JPS5952996A - Sound device of variable directivity - Google Patents

Sound device of variable directivity

Info

Publication number
JPS5952996A
JPS5952996A JP16476882A JP16476882A JPS5952996A JP S5952996 A JPS5952996 A JP S5952996A JP 16476882 A JP16476882 A JP 16476882A JP 16476882 A JP16476882 A JP 16476882A JP S5952996 A JPS5952996 A JP S5952996A
Authority
JP
Japan
Prior art keywords
sensitivity
elements
directivity
circumference
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16476882A
Other languages
Japanese (ja)
Inventor
Toshiro Oga
寿郎 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16476882A priority Critical patent/JPS5952996A/en
Publication of JPS5952996A publication Critical patent/JPS5952996A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/405Non-uniform arrays of transducers or a plurality of uniform arrays with different transducer spacing

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

PURPOSE:To enable free control of the direction of front of directivity and direction of dead angle by arranging elements circularly using a design technique of conventional small directive microphones that makes total sum of sensitivity of elements zero, and adjusting the sensitivity of each element and amount of delay of output. CONSTITUTION:To direct the front to the right of an axis (a) of arrangement of elements 1, 2, 8, a group of switches 15 and coefficient units 40-47 are regulated to make the sensitivity of the element 1 2Q and sensitivity of elements 2, 8 -Q, and sensitivity of other elements zero. By doing so, the front is directed to the right of the axis (a) and to the right of the axis (b), and the direction of dead angle is moved with the front to the left of the axis (a) and to the left of the axis (b). Delaying devices 20-26 are used accordingly. When fixing the direction of dead angle to the left of the axis (a), elements 1, 6, 12, for instance, are operated to set the front of directivity to upper right of the axis (c) of arrangement of elements 12, 1, 6. Supporting this direction gamma=0, the direction of dead angle becomes gamma=20 deg.. Accordingly it is enough to determine the amount of delay tau that makes R zero when gamma=20 deg..

Description

【発明の詳細な説明】 く分 野〉 この発明は指向性を自由自在に制御できるマイクロホン
装置またはスピーカ装置に関するものである。
[Detailed Description of the Invention] Field> The present invention relates to a microphone device or a speaker device whose directivity can be freely controlled.

〈背 景〉 指向性マイクロホン装置捷だは指向性スピーカ装置は、
ホール、スタジアム音響設備のような大形の装置には広
く使われているが、拡声電話機、インターホンのような
小形の設備にはほとんど用いられていない。この理由と
して、上記小形設(+itiに用いられるような小規模
なマイクロホン装置、スピーカ装置では、コスト、スペ
ース等の制約のため、良好々指向性をもつものが実現し
難いこと、たとえある条件で実用上十分な指向性が実現
されても、使用状況(通話者の位置など)の変化に適応
して指向性を制御することが困難であることがあけられ
る。
<Background> Directional microphone devices and directional speaker devices are
Although it is widely used in large equipment such as halls and stadium sound equipment, it is rarely used in small equipment such as public address telephones and intercoms. The reason for this is that it is difficult to achieve good directivity with small-scale microphone devices and speaker devices such as those used in the above-mentioned small installations (+iti) due to constraints such as cost and space, and even under certain conditions. Even if sufficient directivity is achieved for practical purposes, it is difficult to control the directivity in response to changes in usage conditions (such as the location of the caller).

したがって、上記小形設備では、使用状況の多様な変化
に対応するため、指向性音響装置の使用を断念する例も
多い。しかし、指向性音響装置が伝送品質向上にきわめ
て有用であるのは万人の認めるところであり、小形で良
好な指向性を示し、かつこれを状況に応じて制御できる
ようなマイクロホン装置、スピーカ装置の実現が待望さ
れている現状である。
Therefore, in the above-mentioned small equipment, in order to cope with various changes in usage conditions, the use of directional acoustic devices is often abandoned. However, everyone agrees that directional acoustic devices are extremely useful for improving transmission quality. This is a situation that is long awaited.

〈発明の目的〉 この発明は平面内で強調しだい信号の入射方向に最高感
度を与え、抑圧すべき雑音の入射方向を最低感度として
、これを自由に制御でき、しかも小規模な構成で実現す
るb]変変向向性音響装置提供するものである。
<Objective of the Invention> The present invention provides the highest sensitivity in the direction of incidence of the signal as it is emphasized within a plane, and the lowest sensitivity in the direction of incidence of the noise to be suppressed, which can be freely controlled and realized with a small-scale configuration. b] Provides a variable direction directional acoustic device.

