JPS5950911A - Cooler for steel plate in hot strip mill - Google Patents

Cooler for steel plate in hot strip mill

Info

Publication number
JPS5950911A
JPS5950911A JP16176082A JP16176082A JPS5950911A JP S5950911 A JPS5950911 A JP S5950911A JP 16176082 A JP16176082 A JP 16176082A JP 16176082 A JP16176082 A JP 16176082A JP S5950911 A JPS5950911 A JP S5950911A
Authority
JP
Japan
Prior art keywords
cooling
water
water injection
steel plate
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16176082A
Other languages
Japanese (ja)
Inventor
Atsuhiro Wakako
若子 敦弘
Kimiyoshi Sugita
杉田 公義
Kazuo Hirase
平世 和雄
Teruo Yokokura
横倉 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16176082A priority Critical patent/JPS5950911A/en
Publication of JPS5950911A publication Critical patent/JPS5950911A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To enable the control from a slow cooling speed up to a quick cooling speed in a cooler operating on veriable flow rate by making use of a shielding plate and a trough in turning on and off of water spraying. CONSTITUTION:A columnar laminar flow system is used for a cooling system, and the inner diameter of a water spray nozzle is regulated to 15-30omegaphi. The distance between the faces of the discharging end of the water spraying nozzle and a steel plate is regulated to <=1,500mm.. A trough 10 is installed in the longitudinal direction of a cooling water header pipe 8 to receive all the water sprayed from many inverted U-pipe nozzles 9 mounted on the pipe 8 through a shielding plate 11. The one side of the trough 10 is extended to a line side to discharge the water received in the trough. The plate 11 is turned around a shaft 12 and is actuated individually by means of an air cylinder, etc.

Description

【発明の詳細な説明】 本発明は、ホントストリップミルラインにおシする仕上
圧延機出側から巻取機間のテーブル(以−トランアウト
テーブルと称す)に配置する鋼板の冷却装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for a steel plate placed on a table (hereinafter referred to as a run-out table) between the finish rolling mill exit side and the winding machine in a real strip mill line. be.

熱延銅板の材質を決める重要な製造条件の【4袢C1こ
のランアウトテーブルに配置した冷却装置によって所定
の温度まで冷却し巻取る巻取温度がある。
One of the important manufacturing conditions that determines the material of the hot-rolled copper plate is the winding temperature, which is cooled to a predetermined temperature by a cooling device placed on this run-out table.

この巻取温度の下限は・Ar1変態前後の約500℃程
を寮一般的であった。従って冷却装置の冷却能力は85
0℃程度の圧延仕上り温度から約500℃まで冷却でき
る能力を保有していれば良かった。
The lower limit of this winding temperature was generally about 500° C., around the time of Ar1 transformation. Therefore, the cooling capacity of the cooling device is 85
It would have been sufficient to have the ability to cool the rolling finish temperature from about 0°C to about 500°C.

ところが最近になって冶金上の001曲線に則とって、
圧延仕上り温度から巻取温度までの冷却に際し、冷却過
程の冷却速度をも制御して鋼板の結晶粒や、組織の混入
状態を変化させて材質を制御する方法が熱延鋼板の場合
でも盛になり始めた。
However, recently, based on the metallurgical 001 curve,
A method of controlling the material quality by controlling the cooling rate during the cooling process from the finishing rolling temperature to the coiling temperature and changing the crystal grains and the mixed structure of the steel sheet is now widely used even in the case of hot-rolled steel sheets. It started to become.

この方法は従来の巻取温度のみを制御する方法と比べる
と幅広い材質の造り分けが可能となる。このためこれま
では、材質を造り込むのに数棟の合金元素とこれらの成
分比率で造り分けてきたのに対し、前述した新たな方法
は、鋼板の強さや靭性を出すための合金鉄(Mn、Si
、Or、Ti。
This method allows for a wider variety of materials to be manufactured than the conventional method of controlling only the winding temperature. For this reason, in the past, materials were created using several alloying elements and their ratios, but the new method described above uses ferroalloys (ferroalloys) to increase the strength and toughness of steel sheets. Mn, Si
, Or, Ti.

Nb等の合金鉄)葡少なくすることが可能となり、また
鋼の成分、種類の集約化が可能となるため種種の製鋼上
の利点(連鋳の生産性向上、歩留向上、余材減少、その
他各種原単位の向上)が生じる。
It is possible to reduce the amount of ferroalloys such as Nb, etc., and it is also possible to consolidate the components and types of steel, which has advantages in manufacturing various types of steel (improved productivity in continuous casting, improved yield, reduced surplus material, etc.) Improvements in various other basic units) will occur.

また巻取温度の制御だけでは造り得なかったバラツキの
少ない利賀、低降伏比型の材質、靭性の高い材質を得る
ことができる等品質的にも大きな向上がある。
There are also significant improvements in quality, such as the ability to obtain Toga materials with less variation, materials with low yield ratios, and materials with high toughness, which could not be produced by controlling the winding temperature alone.

以上のように従来の巻取温度のみを制御する方法よりは
、巻取温度及び冷却カーブを制御する方が多大の効果が
生じる。この方法を実施するためには広範囲の冷却カー
ブ、即ち徐冷がら急冷までの冷却速度を変えられる冷却
装置が必要となる。
As described above, controlling the winding temperature and cooling curve produces greater effects than the conventional method of controlling only the winding temperature. In order to carry out this method, a cooling device that can vary the cooling curve over a wide range, that is, the cooling rate from gradual cooling to rapid cooling, is required.

本発明はこの広範囲の冷却速度ケ変えられるようにした
冷却装置7提供するものである。
The present invention provides a cooling device 7 in which cooling rates can be varied over a wide range.

連続熱間圧延ラインにおける冷却装置は、ラミナーフロ
一方式が主流となっている。このラミナーフロ一方式は
、整流ヶ保つために注水ノスル盆多数配置した冷却水ヘ
ソグー管の冷却水に加わる圧力を低圧としている。そし
て圧力変動による流量変化からくる温度制御外乱音防止
するための種種努力がなされてきた。このようにこれま
でのラミナーフロ一方式は、冷却水へラダー管の冷却水
に加わる圧力を一定とした、即ち注水ノズルからの流量
を一定とした冷却方法であり、その装置が一般的であっ
た。この注水流量一定の冷却装置による巻取温度の制御
は、ライン長手方向に多数配置した冷却水ヘッダー管か
ら鋼板に注水する冷却水ヘッダー管の本数で巻取温度を
制御する方式である。この冷却方式ではノズルからの注
水流量が一定のため鋼板の熱容量が決まれば、その庄原
冷却点での冷却速度かほぼ決定される。即ち冷却点での
冷却速度の可変ができない冷却方式である。
The main type of cooling device used in continuous hot rolling lines is the laminar flow type. This one-sided laminar flow system uses low pressure to apply to the cooling water in the cooling water pipes, which are equipped with a number of water injection basins, in order to maintain a rectified flow. Various efforts have been made to prevent temperature control disturbance noise caused by changes in flow rate due to pressure fluctuations. In this way, the conventional laminar flow one-type cooling method was a cooling method in which the pressure applied to the cooling water in the ladder pipe was constant, that is, the flow rate from the water injection nozzle was constant, and this device was common. . The coiling temperature is controlled by a cooling device with a constant water injection flow rate, in which the coiling temperature is controlled by the number of cooling water header pipes that inject water into the steel plate from a large number of cooling water header pipes arranged in the longitudinal direction of the line. In this cooling method, the flow rate of water injected from the nozzle is constant, so once the heat capacity of the steel plate is determined, the cooling rate at the Shobara cooling point is almost determined. That is, this is a cooling method in which the cooling rate at the cooling point cannot be varied.

