JPS5950579A - Semiconductor optical position detector - Google Patents

Semiconductor optical position detector

Info

Publication number
JPS5950579A
JPS5950579A JP57161470A JP16147082A JPS5950579A JP S5950579 A JPS5950579 A JP S5950579A JP 57161470 A JP57161470 A JP 57161470A JP 16147082 A JP16147082 A JP 16147082A JP S5950579 A JPS5950579 A JP S5950579A
Authority
JP
Japan
Prior art keywords
layer
conductive film
type amorphous
transparent conductive
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57161470A
Other languages
Japanese (ja)
Other versions
JPH04395B2 (en
Inventor
Shigenori Torihata
鳥畑 成典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP57161470A priority Critical patent/JPS5950579A/en
Publication of JPS5950579A publication Critical patent/JPS5950579A/en
Publication of JPH04395B2 publication Critical patent/JPH04395B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02024Position sensitive and lateral effect photodetectors; Quadrant photodiodes

Abstract

PURPOSE:To enhance the detection and resolving power to a light beam irradiated point by using amorphous Si as a raw material. CONSTITUTION:A transparent conductive film 11, a P type amorphous Si layer 12, an I type amorphous Si layer 13, an N type amorphous Si layer 1, and a transparent conductive film 15 are successively joined on a glass substrate 10. A frame electrode 16 is annexed to the film 11. Two pairs of bar electrodes 17, 17' and 18, 18' are arranged in opposition on the film 15. When the light beam L is made incident, excess carriers 6 generate in the P-N junction at the irradiated point, a current based on them flows between the electrodes 17, 17', 18, 18' and the electrode 16 via the film 15. Therefore, the position of the irradiated point can be calculated based on the difference or ratio of the value of currents outputted from the opposing electrodes.

Description

【発明の詳細な説明】 本発明は、半導体装置検出器に関する。[Detailed description of the invention] The present invention relates to a semiconductor device detector.

近年、画像の走査を行なわないで光学的に被測定物体の
位置を検出する半導体装置検出器が実用されている。
In recent years, semiconductor device detectors have been put into practical use that optically detect the position of an object to be measured without scanning an image.

第1図は、かかる半導体装置検出器りの従来例を示すも
のであり、同図において、n型シリコン層(純シリコン
層)1は、シリコン単結晶の薄片を正方形に形成したも
のであり、該1型シリコン層1の一方の面と他方の面に
は不純物の熱拡散等によってp型紙抗層2およびn型シ
リコ7層3が各々形成されている。上記p型紙抗層2に
は、第2図に示すように2対の電極4,4′および5゜
5′が対向配設され、また上記n型シリコン層3にはそ
の中央付近に電極6が付設されている。
FIG. 1 shows a conventional example of such a semiconductor device detector, and in the figure, an n-type silicon layer (pure silicon layer) 1 is a square piece of silicon single crystal, A p-type paper layer 2 and an n-type silicon 7 layer 3 are formed on one side and the other side of the 1-type silicon layer 1, respectively, by thermal diffusion of impurities or the like. On the p-type paper layer 2, two pairs of electrodes 4, 4' and 5.5' are disposed facing each other as shown in FIG. is attached.

いま、上記p型紙抗層2のA点に光ビームLが入射され
ると、A点におけるpn接合に該光ビームLのye量(
エネルギンに対応した過剰キャリアを生じ、該過剰キャ
リアに基づく電流が上記p型紙抗層2を介して電極4 
、4’ 、 5 、5’と電極6間にそれぞれ流れる。
Now, when the light beam L is incident on the point A of the p-type paper layer 2, the ye amount of the light beam L (
Excess carriers corresponding to the energy are generated, and a current based on the excess carriers passes through the p-type paper layer 2 to the electrode 4.
, 4', 5, 5' and electrode 6, respectively.

上記p型紙抗層2が均一な抵抗分布を有していることか
ら、上記各電流の値はA点から電極4゜4’ 、 5 
、5’までの距離に逆比例した大きさとなり、したがっ
て、対向する各型棒から出力される電流値の差または比
に基づいてX、Y方向についての上記A点の位置を検出
するようにしている1、かかる従来の半導体装置検出器
は、以下のような欠点を有していた。
Since the p-type paper resisting layer 2 has a uniform resistance distribution, the values of each of the currents are from the point A to the electrodes 4°4', 5
, 5', and therefore, the position of the above point A in the X and Y directions is detected based on the difference or ratio of the current values output from the opposing mold bars. 1, such conventional semiconductor device detectors had the following drawbacks.