〈従来技術〉 音響装置の指向性を制御する方法として、複数個の71
′L気−音響変換素子(マイクロホンまだはスピーカ、
以下集子と呼ぶ)を用いて音響装置を構成する方法が公
知である。これには、トーンゾイレ形指向性スピーカ、
ハイドロホン等に用いられるもので、各素子の出力を実
質的に同相で合成する方法と、小形の指向性マイクロホ
ンの構成に用いられているもので、各素子の出力を実質
的に逆相で合成する(すなわち、各素子の出力を単純に
加算すれば実質的に零となる)方法どかある。特に後者
は、広い帯域にわたって良好な指向性制御か実現できる
特徴を有し、マイクロホンのほかスピーカにも適用可能
であることが例えば実公昭51−38353号公報に示
されている。この発明は上記の後者の方法を採用してい
る。以下その原理をマイクロホン装置を例にとって説明
するが、以下の説明において加算器を分配器(まだは、
ファンアウトの十分にとれる増幅器)におきかえ、化−
弓の流れを逆にすればスピーカ装置の構成か得られる。
<Prior art> As a method of controlling the directivity of an acoustic device, a plurality of 71
'L air-acoustic conversion element (microphone, speaker,
A method of configuring an acoustic device using a device (hereinafter referred to as an agglomerate) is known. This includes a Tonezoile type directional speaker,
There is a method used in hydrophones, etc., in which the outputs of each element are combined in substantially the same phase, and a method, used in the construction of small directional microphones, in which the outputs of each element are combined in substantially opposite phase. There is a method of compositing (that is, simply adding the outputs of each element to substantially zero). In particular, the latter has the feature of realizing good directivity control over a wide band, and is applicable to speakers as well as microphones, as shown in, for example, Japanese Utility Model Publication No. 51-38353. This invention employs the latter method. The principle will be explained below using a microphone device as an example.
Replace it with an amplifier that has sufficient fan-out, and convert it into
By reversing the flow of the bow, the configuration of a speaker device can be obtained.

最も簡単な例として、2つの素子を用いた場合を第1図
に示す。感度がQの素子1と感度か−Qの素子2とが距
離dだけ離して配置され、素子1の出力と、素子2の出
力を遅延量τの遅延器20を通したものとを加算器30
で加算する。素子1.2の感度を単純に加算すると零と
なるが、実際には素子1,2が空間において距離dだけ
離れて配置されているので、音波の伝播遅延により位相
差が生じ、正面方向(図では素子1,2の配列方向の一
方)に対しては有限の感度を示すことになる。正面方向
の感度を基準とし、正面から角度γの方向の感度を相対
的に表示する関数を指向性関数Rと呼、ぶことにすれば
、第1図に示した装置の指向性関数Rは次のようになる
As the simplest example, FIG. 1 shows a case where two elements are used. Element 1 with sensitivity Q and element 2 with sensitivity -Q are placed a distance d apart, and an adder adds the output of element 1 and the output of element 2 passed through a delay device 20 with a delay amount τ. 30
Add with . If the sensitivities of elements 1 and 2 are simply added together, they become zero, but in reality, elements 1 and 2 are placed apart in space by a distance d, so a phase difference occurs due to the propagation delay of the sound waves, and the difference in the front direction ( In the figure, a finite sensitivity is shown in one of the arrangement directions of elements 1 and 2). If we call the function that relatively displays the sensitivity in the direction of angle γ from the front with the sensitivity in the front direction as the standard, the directivity function R of the device shown in Fig. 1 is It will look like this:

R−(cosγ+τ0 )/(1+TO)      
(1)だゾし、τ0は音速をCとするとき τo = d / C(2) で与えられる値である。上記の式はdが音波の波長より
十分短いときの近似式であるが、実用上良い近似値を与
える。τの値は通常O〜τ0の間に設定され、このとき γ=囲 τ             (3)をみたす
角度γの方向に対する感度が零となり、(以下この方向
を死角と呼ぶ)、τを変・化することにより死角か変化
し、つ捷す指向性制御が実現される。第1図に示した装
置は音圧1次傾度マイクロホンとして広く使われている
。遅延器2oとしては、通常音響的遅延(音波を有限長
の管内を通して振動板に印加する)が用いられるが、電
気的遅延回路を用いてもよい。
R-(cosγ+τ0)/(1+TO)
(1), and τ0 is the value given by τo = d / C (2) where C is the speed of sound. The above equation is an approximate equation when d is sufficiently shorter than the wavelength of the sound wave, but it provides a practically good approximate value. The value of τ is usually set between O and τ0, and in this case, the sensitivity to the direction of the angle γ that satisfies γ = enclosure τ (3) becomes zero (hereinafter this direction is referred to as the blind spot), and τ is changed. By doing so, the blind spot changes and directivity control is realized. The device shown in FIG. 1 is widely used as a first-order sound pressure gradient microphone. As the delay device 2o, an acoustic delay (applying a sound wave to a diaphragm through a tube of finite length) is normally used, but an electrical delay circuit may also be used.

こうし/ζζ壬子感度総和が零となるような音響装置べ
は比較的小形に構成でき(」二記“d(波長″なる仮定
による)、広周波数帯域にわたり良好彦指向性が得られ
る(上記Rの式が周波数によらない)点で有用なもので
ある。
An acoustic device whose total sensitivity is zero can be constructed in a relatively small size (based on the assumption of "d (wavelength") in Section 2), and good directivity can be obtained over a wide frequency band ( This is useful in that the above formula for R does not depend on frequency.

素子の数を増加すると、更にシャープな指向性を得る。Increasing the number of elements provides even sharper directivity.