またこの冷却点での冷却速度よりもう少し広い範囲での
冷却速度(即ち複数の冷却水ヘッダー管の間での平均冷
却速度)の可変方法として、このノズル注水流量一定力
法の場合の冷却装置ではライン長手方向に配置した冷却
水へラダー管からの注水を例えばヘッダー1本毎或いは
2本毎に注水して冷却速度を変える方法がある。この方
法は冷却点の冷速か変わらないだけでなく平均冷却速度
の可変範囲も冷却水ヘッダー管からの注水を間引く方向
への変化だけのため可変範囲も狭く且つステップ的な可
変となる。従ってこの方式は、冷却速度を広範囲に変え
て相質を制御する冷却装置としては不充分である。
In addition, as a method of varying the cooling rate (i.e., the average cooling rate among multiple cooling water header pipes) over a slightly wider range than the cooling rate at this cooling point, this cooling device using the constant nozzle water injection flow rate method There is a method of changing the cooling rate by injecting water from a ladder pipe into cooling water arranged in the longitudinal direction of the line, for example, every one header or every two headers. In this method, not only the cooling speed at the cooling point does not change, but also the variable range of the average cooling rate is only changed in the direction of thinning out the water injected from the cooling water header pipe, so the variable range is narrow and variable in steps. Therefore, this method is insufficient as a cooling device that controls the phase quality by varying the cooling rate over a wide range.

このような冷却注水流量の一定な冷却装置に変る方式と
して特許公開中の冷却装置(特開昭55−88921号
)がある。この公開中の特許は前述したノズル注水流量
一定方式と異なり、ラミナーフロ一方式を損なうことな
しにノズル注水流量を可変とした冷却装置である。この
方式はこれまでのノズル注水流量一定方式と比べ冷却点
での冷却速度の可変が可能であり平均冷却速度の可変も
、ノズル注水流量一定方式の場合は可変がステップ的で
且つ可変範囲が狭いのに対しこの公開特許の装置の場合
は、連続的な可変が可能であり、且つ可変範囲が広くな
る。
As an alternative to such a cooling system with a constant flow rate of cooling water injection, there is a cooling system currently open to the public (Japanese Patent Application Laid-open No. 88921/1983). This patent, which is currently open to the public, is a cooling device in which the nozzle water injection flow rate is variable without impairing the laminar flow type, unlike the above-mentioned nozzle water injection constant flow rate method. Compared to the previous constant nozzle water injection flow rate method, this method allows the cooling rate to be varied at the cooling point, and the average cooling rate can also be varied in steps with the constant nozzle water injection flow rate method, and the variable range is narrow. On the other hand, in the case of the device disclosed in this patent, continuous variation is possible and the variable range is wide.

しかしながらこの公開特許の冷却装置においては、ノズ
ル注水流量の最小流量に限界がある。即ち最小の冷却速
度に限界があり、このため焼入れ感受性の高い鋼板を冷
却した時に、鋼板の部分的な硬化が生じる。従って軟質
材から焼入れ感受性の高い硬質材捷での鋼板を製造する
熱間圧延ラインの冷却装置としては満足できない場合が
生じる。
However, in the cooling device of this published patent, there is a limit to the minimum flow rate of the nozzle water injection flow rate. That is, there is a limit to the minimum cooling rate, and for this reason, when a steel plate that is highly susceptible to quenching is cooled, the steel plate partially hardens. Therefore, it may be unsatisfactory as a cooling device for a hot rolling line that manufactures steel sheets from soft materials by cutting hard materials with high quenching sensitivity.

本願発明は上記の点に鑑みてなされたもので、従来の問
題点ケ解消し緩冷却から急冷却までの緩急自在な冷却を
可能としたことを特徴とした冷却装置である。
The present invention has been made in view of the above-mentioned points, and is a cooling device characterized in that it solves the conventional problems and enables cooling at any speed from slow cooling to rapid cooling.

以下、前記特開昭55−88921との差を明らかにす
るため、この特許の最小流量に限界があることについて
説明する。
In order to clarify the difference from the above-mentioned Japanese Patent Application Laid-Open No. 55-88921, the fact that there is a limit to the minimum flow rate of this patent will be explained below.

特開昭55−88921は、冷却水へラダー管からの注
水のON、OFFはパルプによって行なっている。この
ような冷却装置における流量可変全第1図から第4図を
もって説明する。
In Japanese Patent Application Laid-Open No. 55-88921, the injection of water into the cooling water from a ladder pipe is turned on and off using pulp. The variable flow rate in such a cooling device will be explained with reference to FIGS. 1 to 4.

第1図に2つの方式の冷却水ヘッダー管の断面図を示し
た。第1図の(A)の構造は、■がヘッダー管2がノズ
ル全庁しこの2のノズルはヘッダー管2の長手方向に5
0〜100咽程度のピッチで等間隔に配置されている。
FIG. 1 shows cross-sectional views of two types of cooling water header pipes. In the structure of Fig. 1 (A), ■ indicates that the header pipe 2 has all the nozzles, and this 2 nozzle has 5 nozzles in the longitudinal direction of the header pipe 2.
They are arranged at equal intervals with a pitch of about 0 to 100 degrees.

このような構造の場合には、注水ON、OFF弁をOF
Fした後も、ヘッダー管内の上部の水面が2のノスル上
先端部より−1になるまで水が2のノズルから流出する
だめ、水切性の悪い構造である。また注水バルブiON
した時は、これと逆になりヘッダー管長手方向の全ノズ
ルから均一に注水されるにはヘッダー管内が水で満たさ
れるまでの時間分遅れとなる。従って第1図の(Atの
構造のヘッダー管は余シ使用されていない。
In such a structure, turn the water injection ON and OFF valves OFF.
Even after F, water continues to flow out of the nozzle No. 2 until the water level at the upper part of the header pipe becomes -1 below the upper tip of the nozzle No. 2, resulting in a structure with poor water drainage. Also water injection valve iON
In this case, the opposite is true, and there will be a delay until the inside of the header pipe is filled with water in order for water to be injected uniformly from all nozzles in the longitudinal direction of the header pipe. Therefore, the header tube of the structure shown in FIG. 1 (At) is not used anymore.

第1図の(B)の方は、ヘッダー管1′の頂部より逆U
字型に曲げたノズル管2′を数カ付けたものである。と
の場合には、注水バルブがOFFされると逆U字管内の
水が抜けるだけで注水が停止する。
(B) in Figure 1 is an inverted U from the top of the header pipe 1'.
It has several nozzle pipes 2' bent into a letter shape. In this case, when the water injection valve is turned off, the water in the inverted U-shaped pipe simply drains and water injection stops.

また注水停止状態からバルブをONE、た後、即注水可
能であり応答性も(A)の場合よりも優れている。
In addition, water can be injected immediately after turning the valve ONE from the water injection stopped state, and the responsiveness is also better than in case (A).

従って熱間圧延ラインでの冷却装置において上部ラミナ
ーフロ一方式の場合は、この第1図(Blのヘッダー構
造が主流をなしている。
Therefore, in the case of an upper laminar flow type cooling system in a hot rolling line, the header structure shown in FIG. 1 (Bl) is the mainstream.