すなわち、シリコン単結晶を原材料としているために大
面積に形成することが技術的および経済的に困難であり
、かかる理由から、分解能を向上するためには複雑高価
な光学系を外付けする必要があった。また、p型抵抗層
に光電変換作用と抵抗作用を兼用させているので、最適
な設計が困難であった。
In other words, since silicon single crystal is used as the raw material, it is technically and economically difficult to form it over a large area, and for this reason, it is necessary to attach a complicated and expensive external optical system to improve resolution. there were. Furthermore, since the p-type resistance layer has both a photoelectric conversion function and a resistance function, it has been difficult to achieve an optimal design.

本発明の目的は、上記した欠点を解消した半導体装置検
出器を提供することにある。
An object of the present invention is to provide a semiconductor device detector that eliminates the above-mentioned drawbacks.

本発明は、上記目的全達成するために、アモルファスシ
リコンヲ原材料として使用している。
The present invention uses amorphous silicon as a raw material in order to achieve all of the above objects.

以下、添附図面を参照しながら本発明の詳細な説す」す
る。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第3図は、本発明に係る半導体装置検出器DDの一実施
例を示している。この実施例では、正方形のガラス基板
10に、透明導電膜11、p型アモルファスシリコンf
f112. i型アモルファスシリコン層13、n型ア
モルファススシリコン層14および透明導電膜15を順
次接合している。上記透明導電膜11には枠状の電極」
6がその縁部に沿って伺設され(第4図参照)、また上
記透明導電膜15には2対の枠状の電極17 、17’
および18 、18’がその縁部に沿って対向配設され
ている(第5図参照)。なお、上記透明導電膜11 、
15はITO(インジウム−スス−酸化物)や金屑薄膜
等から々す、また、上記p型アモルファスシリコン層1
2.  B197モル7アスシ’J コン層13 オj
 ヒn l’+Qアモルフーγスシリコン層14は層側
4ば300 A  、 300(1〜5000 Aおよ
び100Aの厚さにそれぞれ蒸着されて形成される。
FIG. 3 shows an embodiment of the semiconductor device detector DD according to the present invention. In this embodiment, a square glass substrate 10, a transparent conductive film 11, a p-type amorphous silicon f
f112. An i-type amorphous silicon layer 13, an n-type amorphous silicon layer 14, and a transparent conductive film 15 are sequentially bonded. The transparent conductive film 11 has a frame-shaped electrode.
6 is provided along its edge (see FIG. 4), and two pairs of frame-shaped electrodes 17 and 17' are provided on the transparent conductive film 15.
and 18, 18' are arranged oppositely along the edge (see FIG. 5). Note that the transparent conductive film 11,
15 is made of ITO (indium-sulfur oxide), gold scrap thin film, etc., and the p-type amorphous silicon layer 1
2. B197 mole 7 asci'J con layer 13 oj
The amorphous silicon layer 14 is formed by depositing the layer side 4 to a thickness of 300 A, 300 (1 to 5000 A and 100 A, respectively).

また、第3図では、ガラス基板10の厚さを他の厚さと
比べて縮小しである。
Further, in FIG. 3, the thickness of the glass substrate 10 is reduced compared to other thicknesses.

いま、第6図に示したように、」二記半導体装装置検出
器DDに光ビームLを入射すると、該光ビームLの照射
点におけるpn接合に過剰キャリアが生じ、該過剰キャ
リアに基づく電流が透明導電膜15を介してそれぞれ電
極17 、17’ 、 18 、18’と電極16の間
に流れる。
Now, as shown in FIG. 6, when the light beam L is incident on the semiconductor device detector DD, excess carriers are generated at the pn junction at the irradiation point of the light beam L, and a current based on the excess carriers is generated. flows between the electrodes 17, 17', 18, 18' and the electrode 16 via the transparent conductive film 15, respectively.

しかして、上記透明導電膜15が均一な抵抗分布を有し
ていることから、上記電流の大きさは上記照射点から各
電極までの距離に逆比例し、したがって対向する電極か
ら出力される電流値の差または比に基づいて上記照射点
の位置を算出することができる。
Since the transparent conductive film 15 has a uniform resistance distribution, the magnitude of the current is inversely proportional to the distance from the irradiation point to each electrode, and therefore the current output from the opposing electrodes. The position of the irradiation point can be calculated based on the difference or ratio of values.