その例を第2図に示す。3個の素子1゜2.3を一列に
配し、その感度に−1:2ニー]なる総和が零となるよ
うな荷重を与える。素子1の出力は直接、素子2,3は
それぞれ遅延器2゜、21を介して加算器30で加算さ
れる。この構成の装置の指向性関数Rは、 R= (cosγ+τo)/(t+τo)(4)で与え
られる。この式(2)と式(1)と比較すると、第1図
に示した装置に比べ、指向性がよりシャープとなってい
る。この構成は音圧2次傾度マイクロホンに使われる。
An example is shown in FIG. Three elements 1°2.3 are arranged in a row, and a load is applied to the sensitivity so that the sum of -1:2 knee] becomes zero. The outputs of element 1 are added directly, and the outputs of elements 2 and 3 are added together in an adder 30 via delay devices 2° and 21, respectively. The directivity function R of the device with this configuration is given by R=(cosγ+τo)/(t+τo) (4). Comparing Equation (2) and Equation (1), the directivity is sharper than that of the device shown in FIG. This configuration is used in pressure quadratic gradient microphones.

更に素子数を増加し、それぞれの感度に、総和が零と在
るような適切な荷重を力えれば、よりシャープな指向性
を得る。その例として第3図に感度Qの素子1,20両
側に感度−Qの素子3,4を配した場合を示す。
If the number of elements is further increased and an appropriate load is applied to each sensitivity so that the sum is zero, sharper directivity can be obtained. As an example, FIG. 3 shows a case where elements 3 and 4 of sensitivity -Q are arranged on both sides of elements 1 and 20 of sensitivity Q.

以上のような、複数の素子を感度の総和が1となるよう
に配置した指向性音響装置は従来広く用いられているが
、第1図〜第3図の例でも明らかなように、指向性関数
Rが最大と々る方向(以下正面方向と呼ぶ)が自由に制
御できない欠点があった。この発明はこの点を解決する
ものである。
Directional acoustic devices such as those described above, in which multiple elements are arranged so that the sum of the sensitivities is 1, have been widely used in the past, but as is clear from the examples in Figs. There is a drawback that the direction in which the function R reaches its maximum (hereinafter referred to as the front direction) cannot be freely controlled. This invention solves this problem.

〈原 理〉 第4図にこの発明の構成要素の例を示す。第2図に示し
だ構成の二組を、中央の素子來共通として交差して配し
た場合である。つtシ素子2,1.3の配列と素子4,
1.5の配列とよりなり、素子2〜5は素子1を中心と
する半径dの円周上べ設けられる。
<Principle> FIG. 4 shows an example of the constituent elements of this invention. This is a case where two sets of the configuration shown in FIG. 2 are arranged so as to cross each other with the central element in common. Arrangement of elements 2, 1.3 and element 4,
1.5, and the elements 2 to 5 are arranged on the circumference of a circle with the element 1 as the center and the radius d.

素子2,4の出力は加算器31で加算されて加算器30
へ供給され、素子3,5の出力は加算器32で加算され
、素子1の出力は遅延量τの遅延器20を通じて加算器
30へ供給され、加算器32の出力は遅延M2τの遅延
器21を通じて加算器30へ供給される。素子1,2,
3,4.5の感度d:それぞれ2Q 、 −kQ、 =
kQ、−(1−]OQ。
The outputs of elements 2 and 4 are added in an adder 31 and then added in an adder 30.
The outputs of elements 3 and 5 are added in an adder 32, the output of element 1 is supplied to an adder 30 through a delay device 20 with a delay amount τ, and the output of the adder 32 is added in a delay device 21 with a delay amount M2τ. is supplied to the adder 30 through. Elements 1, 2,
Sensitivity d of 3 and 4.5: 2Q, -kQ, = respectively
kQ, -(1-]OQ.

−(1−k)Qとされ、1(はO≦に≦1在る係数であ
る。素子1,2.3の配列軸aと、素子1,4゜5の配
列軸Cとに対してそれぞれ角度θとなる軸すか素子1を
通シ、軸すを基準として素子1を中心とする角度をγと
する。
−(1−k)Q, and 1( is a coefficient with ≦1 in O≦.For the arrangement axis a of elements 1, 2.3 and the arrangement axis C of elements 1, 4°5 The angle θ is passed through the shaft element 1, and the angle with the element 1 as the center is defined as γ.