次に第2図の(A)には、この逆U字管ノズルをつけた
ヘッダー管を使用した冷却装置の一部を示、した。第2
図(A)の3は給水正調、整後の給水本管であり、4は
へラダー管へ給水するだめの導水管、5がヘッダー管か
らの注水流量孕調整するための手動仕切り調整弁、ツが
継ぎ管、6がへラダー管の注水ON 、OFF弁であり
、この弁は三方弁または三方弁でも可能である。また8
はヘッダー管を示し・9が逆U字管ノズルを示している
。第2図のCB+には(N図の中に示したa点から0点
までの注水中の静圧を示した図である0この(B)区内
のYの線は、圧力調整後供給本管3のa点の静圧が約1
4Δ’g / c肩を示す。そしてヘッダー管8からの
注水流量が最大になるようなヘッダー管e点の必要な静
圧ihmとすると、この0点の静圧がhmとなるように
第2図(A)の5で示す手動仕切り調整弁の開度ケ調整
した状態の線がYの線である。また(B1図内のZの線
は、Yに調整した手動仕切調整弁5の開度をそのま\の
状態にしておき・冷却水ヘッダー管8からの注水量が、
この方式で最低になる時の静圧hoにすべく給水本管3
の圧力を下げた時の線である。次にfC1図は前述の最
大施蓋時のヘッダー管8の0点の静圧hm及び最小流量
時の静圧hoと逆U字管ノズル9の高さHとの関係全庁
した図である。(C)の(イ)の図は、最大流鼠時の図
であるが、注水中の静圧hmは、逆U字管ノズル9の高
さHよシ尚いため注水ON 、 OF F”弁6盆OF
F状態からONにしても容易にノズル9からの注水は可
能である。ところが(C1の(ロ)図では、逆U字管ノ
ズル9の高さHより最低流量時のhOO力が低いため第
2図(Nの6で示したON 、OFF弁 を開にしても
注水できないように思える。しかしながら弁開時のウォ
ーターハンマーの現象により注水可能であり、この時の
現象’ff1(D1図で説明する。
Next, FIG. 2(A) shows a part of a cooling device using a header tube equipped with this inverted U-shaped tube nozzle. Second
In Figure (A), 3 is the main water supply pipe after proper adjustment of the water supply, 4 is the water conduit pipe that supplies water to the ladder pipe, and 5 is the manual partition adjustment valve for adjusting the water injection flow rate from the header pipe. 1 is a joint pipe, and 6 is a water injection ON/OFF valve for a ladder pipe, and this valve can also be a three-way valve or a three-way valve. 8 again
9 indicates a header tube, and 9 indicates an inverted U-shaped tube nozzle. CB+ in Figure 2 is a diagram showing the static pressure during water injection from point a to point 0 shown in Figure N. The static pressure at point a of main pipe 3 is approximately 1
4Δ′g/c shoulder is shown. If the required static pressure ihm at point e of the header pipe is such that the water injection flow rate from the header pipe 8 is maximized, then the manual operation shown at 5 in Fig. 2 (A) should be made so that the static pressure at point 0 becomes hm. The line where the opening of the gate adjustment valve has been adjusted is the Y line. (Z line in figure B1 indicates the amount of water injected from the cooling water header pipe 8 while leaving the opening degree of the manual gate adjustment valve 5 adjusted to Y as it is.
In this method, the water supply main 3 is set to the lowest static pressure ho.
This is the line when the pressure is lowered. Next, the fC1 diagram is a diagram showing the relationship between the static pressure hm at the 0 point of the header pipe 8 at the time of maximum closure, the static pressure ho at the minimum flow rate, and the height H of the inverted U-shaped tube nozzle 9. . Figures in (C) and (A) are diagrams at the maximum flow rate, but since the static pressure hm during water injection is higher than the height H of the inverted U-shaped tube nozzle 9, the water injection ON and OFF valves are 6th Bon OF
Water can be easily injected from the nozzle 9 even if it is turned on from the F state. However, in (B) of C1, the hOO force at the lowest flow rate is lower than the height H of the inverted U-shaped nozzle 9, so even if the ON and OFF valves shown at 6 of N are opened in Figure 2 (N), water is not injected. However, it is possible to inject water due to the phenomenon of water hammer when the valve is opened, and the phenomenon at this time 'ff1 (explained in Figure D1).

(0図は冷却水ヘッダー管8の0点での静圧変化を示し
た線図であるが、図中矢印で示した弁開の時点直後の静
圧は、ウォーターノ・ンマーの影響を受けて逆U字管ノ
ズル9の筒さHより高い瞬時の圧ha”e示しでいる。
(Figure 0 is a diagram showing the static pressure change at the 0 point of the cooling water header pipe 8, but the static pressure immediately after the valve opens, indicated by the arrow in the figure, is affected by the water pressure. The instantaneous pressure ha''e is higher than the cylinder length H of the inverted U-shaped nozzle 9.

従ってこの時にヘッダー管8の逆U字管ノズル9の全数
のノズルから一斉に注水され、その後ヘッダー管8の静
圧がhOに収束していっても逆U字管ノズル9の吐出先
端が静圧hoの高さよシ低いためサイフオン効果により
注水が続行される。このウォーターハンマー現象による
瞬時の圧hO′の大きさは、供給本管3の静圧の大きさ
が重要な役割を果たし、この圧力が小さ過ぎると逆U字
管ノズル9高さHより高い瞬時圧h o’が確保できな
くなる。従って供給本管3の圧を下げ手動仕切り弁5の
開it広けて圧損を少なくして最小流量時の静圧hOに
なるように調整したとしてもウォーターハンマーによる
瞬時圧h o’の確保ができない。
Therefore, at this time, water is injected all at once from all the nozzles of the inverted U-shaped tube nozzles 9 of the header tube 8, and even if the static pressure of the header tube 8 subsequently converges to hO, the discharge tip of the inverted U-shaped tube nozzle 9 remains static. Since the pressure is lower than the height of the pressure, water injection continues due to the siphon effect. The magnitude of the instantaneous pressure hO' due to this water hammer phenomenon plays an important role in the magnitude of the static pressure in the supply main pipe 3. If this pressure is too small, the instantaneous pressure hO' Pressure ho' cannot be ensured. Therefore, even if the pressure in the main supply pipe 3 is lowered and the manual gate valve 5 is opened wider to reduce pressure loss and adjusted to the static pressure hO at the minimum flow rate, the instantaneous pressure ho' cannot be secured by the water hammer. Can not.

次に第2図の(Blの2の線で示した供給本管3の庄を
若干下げた時のへラダー管8内の現象を第3図に示した
。この第3図の瞬時圧h o’は、逆U字管ノズル9の
高さHとほぼ等しい時の現象であるかヘッダー管8内V
こ空気溜りかありこれか瞬時圧でも逆U字管ノズル9を
通して押し出されずに残っている。従って空気溜シかあ
る自効のノズルからの注水はされず幅方向に注水された
ノズルと注水されないノズルが生じてし甘う。従って幅
方向の全ノズルから注水するためには冷却水ヘッダー管
8内に残っている空気瀬音ウォーターハンマーによる瞬
時圧h o’のエネルギーで排除する必要がありh o
’はHより高い圧が必要である。この時の限界がこの冷
却装置における流水流量の下限となる。
Next, Fig. 3 shows the phenomenon inside the ladder pipe 8 when the pressure of the main supply pipe 3, indicated by the line 2 in Fig. 2 (Bl), is slightly lowered. o' is a phenomenon that occurs when the height H of the inverted U-shaped tube nozzle 9 is approximately equal to that of the header tube 8.
This air pocket remains without being pushed out through the inverted U-tube nozzle 9 even at instantaneous pressure. Therefore, water is not injected from a self-effective nozzle that has an air reservoir, and some nozzles are injected with water in the width direction and some nozzles are not injected with water. Therefore, in order to inject water from all nozzles in the width direction, it is necessary to remove the air remaining in the cooling water header pipe 8 with the energy of the instantaneous pressure ho' caused by the water hammer.
' requires a higher pressure than H. The limit at this time becomes the lower limit of the flow rate of water in this cooling device.

