER(シリ:ff 7 @ :I:、、
 ッチと選択酸化を併用した技術)を採用した場合のB
i−0MO8ICに本発明を適用することも可能である
Each embodiment of the present invention is shown in a planar structure using pni coalescence. is LOCO8 (low temperature selective oxide film technology) or l
5OPI, ANER (Siri:ff 7 @ :I:,,
B when using a technology that combines oxidation and selective oxidation)
It is also possible to apply the present invention to i-0MO8IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第7図は本発明によるBi−0MO8IC製
造プロセスの一実施例を示す工程断面図である。 第8図は本拠明によるBi−0MO8ICの他の実施例
を示す一部断面図である。 第9図は本発明によ、るBi−0MO8ICにおけるn
チャネル間O8FETの不純物濃度曲線図である。、。 、  第10図は本発明によ歪Bi−CMO8ICの一
実施例;を示す一部断面図である。 ′1・・・p7型Si基板、2・・・酸化膜マスク、3
・・・導入された不純物(Sb)、4・・・酸化膜マス
ク1.5・・・導入された不純物(B)、6・・・i型
拡散層。 7・・・エピタキシャルn型りt層、8・・・n++埋
込層、9・・・p型埋込層1.10・・・ン型埋込層、
11・・・酸化膜マスク、12.13・・!p型層、1
4・・・p型ウェル、15・・・p型アイソレーション
、16..1−7・・・p+型型数散層18・・・エミ
ッタn+型領域、19・・・コレクタコンタクトn+型
領t 20・・・ソースn″”型領域、21・・・ドレ
インn+型領域、22・・・ゲート絶縁膜、23・・・
A石電極、24・・・ソースル+型頭域、25・・・ド
レインp+型領域−26・・・ゲート絶縁膜。 第  1  図 J                π第  3  図
1 to 7 are process cross-sectional views showing one embodiment of the Bi-0MO8IC manufacturing process according to the present invention. FIG. 8 is a partial cross-sectional view showing another embodiment of Bi-0MO8IC by Akira HOME. FIG. 9 shows n in Bi-0MO8IC according to the present invention.
FIG. 4 is an impurity concentration curve diagram of an interchannel O8FET. ,. , FIG. 10 is a partial sectional view showing an embodiment of a strained Bi-CMO8 IC according to the present invention. '1... P7 type Si substrate, 2... Oxide film mask, 3
... Introduced impurity (Sb), 4... Oxide film mask 1.5... Introduced impurity (B), 6... i-type diffusion layer. 7... Epitaxial n-type T layer, 8... N++ buried layer, 9... P-type buried layer 1.10... N-type buried layer,
11... Oxide film mask, 12.13...! p-type layer, 1
4...p-type well, 15...p-type isolation, 16. .. 1-7...p+ type scattering layer 18...emitter n+ type region, 19...collector contact n+ type region 20...source n'''' type region, 21...drain n+ type region , 22... gate insulating film, 23...
A stone electrode, 24... Source + type head region, 25... Drain p+ type region -26... Gate insulating film. Figure 1 J π Figure 3

Claims (1)