いま、k−1のときは第2図の構成を軸a上に、k=o
のときはC軸上に配置したのと等価となるのは自明であ
る。](−0,5とすれば軸す右方が正面となシ、kを
変化することにより指向性の軸(正m1方向)を軸a、
軸Cの間で変化できる。簡単のためτ−〇とし、指向性
関数Rを計算し、(aR/aγ)−〇とおくと、 k(sin2γCO52θ1■γsin 2θ)+(1
−k)(SI+12γCQS2θ極2γ5tn2θ)=
0   (51なる式を得る。これをみたすγ値が、正
面方向及び死角方向を与える。仮にθ、γとも1より十
分小さい場合を考えると、 r=(2に=i)θ           (6)なる
単純な比例関係を得る。すなわち、例えば0−15°(
0,52ラジアン)のとき、正面をγ−7,5の方向へ
設定するにd2、k=0.75とすればよい。後述のよ
うにθを過大にするのは好ましくないので、この近似式
は実用上有用である。
Now, when k-1, the configuration in Figure 2 is placed on axis a, and k=o
It is obvious that this is equivalent to placing it on the C axis. ](-0,5 means that the right side of the axis is the front, and by changing k, the axis of directivity (positive m1 direction) can be changed to axis a,
It can vary between axis C. For simplicity, let τ-〇, calculate the directivity function R, and set it as (aR/aγ)-〇, then k(sin2γCO52θ1■γsin 2θ)+(1
-k) (SI+12γCQS2θ pole 2γ5tn2θ)=
0 (Obtain the formula 51. The γ value that satisfies this gives the front direction and blind spot direction. If we consider the case where both θ and γ are sufficiently smaller than 1, r = (2 = i) θ (6) Obtain a simple proportional relationship, i.e. for example 0-15° (
0.52 radians), to set the front in the direction of γ-7.5, d2, k = 0.75. As will be described later, it is not preferable to make θ too large, so this approximate expression is useful in practice.

さて、」二記のようにして指向性制御を行う場合、0が
過大であると、死角方向の減衰祉が十分にとれなくなる
。例えばて=O,に=0.5のとき、指  □向性関数
は、 k= (cos 2γcos2θ+1)/(cos2θ
+ 1 )     (7)となる。これを計算すると
第5図のようになり、θが増大すると死角(γ−90°
)方向の感度が零(−(1)d13)でなくなることが
わかる。θ=90゜では完全々無指向性となってしまう
。従って1つの円周上に少くとも5つの素子を設ける。
Now, when directivity control is performed as described in section 2, if 0 is too large, it will not be possible to provide sufficient damping in the blind spot direction. For example, when = O, and = 0.5, the directional function is k = (cos 2γcos2θ+1)/(cos2θ
+ 1 ) (7). Calculating this results in the result shown in Figure 5, which shows that as θ increases, the blind spot (γ-90°
It can be seen that the sensitivity in the ) direction is no longer zero (-(1)d13). At θ=90°, it becomes completely non-directional. Therefore, at least five elements are provided on one circumference.

通常、指向性音響装置の死角方向減衰量は20dBあれ
ば十分とされるので、θの値は15°が上限となること
がわかる。
Normally, it is considered that 20 dB is sufficient for the amount of attenuation in the blind spot direction of a directional acoustic device, so it can be seen that the upper limit of the value of θ is 15°.

〈実施例〉 以」二のようにして、この発明の構成要素の例が得られ
た。これを円周上にぐるりと配置して、第6図のように
構成したものがこの発明の一実施例である。上記のよう
にθ−15°とするので、素子は中火の1個(1)のほ
か、円周」二に12個(2〜13)を配置する必要があ
る。即ち素子1を中心として半径かdの田土に素子2〜
13か等角間隔で配される。素子2はスイッチ152を
通じて係数器40に接続され、素子3,13はスイッチ
15g 、 15+8を通じて加算器31に接続され、
素子4.12はスイッチ154,1.512を通じて加
算器32に接続され、素子5,11はスイッチ155 
、1511を通じて加算器33に接続され、素子6,1
oはスイッチ156,15111を通じて加算器34に
接続され、素子7,9はスイッチ15v、159 を通
じて加算器35に接続され、素子8はスイッチ158を
通じて遅延量2τ0の遅延器26に接続される。素子1
は遅延量τ0の遅延器22に直接接続される。加算器3
]、、32,33,34.35の各出力はそれぞれ遅延
量013τ010.5τ0.τ6 、1.5τ0,1.
87τ0の遅延器20.21.23.24.25を通じ
て係数器41,42,44,45.46に供給される。
<Example> Examples of the constituent elements of this invention were obtained as described below. One embodiment of the present invention is arranged around the circumference and configured as shown in FIG. Since the angle is θ-15° as described above, it is necessary to arrange 12 elements (2 to 13) around the circumference in addition to one medium-heated element (1). In other words, elements 2~
They are arranged at equal angular intervals. Element 2 is connected to the coefficient multiplier 40 through switch 152, elements 3 and 13 are connected to adder 31 through switches 15g and 15+8,
Element 4.12 is connected to adder 32 through switch 154, 1.512, and element 5, 11 is connected through switch 155.
, 1511 to the adder 33, and the elements 6, 1
o is connected to the adder 34 through switches 156 and 15111, elements 7 and 9 are connected to the adder 35 through switches 15v and 159, and element 8 is connected through switch 158 to the delay device 26 with a delay amount of 2τ0. Element 1
is directly connected to the delay device 22 with a delay amount τ0. Adder 3
], , 32, 33, 34.35 have a delay amount of 013τ010.5τ0. τ6, 1.5τ0, 1.
It is supplied to coefficient units 41, 42, 44, 45.46 through delay devices 20.21.23.24.25 of 87τ0.

遅延器22.26の出力は係数器4.3.47に供給さ
れる係数器40〜47の各出力は加算器30に供給され
る。
The output of the delay device 22.26 is supplied to the coefficient multiplier 4.3.47.The output of each of the coefficient multipliers 40-47 is supplied to the adder 30.