以上、これまでに述べてきたように特開昭55−889
21はノズル注水流量が可変な冷却装置であるが、最小
流量に下限があることから高炭素鋼や高合金鋼等の焼入
れ感受性の高い鋼板の冷却で局部硬化等の問題が生じ易
い。この冷却装置に対し本発明は流量可変範囲の最小流
量側を更に広け、月つノズル内径の大径化への選択幅が
広がるため、最大流量範囲の拡大も可能である。従って
個々の熱間圧延ラインの品質特性に合った冷却装置を設
計するに当り本発明は流量可変冷却装置において幅広い
要求に応えることができるものとなる。
As mentioned above, JP-A-55-889
Reference numeral 21 is a cooling device in which the nozzle water injection flow rate is variable, but since there is a lower limit to the minimum flow rate, problems such as local hardening are likely to occur when cooling steel plates with high quenching sensitivity such as high carbon steel and high alloy steel. In contrast to this cooling device, the present invention further widens the minimum flow rate side of the variable flow rate range, and because the range of selection for increasing the inner diameter of the monthly nozzle is expanded, it is also possible to expand the maximum flow rate range. Therefore, when designing a cooling device that matches the quality characteristics of each hot rolling line, the present invention can meet a wide range of demands in a variable flow rate cooling device.

この特徴をもつ本発明内容について次に述べる。The content of the present invention having this feature will be described next.

前述の如く特開昭55−88921で逆U字管ノズル、
冷却ヘッダーを使用すると注水ON、OFFを注水ON
、OFF弁で行うため最小流量に限界を生じる。従って
鋼板への注水ou、oFF?!l−ノズルからの注水を
停止せずに行うことで特開昭55−88921における
最小流量の限界r打破できる。
As mentioned above, in Japanese Patent Application Laid-Open No. 55-88921, an inverted U-shaped tube nozzle,
When using a cooling header, water injection can be turned on or off.
Since this is done with an OFF valve, there is a limit to the minimum flow rate. Therefore, water injection to the steel plate ou, oFF? ! By injecting water from the l-nozzle without stopping, it is possible to overcome the limit r of the minimum flow rate in JP-A-55-88921.

第1図に鋼板への注水ON、OFFをノズルからの注水
を停止せずに行う方法を示した。この方法は注水ON、
OFFの応答性が早いことから既に実施されている方法
である。第7図は冷却水ヘッダー管と注水ON 、OF
F装置の側面図であり8が冷却水へラダー管9か逆U字
管注水ノズルであり、冷却水ヘッダー管8の頂部に取り
付Qyられ且つ冷却水へラダー管8の長手方向に吟ピン
チで多数取り+Iけられている。11が注水フローの過
へい板で12の軸を中心に回動するようになっている。
Figure 1 shows a method for turning on and off water injection into a steel plate without stopping water injection from a nozzle. This method turns on water injection,
This is a method that has already been implemented because of its quick OFF response. Figure 7 shows the cooling water header pipe and water injection ON, OF
It is a side view of the F device, and 8 is a ladder pipe 9 or an inverted U-shaped pipe water injection nozzle to the cooling water, which is attached to the top of the cooling water header pipe 8 and pinched in the longitudinal direction of the ladder pipe 8 to the cooling water. The majority was taken +I. Numeral 11 is a water flow screening plate which rotates around an axis 12.

この11の停止位置は、第7図の(−の位置か鋼板への
注水1ONl、た状態図で・(b)か鋼板への注水i0
F’FLだ状態図である。このOFFした状態で注水を
続けているノズルからの水流は11の遮へい板の上をへ
て10の樋に落ちる。]0の樋は冷却水へラダー管8の
全長に戸って延びており注水OFFされた水は全てこの
10で受はラインザイドの片倶jへ流出するようにしで
ある。尚9の逆U字管ノズルの注水出口端の位置は弁に
よる注水ON 、OFFの場合は、水切り性を考えて第
1図の(B)の如く冷却水ヘッダー管の頂部付近として
おく方が良いが、本発明の場合のように注水ON。
The stopping position of this 11 is shown in the state diagram in Figure 7 (- position or water injection to the steel plate 1 ONl, (b) or water injection to the steel plate i0
It is a state diagram of F'FL. The water flow from the nozzle, which continues to inject water in this OFF state, passes over the shield plate 11 and falls into the gutter 10. ] The gutter 0 extends the entire length of the ladder pipe 8 to the cooling water, and all the water when the water injection is turned off flows out into the channel 10 of the line. In addition, the position of the water injection outlet end of the inverted U-shaped pipe nozzle (9) should be near the top of the cooling water header pipe as shown in Figure 1 (B) in order to drain the water when the water injection is ON or OFF using the valve. Good, but water injection is ON as in the case of the present invention.

oFFr遮へい板で行い最小流量ケ絞ろうとする場合は
、ヘッダー警音密閉管として逆U字管ノズルの吐出端を
第7図の如くヘッダー管8より下に設+)でもよい。尚
ノズルからの注水を停止させることなく鋼板への注水’
zON、OFFさせる方式が第7図のような遮へい板金
回動させる方式でなく・例えは辿へい板をスライドさせ
て銅板への注水をON、OFFする方式や、また別な方
法でこの目的を達成する方法であれば、これを使用して
も伺ら差しつかえない。
When trying to reduce the minimum flow rate by using an oFFr shielding plate, the discharge end of the inverted U-shaped nozzle may be installed below the header pipe 8 as shown in FIG. 7 as a header warning sound sealing pipe. In addition, water can be poured into the steel plate without stopping the water injection from the nozzle.
The method for turning zON and OFF is not the method of rotating the shielding sheet metal as shown in Figure 7, for example, the method of turning the water injection to the copper plate ON and OFF by sliding the tracing plate, or the method of turning on and off the water to the copper plate, or another method can be used to achieve this purpose. If it is a method to achieve this, there is no harm in using this.

次に第4図で本発明方式と特開昭55−88921の流
量可変範囲の差を説明する。第4図の(A)は良好なラ
ミナーロー長さとノズル1本当りの流量との関係を示し
ている。ここで艮好なラミナーフロー長さとは、第4図
(B)で示した逆U字管注水ノズル9の注水吐出端から
の注水フローで整流を保っている長さtで定義している
。第4図(A)に戻り説明を続けると、20線が注水ノ
ズル内径15咽φの線であり、30勝が175爺φ、4
の線が275岨φのノズル内径の線を示している。この
図によりノズルと鋼板の面間距離が1500 mm以−
トであれば大幅な流量範囲で良好なラミナーフローにな
ることがわかる。したがって01.C2,C3の点は、
各々注水ノズル内径で、良好なラミナーフロー長さ15
00yn+++が確保できるノズル1本当りの流量点を
示している。捷だbl、bl、b3 は各々の圧水ノズ
ル内径で流量ヲ絞っていった時で注水ON。
Next, with reference to FIG. 4, the difference in flow rate variable range between the system of the present invention and that of Japanese Patent Laid-Open No. 55-88921 will be explained. FIG. 4(A) shows the relationship between a good laminar row length and a flow rate per nozzle. Here, the length of a good laminar flow is defined as the length t that maintains the rectification of the water injection flow from the water injection discharge end of the inverted U-shaped water injection nozzle 9 shown in FIG. 4(B). Returning to Fig. 4 (A) and continuing the explanation, the 20th line is the line with the inner diameter of the water injection nozzle of 15mm, and the 30th line is the line with the inner diameter of the water injection nozzle of 175mm and 4mm.
The line indicates the inner diameter of the nozzle with a diameter of 275 mm. This figure shows that the distance between the nozzle and the steel plate is 1500 mm or more.
It can be seen that a good laminar flow can be achieved over a wide flow rate range if the Therefore 01. Points C2 and C3 are
Each water injection nozzle inner diameter has a good laminar flow length of 15
The flow rate point per nozzle at which 00yn+++ can be ensured is shown. For BL, BL, and B3, water injection is turned ON when the flow rate is reduced using the inner diameter of each pressure water nozzle.