【特許請求の範囲】 1、半導体基体の一部に、該基体の一主表面から内部の
深さ方向に向っヤ不純物濃度が減少するとともに、再び
不純物濃度が増加するような不純□物分布をもった半導
体領域を有し、前記半導体領域主面には絶縁ゲート型電
界効果トランジスタが□形成されておシ、前記半導体基
体の他部にはバイポーラトランジスタが形成されている
ことを特徴とする半導体集積回路装置。 2、半導体基板の二主面に不純物を部分的に導入する工
程、前記不純物が部分的に導入さ・れた半導体基板の主
面上に半導体層を形成する工程、前記半導体基板に部分
的に導入された不純物を前記半導体層中へ上方拡散させ
るとともに、対応する半導体層の表向から上方拡散され
る不純物と同一の導電型を示す不純物を下方拡散し、上
方、下方それぞれの拡散によ多形成される拡散層を連結
して、前記半導体層の一部に半導体領域を形成する工程
。 前記半導体領域主面に絶縁ゲート型電界効果ト:ランジ
スタを形成する工程、前記半導体層の他□部・にバイ・
ポーラトランジスタを形成する工程、□とを□含む□と
とを特徴とする半導体集積回路装置の製造方法。  ′
[Claims] 1. A part of the semiconductor substrate has an impurity distribution such that the impurity concentration decreases from one main surface of the substrate in the direction of the interior depth, and the impurity concentration increases again. □ A semiconductor having a semiconductor region having a semiconductor substrate, an insulated gate field effect transistor is formed on the main surface of the semiconductor region, and a bipolar transistor is formed on the other part of the semiconductor substrate. Integrated circuit device. 2. A step of partially introducing impurities into two main surfaces of a semiconductor substrate; a step of forming a semiconductor layer on the main surface of the semiconductor substrate into which the impurities have been partially introduced; The introduced impurity is diffused upward into the semiconductor layer, and an impurity having the same conductivity type as the impurity diffused upward from the surface of the corresponding semiconductor layer is diffused downward, and the impurity is diffused upwardly and downwardly. A step of connecting the formed diffusion layers to form a semiconductor region in a part of the semiconductor layer. forming an insulated gate field effect transistor on the main surface of the semiconductor region;
A method for manufacturing a semiconductor integrated circuit device, comprising: a step of forming a polar transistor; and □ including □. ′
JP57164841A 1982-09-24 1982-09-24 Semiconductor integrated circuit device and manufacture thereof Pending JPS5955053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57164841A JPS5955053A (en) 1982-09-24 1982-09-24 Semiconductor integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57164841A JPS5955053A (en) 1982-09-24 1982-09-24 Semiconductor integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5955053A true JPS5955053A (en) 1984-03-29

Family

ID=15800934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57164841A Pending JPS5955053A (en) 1982-09-24 1982-09-24 Semiconductor integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5955053A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394007A (en) * 1992-10-22 1995-02-28 Motorola, Inc. Isolated well and method of making
JPH0899303A (en) * 1995-05-29 1996-04-16 Hitachi Koki Haramachi Co Ltd Upper and lower limits detecting device of automatic tenoning machine
JP2002112856A (en) * 2000-10-06 2002-04-16 Bridgestone Corp Seat pressure decreasing cushion pad and seat pressure decreasing seat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394007A (en) * 1992-10-22 1995-02-28 Motorola, Inc. Isolated well and method of making
JPH0899303A (en) * 1995-05-29 1996-04-16 Hitachi Koki Haramachi Co Ltd Upper and lower limits detecting device of automatic tenoning machine
JP2002112856A (en) * 2000-10-06 2002-04-16 Bridgestone Corp Seat pressure decreasing cushion pad and seat pressure decreasing seat

Similar Documents

Publication Publication Date Title
JPS5955052A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0365025B2 (en)
JPH0355984B2 (en)
JPS59167066A (en) Vertical type metal oxide semiconductor field effect transistor
JPH0461127A (en) Manufacture of semiconductor device
US5100814A (en) Semiconductor device and method of manufacturing the same
JPS5955053A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6152591B2 (en)
JP3653963B2 (en) Semiconductor device and manufacturing method thereof
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JPH0351309B2 (en)
JPH0547913A (en) Manufacture of semiconductor device
JPH03227054A (en) Complementary type bipolar transistor compatible with cmos process
JPH023270A (en) Manufacture of hct semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
JPS6143858B2 (en)
JPS5969943A (en) Manufacture of semiconductor device
JPS59138363A (en) Semiconductor device and manufacture thereof
KR101017978B1 (en) method for manufacturing of power semiconductor device
JP2656125B2 (en) Method for manufacturing semiconductor integrated circuit
JPS62221122A (en) Manufacture of semiconductor device
JPH0269974A (en) Manufacture of semiconductor device
JP2004186463A (en) Semiconductor device and its manufacturing method
JPH02272755A (en) Manufacture of bi-mos integrated circuit
JPS60150643A (en) Complementary semiconductor device and manufacture thereof