いま、素子1,2.8の配列軸aの右方に正面を向ける
には、素子1の感度を2Q>素子2,8の感度をそれぞ
れ−Qとし、他の素子の感度はすべて零となるようにス
イッチ群15、係数器40〜47を調節すればよい。素
子1を2Q、素子2.3,8.9をそれぞれ一〇、5Q
とすれば、素子1.2.8の配列軸aと、素子1,3.
9の配列軸との交差角を2等分する軸すの右方が正面と
なる。
Now, in order to face the front to the right of the array axis a of elements 1, 2.8, the sensitivity of element 1 is 2Q>the sensitivity of elements 2 and 8 is -Q, respectively, and the sensitivity of all other elements is zero. The switch group 15 and the coefficient multipliers 40 to 47 may be adjusted so as to achieve the desired result. 2Q for element 1, 10 and 5Q for elements 2.3 and 8.9 respectively
Then, the arrangement axis a of elements 1, 2, 8, and elements 1, 3, .
The right side of the axis that bisects the intersection angle with the arrangement axis of 9 is the front.

このようにすると、これら正面が軸aの右方、軸すの右
方に対し死角方向も軸aの左方、軸すの左方というよう
に、正面方向とともに移動してし捷う。そこで、遅延器
20〜26を用いる。いま死角方向を、第6図中の軸a
左方に固定する1易合を考えると、遅延器40〜47の
遅延時間は式(4)を用いて力えられる。例えば第6図
中の素子1゜6.12の配列軸Cの右上方に指向性の正
面を設定する場合には、素子12,1.6を動作させる
ことになる。仮にこの方向をγ二〇と考えれば、死角方
向はγ=1200となる。したがって、γ−120にお
いてRが零となるような遅延(i:τを、式(4)より
求めればよい。第6図には軸a左方を死角とする場合に
必要な各遅延器40〜47の遅延量を記入しである。た
\゛シ、τ0は、τ0−(円周の半径)/(音速)(8
)で与えられる値である。指向性の正面の方向を変化し
た占きの指向性関数Rを第7図に曲線51゜52.53
で示す。正面方向がγ−00,60、900と変化して
も、死角方向は変化しないことがわかる。
In this way, these front faces move along with the front direction, such that the blind spot direction is also to the left of axis a and to the left of the shaft, with respect to the right of axis a and the right of axis. Therefore, delay devices 20 to 26 are used. The blind spot direction is now axis a in Figure 6.
Considering the case of fixing to the left, the delay times of the delay devices 40 to 47 can be determined using equation (4). For example, when setting the directivity front to the upper right of the arrangement axis C of the elements 1°6.12 in FIG. 6, the elements 12 and 1.6 are operated. If this direction is assumed to be γ20, then the blind spot direction will be γ=1200. Therefore, it is only necessary to find the delay (i:τ) such that R becomes zero at γ-120 using equation (4). Fill in the delay amount of ~47.For example, τ0 is τ0 - (radius of circumference) / (sound speed) (8
) is the value given by Figure 7 shows the directivity function R for fortune-telling when the front direction of the directivity is changed as the curve 51°52.53
Indicated by It can be seen that even if the front direction changes from γ-00, 60, and 900, the blind spot direction does not change.

第5図にみられたように、素子の中間方向、例えば第6
図の軸すの左方に死角を固定すると、死角方向の傷″性
が劣化する。このときの指向性関数を第8図に示す。最
も劣化が激しいのは曲線56であり、これは両方向指向
性の場合であり(これが第5図中の0−15°の曲線に
一致する)、その他の曲線54 、55のように良好な
特性となる。
As seen in FIG.
If the blind spot is fixed to the left of the axis in the diagram, the damage resistance in the direction of the blind spot will deteriorate.The directivity function in this case is shown in Figure 8.The curve 56 shows the most severe deterioration, and this This is the case of directivity (this corresponds to the 0-15° curve in FIG. 5), and the other curves 54 and 55 have good characteristics.

しかしこうした使い方は、一般的には好ましくないであ
ろう。
However, such usage is generally not desirable.

以上述べたように、この発明は素子の感度の総和を零と
なるようにする従来の小形指向性マイクロホンの設計手
法を用いながら、素子を円形に配置し、各素子の感度及
び出力の遅延量を調整することにより指向性の正面の方
向と、死角の方向とを自由に制御可能とするものである
As described above, the present invention uses the conventional design method of a small directional microphone that makes the sum of the sensitivities of the elements zero, but arranges the elements in a circle, and reduces the sensitivity and output delay of each element. By adjusting the direction, the front direction of the directivity and the direction of the blind spot can be freely controlled.

次にこの発明を実施する際の留意事項について第6図の
構成例を用いて説明する。
Next, points to be noted when implementing the present invention will be explained using the configuration example shown in FIG. 6.