OFFを注水ON、OFF弁で行う場合の最小流量限界
点である。このbl、bl、b3以下の流量に絞ろうと
すると注水ON、OFF弁方式では幅方向の各ノズルで
冷却水の出ないノズルが出始める。
This is the minimum flow limit point when turning off the water using the water injection ON and OFF valves. If an attempt is made to reduce the flow rate to bl, bl, b3 or less, some nozzles in the width direction will not come out with cooling water in the water injection ON/OFF valve system.

乙のbI + bl + b3を結んだ線がyの線であ
る。次にaIla2Ia3の各点は各ノズル内径で注水
ON。
The line connecting B's bI + bl + b3 is the y line. Next, turn on water injection at each nozzle inner diameter at each point aIla2Ia3.

oFFiaへい板と樋で行う方式でノズルからの注水を
停止することなく大流量側から流量を絞っていった場合
の最小流量の限界でこれ以下に絞ると整流限界だけでな
く連続的な流水とならない。
oFFia This is the limit of the minimum flow rate when the flow is throttled from the high flow side without stopping the water injection from the nozzle using the method using the baffle plate and gutter. No.

この限界のa+ + 84+ a3 k結んだ線がXの
線である。さてこの第4図(A+に示したように遮へい
板と樋を利用した注水ON、OFFの方式は低流量側へ
の流量可変拡大か可能である。また注水弁による注水O
N、OFF方式で、最小流量の限界が問題となる品種が
多いミルでは、ノズル内径はより径小側に選択すること
になる。例えば、熱姑鋼板頭部の通板性の障害とならな
い高さから、注水ノズル吐出先端と鋼板上面の面間距離
11500mmとした場合で且つノズル1本当りの注水
流量k 10t/minまで絞りたい場合は、2の線の
ノズル内径15咽φを選択する必要がある。この場合の
ラミナー性を確保しての流量可変範囲はhlの約10ヒ
nから01の約17 t/rr#nとなる。これに対し
辿へい板と樋による注水ON 、OFF方式ではノズル
内径はより大径化の方向で選択可能となりこのため流量
可変範囲を広げることができる。この場合例えばノズル
吐出先端と鋼板上面の面間距離を前述と同じく1500
++m+に設定し、ノズル内径を2′75mmφに選択
したとすれば、ノズル1本当りの流量で最小流量はa3
の約5 t 7 rnln 71hら最大流量は、ラミ
ナー性を確保して約381− / urn iで流量可
変範囲を広けることがn」能となる。ここでノズル内径
が15喘φ未満では、第4図にみるごとく良好なラミナ
ーフロー長さ紮得る範囲が狭丑くなり好ましくない。ま
た30鮒φ超では整流を得るためのノズル当りの流量が
多くなり、ノズルの本数分減らささるを得なくなる場合
もあり、冷却むらの点で好甘しくない。
The line connecting this limit of a+ + 84 + a3 k is the line of X. Now, as shown in Figure 4 (A+), the method of turning on and off water injection using a shielding plate and gutter allows for the variable flow rate to be expanded to the low flow rate side.
For mills that use the N, OFF method and have many types where the minimum flow rate is a problem, the nozzle inner diameter should be selected on the smaller side. For example, if the distance between the water injection nozzle discharge tip and the top surface of the steel plate is set to 11,500 mm, and the water injection flow rate per nozzle is set to a height that does not impede the threadability of the hot steel plate head, and the water injection flow rate per nozzle is to be reduced to 10 t/min. In this case, it is necessary to select the nozzle inner diameter of line 2 of 15 mm. In this case, the flow rate variable range while ensuring laminar properties is from about 10 hin for hl to about 17 t/rr#n for 01. On the other hand, in the water injection ON/OFF system using a guide plate and a gutter, the inner diameter of the nozzle can be selected in the direction of increasing the diameter, and therefore the flow rate variable range can be expanded. In this case, for example, the distance between the nozzle discharge tip and the top surface of the steel plate is set to 1500 as described above.
++m+, and the nozzle inner diameter is selected as 2'75mmφ, the minimum flow rate per nozzle is a3.
The maximum flow rate is about 5t7rnln71h, which makes it possible to widen the flow rate variable range by ensuring laminar properties and about 381-/urni. Here, if the nozzle inner diameter is less than 15 mm, the range in which a good laminar flow length can be obtained becomes narrow, as shown in FIG. 4, which is not preferable. Further, if the diameter exceeds 30, the flow rate per nozzle to obtain rectification increases, and it may not be possible to reduce the number of nozzles, which is not preferable in terms of uneven cooling.

漁上の如く流量可変の冷却装置において注水oii。Water injection oii in a cooling device with variable flow rate, such as in fishing equipment.

0FFi遮へい板と樋を利用した方式で行うことVCよ
り流量可変範囲を低流量側へ拡大し、且つこのことでノ
ズル内径も径大方向に選択可能となるため結果として最
大流量側への拡大も可能となる。
This is done using a method that uses 0FFi shielding plates and gutters.The flow rate variable range is expanded to the lower flow rate side than the VC, and because of this, the nozzle inner diameter can also be selected in the direction of the larger diameter, resulting in expansion to the maximum flow rate side. It becomes possible.

本発明はこれを使用したもので供給本管の途中にiE力
調整弁紮設け、この圧力調整によって冷却水ヘッダー管
に加わる出力音変化させて流量bJ叢とする冷却装置に
おいて冷却水ヘソグー肯から鋼板への注水ON、OFF
をX−1い板と樋の利用によるON、0FF7.(行う
ようにしたこと1特徴とすゐ冷却装置でこれまでVCな
い小流量から大流量までの流量可変’に−OJ能とした
ことで緩冷速から急冷速まで制御が可能となった。従っ
て幅広い品種の対応が可能となり且つ幅広い材質造り分
けができる冷却装置となった。
The present invention uses this, and an iE force adjustment valve is installed in the middle of the supply main pipe, and by adjusting the pressure, the output sound applied to the cooling water header pipe is changed to make the flow rate bJ. Water injection to steel plate ON/OFF
ON by using X-1 board and gutter, 0FF7. (One feature of the new cooling system is that it has a variable flow rate from a small flow rate to a large flow rate, which was not possible with a VC until now.) By adding an -OJ function, it is now possible to control from a slow cooling speed to a rapid cooling speed. Therefore, the cooling device has become compatible with a wide variety of products and can be made of a wide variety of materials.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

第5図は熱間連続圧延ラインの仕上圧延機最終スタンド
20から巻取機21の間に配置した冷却装置の全体系統
図である。土3か上部給水本管・14が圧力調整弁、1
5が圧力調整後の上部給水本管、16が上部冷却水ヘッ
ダ0管への碑水警音示している。また13′が下部の冷
却水供給本管、14’が下部の圧力調整弁、15′が下
部の圧力調整後の給水本管]6′か下部冷却水ヘッダー
管への導水管ケ示している。贅たこの冷却装置の圧力調
整弁は」二、下台々5ヶ取り伺Q丁られ、これに接続芒
れた圧力調整後の給水本管も上、下釜々5本に分けられ
ている。即ち各々自由に圧力設定即ち流量可変が可能と
なっている。
FIG. 5 is an overall system diagram of a cooling device arranged between the final stand 20 of the finishing mill and the winder 21 of the continuous hot rolling line. Soil 3 or upper water main, 14 is pressure regulating valve, 1
5 indicates the upper water supply main pipe after pressure adjustment, and 16 indicates the water alarm to the upper cooling water header 0 pipe. 13' is the lower cooling water supply main pipe, 14' is the lower pressure regulating valve, and 15' is the lower pressure-adjusted water main pipe] 6' indicates the water conduit pipe to the lower cooling water header pipe. . The pressure regulating valves of this extravagant cooling system are installed in 5 pieces in the 2nd and 5th lower pots, and the water mains connected to these after pressure adjustment are divided into 5 in the upper and lower pots. That is, it is possible to freely set the pressure, that is, vary the flow rate.