感度周波数特性が完全に平坦な素子を用いてこの発明を
構成したとき、この発明の音響装置の感度周波数特性は
、第9図に示すようになる。た\゛し、この図中のfO
は、第6図中における素子2、〜13の配置されている
円周の直径を1波長とする周波数である。すなわち、低
い周波数では12dB10ctの頷斜を有し、ある周波
数でピークを示す。
When the present invention is configured using an element with completely flat sensitivity frequency characteristics, the sensitivity frequency characteristics of the acoustic device of the present invention are as shown in FIG. 9. However, fO in this figure
is a frequency where one wavelength is the diameter of the circumference on which elements 2 to 13 are arranged in FIG. That is, it has a nodding slope of 12 dB10 ct at low frequencies, and shows a peak at a certain frequency.

このピークの周波数は指向性の正面の方向のとり方によ
り変化し、それに従って低周波数での感度も変化する。
The frequency of this peak changes depending on the direction of the directivity, and the sensitivity at low frequencies changes accordingly.

したがって指向性を制御する場合、この点を考慮する必
要がある。
Therefore, when controlling directivity, it is necessary to take this point into consideration.

マイクロホン装置を構成する場合は、第9図の周波数f
oを上限周波数として設計すれば、指向性の正面を+9
00から−900まで変化しても広い周波数帯域にわた
り乱れのない装置ができる。例えば第6図の配置を、直
径1oC!nの範囲で構成すれば上記foは3400 
[−1zとなシ、拡声電話機、インターホン用としては
十分な帯域を有し、しかも小形のマイクロホン装置が実
現できる。上記12d 13 / octの特性は、素
子の振動系の共振周波数を下げる、あるいは増幅器に積
分特性を与えるなどの公知の方法で補正できる。まだ、
第9図に示した指向性制御にともなう装置の感度の変化
は第6図中の係数器40〜47を用いて補償するのがよ
い。この補償量を第10図に示す。
When configuring a microphone device, the frequency f in FIG.
If you design with o as the upper limit frequency, the directivity front will be +9
It is possible to create a device with no disturbance over a wide frequency band even when the frequency changes from 00 to -900. For example, the arrangement shown in Figure 6 is 1oC in diameter! If configured within the range of n, the above fo is 3400
[-1z] It is possible to realize a small-sized microphone device that has a sufficient band for use in a public address telephone or an intercom. The characteristic of 12d 13 /oct can be corrected by known methods such as lowering the resonance frequency of the vibration system of the element or giving an integral characteristic to the amplifier. still,
It is preferable to compensate for changes in the sensitivity of the device due to the directivity control shown in FIG. 9 using the coefficient multipliers 40 to 47 in FIG. This amount of compensation is shown in FIG.

スピーカ装置を構成する場合は、上記の円周の直径はマ
イクロホン装置に比べ小さくしか(Cい。一方、第9図
においてfoより高周波数の領域でも、指向性の死角方
向減衰鼠の劣化は少ないこと、スピーカの場合、素子、
装置の大きさがマイクロボンより大きいので、周波数特
性の乱れは大きくならないことが、すでに示されている
(前記公報)。
When configuring a speaker device, the diameter of the above-mentioned circumference is smaller than that of a microphone device.On the other hand, even in the frequency range higher than fo in Fig. 9, the deterioration of directivity in the direction of the blind spot is small. In the case of a speaker, the element,
It has already been shown (the above-mentioned publication) that since the size of the device is larger than that of a microbon, the disturbance in frequency characteristics does not become large.

したかってスピーカ装置の場合は、帯域上限をf。Therefore, in the case of a speaker device, the upper limit of the band should be f.

に限ることなく、大形の構成としても実用的な装置dが
得られる。
However, a practical device d can be obtained even in a large configuration.

なお、この発明の実施形態は第6図の実施例に限るもの
ではない。第2図、第3図の対比より知られるように、
第11図に示すように中心素子を省略して、素子を同心
円上に配列した構成でもよい。またさらに素子数、素子
を配置すべき同心円周の数を増加し、多次音圧傾度特性
を実現することも可能である。逆に単に−っの円周上に
少くとも5つの電気−音響変換素子を設けた場合にもこ
の発明を適用できる。また」−述の説明から理解される
ように、加算器または分配器から各電気−音響変換素子
側を見た感度の和が零になるようにすればよく、その感
1νの変化は上述したように係数器の係数、つ捷り増幅
器の利得や減衰器の減哀臓の調整による他に電気−音響
変換素子自体の感度を調整してもよい。例えばコンデン
サ変換素子においてはバイアス電圧を調整し、碑電形変
換素子においては永久磁石にコイルを巻き、そのコイル
に流す直流電流を調整すればよい。
Note that the embodiment of the present invention is not limited to the embodiment shown in FIG. As can be seen from the comparison between Figures 2 and 3,
As shown in FIG. 11, the central element may be omitted and the elements may be arranged concentrically. Furthermore, it is also possible to realize multi-order sound pressure gradient characteristics by increasing the number of elements and the number of concentric circles on which the elements are arranged. Conversely, the present invention can also be applied to a case where at least five electro-acoustic transducers are simply provided on the circumference of -. Furthermore, as can be understood from the above explanation, the sum of the sensitivities viewed from the adder or divider to each electro-acoustic transducer element should be set to zero, and the change in sensitivities 1ν is as described above. In addition to adjusting the coefficients of the coefficient multiplier, the gain of the switching amplifier, and the attenuation of the attenuator, the sensitivity of the electro-acoustic transducer itself may be adjusted. For example, in a capacitor conversion element, the bias voltage may be adjusted, and in an electromagnetic conversion element, a coil may be wound around a permanent magnet, and the DC current flowing through the coil may be adjusted.

以上詳述したように、この発明は小形の装置で指向性を
自由に変化できる音響装置を構成することができ、拡声
電話機、インターホンその他の音響システムに使用して
多次の作用効果を発揮するものである。
As described in detail above, the present invention can configure an acoustic device that can freely change directivity with a small device, and can be used in loudspeaker telephones, intercoms, and other acoustic systems to achieve multi-order effects. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図はそれぞれ従来の音圧傾度形音
響装置の説明図、第4図はこの発明の構成要素の例の説
明図、第5図は第4図の構成例の指向特性図、第6図は
この発明の可変指向性音響装置の実施例を示す図、第7
図、第8図はそれぞれ第6図の実施例の指向特性図、第
9図は第6図の実施例の感度周波数特性図、第10図は
第6図の実施例における感度補正量を示す図、第11図
はこの発明の別の実施例を示す図である。 1〜13,1“〜121:電気−音響変換素子、15:
スイッチ群、20〜26:遅延器、30〜35:加算器
、40〜47:係数器。 特許出願人  日本電信電話公社 代理人 草鈎・ 卓 オ 1 図 出力 フ1−2  胃 出力 脅 3 図 御 4貨 あ刀 + 8 図 °♀ 」 T角 オ 9 図 周し皮香父 第10図 51 正面の方向 C度)
FIGS. 1, 2, and 3 are explanatory diagrams of conventional sound pressure gradient type acoustic devices, respectively. FIG. 4 is an explanatory diagram of an example of the components of the present invention. FIG. 5 is an example of the configuration of FIG. 4. FIG. 6 is a diagram showing an embodiment of the variable directional acoustic device of the present invention, and FIG.
8 and 8 respectively show the directivity characteristic diagram of the embodiment shown in FIG. 6, FIG. 9 shows the sensitivity frequency characteristic diagram of the embodiment shown in FIG. 6, and FIG. 10 shows the sensitivity correction amount in the embodiment shown in FIG. 6. 11 are diagrams showing another embodiment of the present invention. 1 to 13, 1" to 121: electro-acoustic conversion element, 15:
Switch group, 20-26: delay device, 30-35: adder, 40-47: coefficient unit. Patent Applicant Nippon Telegraph and Telephone Public Corporation Agent Takuo Kusanagi 1 Figure Output Fu 1-2 Stomach Output Threat 3 Zugo 4 Money A Sword + 8 Figure °♀' 51 Front direction C degree)

Claims (4)

【特許請求の範囲】[Claims] (1)1つの円周上、または1つの円周上及びその中心
上、もしくは2つ以上の同心円周上、あるいは2つ以」
二の同心円周上及びその中心上に配され、1つの円周上
に少くとも5つ設けられた複数の電気−音響変換素子と
、これら複数の電気−音響変換素子が接続された加算器
または分配器と、その加算器または分配器よシ上記電気
−音響変換素子側をそれぞれ見た感度の和が、使用周波
数帯において実質的に零となるように選定され、かつこ
の感度の和が零を保持して個々の感度を変化させて指向
性を変化させる感度可変手段とを備える可変指向性音響
装置。
(1) On one circumference, or on one circumference and its center, or on two or more concentric circles, or on two or more.
a plurality of electro-acoustic transducers arranged on two concentric circumferences and the center thereof, and at least five electro-acoustic transducers provided on one circumference; and an adder to which these plural electro-acoustic transducers are connected; The sum of the sensitivities of the distributor and its adder or distributor as viewed from the electro-acoustic transducer side is selected to be substantially zero in the frequency band used, and the sum of the sensitivities is zero. a variable directivity acoustic device, comprising: a sensitivity variable means for holding and changing individual sensitivities to change directivity;
(2)上記電気−音響変換素子I′i1つの円周上に1
2個細りられ、かつその円周の中心に1細膜けられ、そ
の中心の変換素子の上記感度は+2、前記円周上の変換
素子の上記感度は0〜−1の割合で荷重が施されている
特許請求の範囲1項に記載の可変指向性音響装置。
(2) 1 on the circumference of the electro-acoustic transducer I'i
Two pieces are thinned, and one thin film is cut in the center of the circumference, and the sensitivity of the conversion element at the center is +2, and the sensitivity of the conversion elements on the circumference is applied with a load at a rate of 0 to -1. A variable directional acoustic device according to claim 1.
(3)上記電気−音響変換素子の少くとも1つと加算器
まだは分配器との間に電気的あるいは音脅的遅延手段が
設けられている特許請求の範囲第2項記載の可変指向性
音響装置。
(3) Variable directional acoustics according to claim 2, wherein electrical or acoustic delay means is provided between at least one of the electro-acoustic conversion elements and the adder or distributor. Device.
(4)上記円周の中心をとおり、指向性を最大とすべき
方向に引いた直線に隣接する上記円周上の4つの変換素
子と、中心の変換素子とから成る素子群以外の変換素子
の上記感度は零とされ、上記4つの変換素子及び中心の
変換素子においてその4つの変換菓子の感度を支配する
係数には、γ=(2に−1)+7(だソしγは指向性を
最大、とすべき方向をあられす角度、θは15度)を満
たすように決定されている特許請求の範囲第3項記載の
可変指向性音響装置。
(4) Conversion elements other than the element group consisting of the four conversion elements on the circumference that pass through the center of the circumference and are adjacent to a straight line drawn in the direction that should maximize directivity, and the center conversion element. The above-mentioned sensitivity of is assumed to be zero, and the coefficient governing the sensitivity of the four conversion confections in the four conversion elements and the center conversion element is γ = (2 to 1) + 7 (daso, γ is the directivity). 4. The variable directivity acoustic device according to claim 3, wherein the direction in which the direction should be set as the maximum is determined to satisfy a hail angle (θ is 15 degrees).
JP16476882A 1982-09-20 1982-09-20 Sound device of variable directivity Pending JPS5952996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16476882A JPS5952996A (en) 1982-09-20 1982-09-20 Sound device of variable directivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16476882A JPS5952996A (en) 1982-09-20 1982-09-20 Sound device of variable directivity