次にこの冷却装置の詳細を示した3 b図ケ説明する。Next, Figure 3b showing details of this cooling device will be explained.

第6図は第5図のAで1aつだ一部を図示したものであ
る。13が上部給水本管、」4が圧力調整弁、15が圧
力調整後の給水本管、16が冷却水ヘッダー管への導水
管・17が冷却水ヘッダー管の圧力調整用の手動仕切り
弁、18が冷却水ヘッダー管、19が内径17,5φの
逆U字管注水ノズルを示している。
FIG. 6 shows a portion of A in FIG. 5. 13 is the upper water supply main pipe, 4 is the pressure adjustment valve, 15 is the water supply main pipe after pressure adjustment, 16 is the water conduit to the cooling water header pipe, 17 is the manual gate valve for pressure adjustment of the cooling water header pipe, 18 is a cooling water header pipe, and 19 is an inverted U-shaped water injection nozzle with an inner diameter of 17.5φ.

次に第1図は第6図のBで囲った上部冷却水へラダー管
を矢印の方向から図示したものである。
Next, FIG. 1 shows the ladder pipe to the upper cooling water enclosed by B in FIG. 6 from the direction of the arrow.

第7図の8が冷却水ヘッダー管、9が逆U字管ノズルを
示し、11が邂へい板、12が遮へい板の回動軸、10
が樋を示し、この樋は冷却水ヘッダー管の長手方向に設
置され冷却水ヘソグー管8に取り伺けられた多数の逆U
字管ノズルからの注水ケ遮へい板11を経て全て受けら
れるようになっており、受けた水は樋の片側をラインサ
イド側に延ばして排水できるようにしである。11の遮
へい板は12の軸を中心にして回動できるようにしてあ
り、エヤーンリンダー等で個々に作動できるようにしで
ある。また第7図の(a)が鋼板への注水状態ヶ示しf
b)が銅板への注水を停止した状態を示している。10
〜12の遮へい板と樋及び遮へい板を回動するための回
動装置は全上部冷却水ヘッダー管に配置しである。
In Fig. 7, 8 indicates the cooling water header pipe, 9 indicates the inverted U-shaped tube nozzle, 11 indicates the shielding plate, 12 indicates the rotation axis of the shielding plate, 10
indicates a gutter, and this gutter is a large number of inverted U-shaped pipes installed in the longitudinal direction of the cooling water header pipe and extending into the cooling water header pipe 8.
All of the water injected from the tube nozzle can be received through the shielding plate 11, and the received water can be drained by extending one side of the gutter toward the line side. The shielding plates 11 are rotatable about the axis 12, and can be operated individually by an air cylinder or the like. In addition, (a) in Fig. 7 shows the state of water injection into the steel plate.
b) shows a state in which water injection to the copper plate has been stopped. 10
~12 shielding plates and rotating devices for rotating the gutter and shielding plates are disposed in all upper cooling water header pipes.

次にこの冷却装置の使用方法の例ケ説明する。Next, an example of how to use this cooling device will be explained.

第8図はC−M n系の一鋼種の冷却変態図とaから0
点までの冷却カーブを示した図である。aは圧延仕上り
温度の点、bが冷却開始点でbからCはオーステナイト
域からフェライト域VC入る冷速を速くしている。Cか
らdはフェライト域で徐冷し、dからeはパーライト域
への通過紮急冷させてf点で巻きとっている。このこと
で結晶粒の微細化、均−化及び炭化物の混入状純音均等
化している。このような冷却カーブを得るためには第5
図で示した上下1からVゾーンに分割した各ゾーン流量
4変えて行えば良い。例として厚み3 mm T圧延速
度15 m / sで圧延される場合で、第8図に示し
た冷却カーブを得るための例を第1pに示した。第1表
は目標冷却速度に合った谷ゾーンの明細用の、1″’:
、!i’(内1′かに変更なし)流!&層密度設定と各
点の目標温度から注水便用ヘッダー管本数を表している
Figure 8 shows the cooling transformation diagram of one type of C-M n-based steel and a to 0
FIG. 3 is a diagram showing a cooling curve up to a point. A is the rolling finishing temperature point, b is the cooling start point, and from b to C is increasing the cooling rate from the austenite region to the ferrite region VC. C to d are slowly cooled in a ferrite region, and d to e are passed through a pearlite region to be rapidly cooled and wound at point f. This results in finer grain size, equalization, and equalization of pure tones mixed with carbides. In order to obtain such a cooling curve, the fifth
It is sufficient to change the flow rate of each zone divided into V zones from the upper and lower 1 shown in the figure by 4. As an example, an example for obtaining the cooling curve shown in FIG. 8 in the case where the thickness is 3 mm and the T-rolling speed is 15 m/s is shown in No. 1p. Table 1 is for details of the valley zone corresponding to the target cooling rate, 1'':
,! i' (no change in 1') style! & Represents the number of header pipes for water injection based on the layer density setting and target temperature at each point.

第 1 表 また冷却速度と流諷缶度の関係は第9図と第10図に示
した。第9図本発明実施例の冷却装置における冷却能力
特性図で鋼板厚み3咽の場合の線で実線が上部ラミナー
フロ一方式の冷却能力特性、破線が下部スプレ一方式で
の冷却能力特性を示している。寸だ第10図は上部、下
部の流量を同流量密度として上部、下部共冷却した場合
の冷却能力特性を示している。さて第1表に戻り1ゾー
ンの目標冷却速度は第8図のす、c間の律速から80C
/ secとして、この冷却速#に得るためには第10
図の冷却能力特性図から必要な流量密度を設定した。■
ゾーンは第8図のc、4間の律速から15℃/ sec
とし、第9図で上部ラミナーフローだけとした冷却能力
特性から流量密度を設定し・11ゾ一ン下部の圧力調整
弁は全閉とした。次に第8図のd、e間に相当する11
1 、 IVゾーンの流量密度は第8図のd、e間の律
速’1loo℃/secとして、第10図からこの冷却
速度を得るだめの流量密度を設定した。また■ゾーンは
巻取温朋を若干調整す明、?ltN、’!ノア7’f、
’;(1’j?Tニ変更なし)るゾーンとしこれに朗え
得る適切な流力1密rJJ−とじた。
Table 1 The relationship between cooling rate and degree of filtration is shown in Figures 9 and 10. Figure 9 is a cooling capacity characteristic diagram of the cooling system according to the embodiment of the present invention, where the solid line shows the cooling capacity characteristic of the upper laminar flow one-way type, and the broken line shows the cooling capacity characteristic of the lower spray one-way type. There is. Figure 10 shows the cooling capacity characteristics when the upper and lower parts are co-cooled with the same flow rate density. Now, returning to Table 1, the target cooling rate for zone 1 is 80C from the rate-determining rate between s and c in Figure 8.
/sec, to obtain this cooling rate #10
The required flow density was determined from the cooling capacity characteristic diagram shown in the figure. ■
The zone is 15℃/sec from the rate-limiting point between c and 4 in Figure 8.
Then, the flow density was set based on the cooling capacity characteristics with only the upper laminar flow shown in Figure 9, and the pressure regulating valve at the bottom of zone 11 was fully closed. Next, 11 corresponds to between d and e in Figure 8.
1. The flow rate density in the IV zone was determined by the rate-determining rate between d and e in Figure 8, '1loooC/sec, and the flow rate density to obtain this cooling rate was set from Figure 10. Also, in the ■ zone, adjust the winding temperature slightly. ltN,'! Noah 7'f,
';(1'j? T ni no change) zone, and an appropriate flow force that can be used in this zone was closed.