Publications (1)

Publication Number Publication Date
JPS5952996A true JPS5952996A (en) 1984-03-27

Family

ID=15799557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16476882A Pending JPS5952996A (en) 1982-09-20 1982-09-20 Sound device of variable directivity

Country Status (1)

Country Link
JP (1) JPS5952996A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150598A (en) * 1984-12-20 1986-07-09 エイ・ティ・アンド・ティ・コーポレーション Secondary troidal microphone
JPS61220590A (en) * 1985-03-22 1986-09-30 アメリカン テレフオン アンド テレグラフ カムパニー Electric acoustic device
WO2001076319A3 (en) * 2000-03-31 2002-12-27 Clarity L L C Method and apparatus for voice signal extraction
WO2003086009A1 (en) * 2002-04-10 2003-10-16 Motorola Inc Switched-geometry microphone array arrangement and method for processing outputs from a plurality of microphones
WO2004084577A1 (en) * 2003-03-21 2004-09-30 Technische Universiteit Delft Circular microphone array for multi channel audio recording
KR20220023357A (en) * 2020-08-21 2022-03-02 홍익대학교 산학협력단 Sound wave focusing device having variable focus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150598A (en) * 1984-12-20 1986-07-09 エイ・ティ・アンド・ティ・コーポレーション Secondary troidal microphone
JPS61220590A (en) * 1985-03-22 1986-09-30 アメリカン テレフオン アンド テレグラフ カムパニー Electric acoustic device
WO2001076319A3 (en) * 2000-03-31 2002-12-27 Clarity L L C Method and apparatus for voice signal extraction
WO2003086009A1 (en) * 2002-04-10 2003-10-16 Motorola Inc Switched-geometry microphone array arrangement and method for processing outputs from a plurality of microphones
WO2004084577A1 (en) * 2003-03-21 2004-09-30 Technische Universiteit Delft Circular microphone array for multi channel audio recording
KR20220023357A (en) * 2020-08-21 2022-03-02 홍익대학교 산학협력단 Sound wave focusing device having variable focus

Similar Documents

Publication Publication Date Title
Flanagan et al. Autodirective microphone systems
US6424719B1 (en) Acoustic crosstalk cancellation system
CA1166166A (en) Teleconference microphone arrays
US4653606A (en) Electroacoustic device with broad frequency range directional response
US5848172A (en) Directional microphone
JP2010109579A (en) Sound output element array and sound output method
JPS61150600A (en) Unidirectional second order gradient microphone
US20140219480A1 (en) Phase-Unified Loudspeakers: Parallel Crossovers
JP5145334B2 (en) Speaker device
Ajdler et al. Dynamic measurement of room impulse responses using a moving microphone
WO2017169888A1 (en) Acoustic reproduction device, method, and program
US6665412B1 (en) Speaker device
JPS5952996A (en) Sound device of variable directivity
JPH02239798A (en) Directivity control type speaker array system
US3403223A (en) Microphone combinations of the kind comprising a plurality of directional sound units
US5717766A (en) Stereophonic sound reproduction apparatus using a plurality of loudspeakers in each channel
US20050226441A1 (en) Speaker system
CN110740403B (en) Signal processing device for line array loudspeaker system and line array loudspeaker system
JP2009219101A (en) Sound output element array and sound output method
US20100124342A1 (en) Forced acoustic dipole and forced acoustic multipole array using the same
JP2023501171A (en) Spectral compensation filter for close sound sources
KR101152229B1 (en) The forced acoustic dipole and forced acoustic multipole array using the same
US2348629A (en) Public address system
Sessler et al. Toroidal microphones
Kataoka et al. A microphone-array configuration for AMNOR Adaptive microphone-array system for noise reduction