このように本発明の4却装置はy急自在な冷却カーブを
設定−ノーることがnJ能である。またこの効果の一例
とし2て第8図のように冷却カーブをTolI御した場
合と従来の巻取温度のみを制御する方法で造りん込んだ
場合の比較1ハ)2表に示した。
As described above, the cooling device of the present invention has the ability to set a cooling curve that can be adjusted rapidly. As an example of this effect, Table 1c)2 shows a comparison between the case where the cooling curve is controlled by TolI as shown in FIG.

第  2  戎 この表1よ・抗張力Tsが5bA9/IIIdの鋼板ケ
造るのに冷却速度と巻取温lit制御した銅板1よ従来
の巻取温度のみを制御した鋼板と比べQ、Mnの成分が
少なくてすむ。この意味することは製鋼で投入する合金
鉄の削減が可能であることやC,Mnの低成分で高Ts
が得られるため製鋼での成分の集約化が可能になること
を示している。寸たTsのバラツキか半減し品質的にも
非常に向」−シたことを示している。
2nd Table 1: A steel plate with a tensile strength Ts of 5bA9/IIId was produced by controlling the cooling rate and coiling temperature lit. Compared to the conventional steel plate in which only the coiling temperature was controlled, the components of Q and Mn were Less is needed. This means that it is possible to reduce the amount of ferroalloy input in steelmaking, and that it is possible to reduce the amount of iron alloy used in steelmaking, and that it is possible to achieve high Ts with low C and Mn components.
This shows that it is possible to concentrate the ingredients in steelmaking. This shows that the variation in Ts has been reduced by half, which is very good in terms of quality.

以上本発明による冷却装置は緩急自在な冷却装置であり
低炭素系の鋼種から高炭素系の鋼種捷での幅広い利實制
御か可能となり非常に大きな効果を生む冷却装置である
As described above, the cooling device according to the present invention is a cooling device that can be controlled at any speed and speed, and is capable of controlling a wide range of profits from low carbon steel to high carbon steel types, and is a cooling device that produces a very large effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(Al(Blは冷却水ヘッダー管及び注水ノズル
の断面図、第2図(Alは冷却装置の部分図、机2図C
B+は頭におナフ゛る静圧會示す図、第2図(C)(イ
)(0)は最大流量時及び最小流電時におけるヘッダー
W 84’圧を示す図、第2図Φ)は冷却水ヘソグー管
(NにおQする0点での静圧変化を示す図、第3図は給
水本管の圧を下げた時のヘッダー管内の現象を示す図、
第4図(A+は良好なラミナーフロー長さとノズル1本
当りの流量の関係ケ示す図、第4図(Blは良好なラミ
ナーフローを示す図、第5図は冷却装置の全体系統図、
第6図は第5図のA部拡大図、第7図(al (b)は
本発明に用いる注水ON 、 OF F装置を示す図、
第8図はC−M n系鋼の冷却変態図、第9図は平均冷
却速度と冷却水平均流量密度との関係を示す図、第10
図は平均冷却速度と上部士下部冷却水流量密度の関係を
示す図である。 1.1′、8.J8・・・・ヘッダー管2.2’、9.
19・・・・・ノズル 3、13.13’、 15.15’・・給水本管4 、
4’、 16 、16’・・・・導水管5.17・・・
・・・・手動仕切り調整弁6・・・・・・・・・ON、
OFF弁 ワ・・・・・・・・・継き管 10・・・・・・・・樋 11・ ・・ ・・・遮へい板 12・・・ ・・・・軸 14.14’・・・  ・・ 圧力IAI整装置装置願
 人 新日本製鐵株式会社 第1図 (Bン 第8図 1     5    10 時r″、511でC) 第9図 Ql  0.2 05 04 0,5 06  Q7 
0色 0910、々祁、)(祁り汰蓋光汲(42・綜−
92′ド監Q+4 0.2 0,4 0,6 081.0  +、2 1.
4 1.6  +、8 2.0上苔1下七rン今IF’
)’−i#<式LT[(>γ、漕す十に;1’、抽正山
(方式) 1中イ′巨J表牛 1lfiAll  !]  i 41  !1′丁吉1
’11!、fiM’  1 6  j  ′/ 6 0
  号2市明V)名ゼ1、 ;jノトス1−リップミノLにおける鋼板冷却装置ハ″
3抽!1所・するね If’lとの19.1イt  ’t’T irI出馳出
入1人11ノ!I]   東jii、都−1代1111
〆火十ml’ 211−l 6甫Sろ号(665)te
l’ 11本k ’jjNV、抹式会?I代 名(全体
j、)代戎^  武   III    W!+代理人
〒1F+:< TI’:L241 (144]11  
川  東※、fil)中火区11本(鴻」\町t’J 
N−t4=fi佼号J、 ?l11.+1品令のIIブ
I’   )#f41+ 58−4+l−1月25 )
、+ (光速11〕6、 l1ll 、ilの:IJ塚 明細占23貝、25負牙別紙り通り補止する。 75−
Figure 1 (Al (Bl is a cross-sectional view of the cooling water header pipe and water injection nozzle, Figure 2 (Al is a partial view of the cooling system, Figure 2C)
B+ is a diagram showing the static pressure at the head, Figure 2 (C) (A) (0) is a diagram showing the header W84' pressure at maximum flow rate and minimum current flow, Figure 2 Φ) is Figure 3 shows the static pressure change at 0 point of the cooling water pipe (N). Figure 3 shows the phenomenon inside the header pipe when the pressure of the main water supply pipe is lowered.
Figure 4 (A+ is a diagram showing the relationship between good laminar flow length and flow rate per nozzle, Figure 4 (Bl is a diagram showing good laminar flow, Figure 5 is an overall system diagram of the cooling device,
FIG. 6 is an enlarged view of part A in FIG. 5, FIG. 7 (al (b) is a diagram showing the water injection ON/OFF device used in the present invention,
Figure 8 is a cooling transformation diagram of C-M n-based steel, Figure 9 is a diagram showing the relationship between the average cooling rate and the average cooling water flow density, and Figure 10 is a diagram showing the relationship between the average cooling rate and the average cooling water flow density.
The figure shows the relationship between the average cooling rate and the upper and lower cooling water flow density. 1.1', 8. J8...Header pipe 2.2', 9.
19... Nozzle 3, 13.13', 15.15'... Water supply main pipe 4,
4', 16, 16'... Water pipe 5.17...
・・・・Manual partition adjustment valve 6・・・・・・・・・ON,
OFF valve... Joint pipe 10... Gutter 11... Shield plate 12... Shaft 14.14'... ... Pressure IAI adjustment device request person Nippon Steel Corporation Figure 1 (B Figure 8 15 10 o'clock r'', C at 511) Figure 9 Ql 0.2 05 04 0,5 06 Q7
0 colors 0910, So-
92' Superintendent Q+4 0.2 0,4 0,6 081.0 +, 2 1.
4 1.6 +, 8 2.0 upper moss 1 lower 7 r now IF'
)'-i#<Formula LT [(>γ, row ten; 1', Kushozan (method) 1 middle i' giant J table cow 1lfiAll!] i 41 !1' Chokichi 1
'11! , fiM' 1 6 j '/ 6 0
No. 2 City Akira V) Name 1, ;j Notos 1-Steel plate cooling device in Lip Mino L
3 draws! 1 place/If'l with 19.1 It't'T irI going in and out 1 person 11 no! I] Higashijii, Miyako-1 generation 1111
〆Fire 10ml' 211-l 6〫Srogo (665)te
l' 11k 'jjNV, match ceremony? I name (whole J,) Dai Ebisu ^ Take III W! +Agent 〒1F+:<TI':L241 (144]11
Kawa Higashi*, fil) 11 medium fire areas (Ko)\Machi t'J
N-t4=fiシ@J, ? l11. +1 class II b I')#f41+58-4+l-January 25)
, + (Speed of Light 11) 6, l1ll, il: IJ Tsuka detailed description 23 shells, 25 negative teeth appendix supplementary. 75-

Claims (2)

【特許請求の範囲】[Claims] (1)連続熱間圧延ラインにおける鋼板上部の冷却方式
が柱状ラミナーフロ一方式である冷却装置において、注
水ノズル内径’(515〜30叫φとし、注水ノズル吐
出端と鋼板との面間距離11500.以下とした複数の
冷却水へラダー管、及び給水配管途中に流量制御装置を
該装置に配置すると共に冷却水ヘッダー管から鋼板への
冷却水の注水ON、0FFz−注水ノズル下部に設けた
遮へい板と樋によって行なうようにしたことを特徴とす
るホットストリップミルにおける鋼板冷却装置。
(1) In a cooling system in which the cooling method for the upper part of the steel plate in a continuous hot rolling line is a columnar laminar flow type, the inner diameter of the water injection nozzle is 515 to 30 mm, and the distance between the water injection nozzle discharge end and the steel plate is 11,500 mm. Ladder pipes for the following cooling water, and a flow control device placed in the middle of the water supply piping, and cooling water injection from the cooling water header pipe to the steel plate turned ON, 0FFz - A shielding plate provided at the bottom of the water injection nozzle. A steel plate cooling device in a hot strip mill, characterized in that the cooling is performed by a gutter.
(2)連続熱間圧延ラインにおける鋼板上部の冷却方式
が柱状ラミナーフロ一方式である冷却装置において、注
水ノズル内径を15〜30祁φとし、注水ノズル吐出端
と銅板との面間距離を1500.以下とした複数の冷却
水へラダー管及び該冷却装置k・複数ゾーンに分割し1
、各ゾーンに給水する配管途中に流量制御装置を配置す
ると共に冷却水ヘッダー管から鋼板への冷却水の注水O
N、OFFを注水ノズル下部に設Qアだ遮へい板と樋に
よって行なうようにしたことを特徴とするポットストリ
ップミルにおける鋼板冷却装置
(2) In a cooling system in which the upper part of the steel plate in a continuous hot rolling line is cooled by columnar laminar flow, the inner diameter of the water injection nozzle is set to 15 to 30mm, and the distance between the water injection nozzle discharge end and the copper plate is set to 1500 mm. A ladder pipe and the cooling device are divided into multiple zones as follows:
, a flow control device is placed in the middle of the piping that supplies water to each zone, and cooling water is injected from the cooling water header pipe to the steel plate.
A steel plate cooling device for a pot strip mill, characterized in that N and OFF are controlled by a shielding plate and a gutter installed at the bottom of a water injection nozzle.
JP16176082A 1982-09-17 1982-09-17 Cooler for steel plate in hot strip mill Pending JPS5950911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16176082A JPS5950911A (en) 1982-09-17 1982-09-17 Cooler for steel plate in hot strip mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16176082A JPS5950911A (en) 1982-09-17 1982-09-17 Cooler for steel plate in hot strip mill

Publications (1)

Publication Number Publication Date
JPS5950911A true JPS5950911A (en) 1984-03-24

Family

ID=15741368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16176082A Pending JPS5950911A (en) 1982-09-17 1982-09-17 Cooler for steel plate in hot strip mill

Country Status (1)

Country Link
JP (1) JPS5950911A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974424A (en) * 1986-02-04 1990-12-04 Kawasaki Steel Corp. Method and system for cooling strip
EP1938911A1 (en) * 2006-12-27 2008-07-02 VAI Industries (UK) Ltd. Apparatus and method for controlled cooling
CN102189132A (en) * 2010-03-19 2011-09-21 宝山钢铁股份有限公司 Upper spray cooling device arranged among finishing mill racks
JP2011194417A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Cooling apparatus and cooling method for steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974424A (en) * 1986-02-04 1990-12-04 Kawasaki Steel Corp. Method and system for cooling strip
EP1938911A1 (en) * 2006-12-27 2008-07-02 VAI Industries (UK) Ltd. Apparatus and method for controlled cooling
WO2008077449A1 (en) * 2006-12-27 2008-07-03 Siemens Vai Metals Technologies Ltd. Apparatus and method for controlled cooling
US9358597B2 (en) 2006-12-27 2016-06-07 Siemens Plc Apparatus and method for controlled cooling
JP2011194417A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Cooling apparatus and cooling method for steel
CN102189132A (en) * 2010-03-19 2011-09-21 宝山钢铁股份有限公司 Upper spray cooling device arranged among finishing mill racks

Similar Documents

Publication Publication Date Title
DE3127348A1 (en) METHOD AND DEVICE FOR COOLING A CONTINUOUS SLAM
CA2241045C (en) Method and apparatus for the manufacture of formable steel
JP2004515362A (en) Method for producing hot strip from steel with high manganese content
JPS5950911A (en) Cooler for steel plate in hot strip mill
JP2009503259A (en) Manufacture of thin steel strip
SU1706393A3 (en) Method of continuous zinc-plating of extended products
US4479530A (en) Method of manufacturing metallic wire products by direct casting of molten metal
JPH03100154A (en) Production of alloying hot dip galvanized steel strip
US5191778A (en) Process for producing thin-webbed h-beam steel
US5259229A (en) Apparatus for cooling thin-webbed H-beam steel
CA2239543C (en) Method for heat treating rolled stock and device to achieve the method
DE3132120C2 (en)
DE102009048567B4 (en) Method and arrangement for cooling a cast strand in a continuous casting plant
JP2964905B2 (en) Method and apparatus for cooling hot-dip coated steel sheet
DE1521112A1 (en) Device for coating metallic extruded material
JPH10263778A (en) Method for secondarily cooling cast slab in continuous casting
JPH07178526A (en) Continuous casting method anf apparatus therefor
JP3190239B2 (en) Nozzle top cooling header tube for steel strip cooling
JPH0110092Y2 (en)
JP3334522B2 (en) Al-containing hot-dip galvanized steel sheet excellent in spangle uniformity and method for producing the same
US1469721A (en) Method of handling hot metal strip and apparatus therefor
DE846280C (en) Process for the continuous casting of metal pipes
JPS58100633A (en) Variable crown water cooled roll
WO2022258376A1 (en) Method for producing a microalloyed steel, a microalloyed steel produced using the method, and a combined casting/rolling installation
JP2000502614A (en) Method and apparatus for pouring molten steel from dip tube