ところで、上述した実施例ではガラス基板にp型、n型
およびn型のアモルファスシリコンを蒸着して半導体装
置検出器DDi形成しているので、該半導体装置検出器
DDは半透明となる。
By the way, in the above embodiment, since the semiconductor device detector DDi is formed by depositing p-type, n-type, and n-type amorphous silicon on the glass substrate, the semiconductor device detector DD is semitransparent.

そこで、かかる半導体装置検出器DDを2個所定距離を
おいて平行に配置すれば、光ビームは1つ目の半導体装
置検出器DDを通過して2つ目の半導体装置検出器DD
を照射する。したがって、それぞれの半導体装置検出器
DDにおける光ビームの照射点の位置検出結果に基づい
て、該光ビームの半導体装置検出器DDへの照射角度を
得ることができる。
Therefore, if two such semiconductor device detectors DD are arranged in parallel with a predetermined distance apart, the light beam passes through the first semiconductor device detector DD and then passes through the second semiconductor device detector DD.
irradiate. Therefore, based on the position detection result of the irradiation point of the light beam on each semiconductor device detector DD, the irradiation angle of the light beam on the semiconductor device detector DD can be obtained.

上記ガラス基板10に代えて金属基板を用いても、上述
と同様にして光ビームの照射点を検出し得る。
Even if a metal substrate is used instead of the glass substrate 10, the irradiation point of the light beam can be detected in the same manner as described above.

ただし、この場合は透明導電膜15方向から光ビームを
受光する必要がある。
However, in this case, it is necessary to receive the light beam from the direction of the transparent conductive film 15.

また、上記電極16を透明導電膜15に配設し、上記電
極17 、17’ 、 18 、18’全透明導電膜1
1に配設した態様でも、本発明は実施することができる
。さらに第7図に示す如く、電IM]7 、17’を透
明導電膜11に、また電極18 、18’を透明導電膜
15にそれぞれ正方形の別の対向する辺に沿う態様で配
設しても本発明を実施し得る。なお、同図の実施例では
光ビームの照射点に発生した過剰キャリアのうち電子が
p型アモルファスシリコン層12に移動シ、正孔がn型
7モル7717937層14に移動するため、上記電極
17 、17’から出力される電流と、電極18 、1
8’から出力される箱、流とは極性が逆になる。
Further, the electrodes 16 are disposed on the transparent conductive film 15, and the electrodes 17, 17', 18, 18' are completely transparent conductive film 1.
The present invention can also be implemented in the embodiment arranged in No. 1. Furthermore, as shown in FIG. 7, the electrodes 7 and 17' are arranged on the transparent conductive film 11, and the electrodes 18 and 18' are arranged on the transparent conductive film 15 along the opposite sides of the square. may also carry out the invention. In the embodiment shown in the same figure, among the excess carriers generated at the irradiation point of the light beam, electrons move to the p-type amorphous silicon layer 12, and holes move to the n-type 7717937 layer 14, so that the electrode 17 , 17' and the current output from the electrodes 18, 1
The polarity is opposite to that of the box and flow output from 8'.

本発明は、上述した構成および作用を有するので次のよ
うな効果をもつ。
Since the present invention has the above-described configuration and operation, it has the following effects.

■ i型アモルファスシリコンおよびn型アモルファy
、シリコンはシリコン単結晶に比べて高抵抗でかつキャ
リア移動度が低く、また、p型、n型およびn型アモル
ファス7リコノを薄膜に形成しているので光ビーム照射
点に発生した過剰キャリアは横方向へあまジ拡散しない
。したがって、発生した過剰キャリアの大部分が透明導
電膜に移動し、これによって光ビーム照射点の検出分解
能を高くすることができる。
■ I-type amorphous silicon and n-type amorphous silicon
, silicon has higher resistance and lower carrier mobility than silicon single crystal, and since p-type, n-type, and n-type amorphous 7 silicon are formed in thin films, excess carriers generated at the light beam irradiation point are Does not spread too much laterally. Therefore, most of the generated excess carriers move to the transparent conductive film, thereby increasing the detection resolution of the light beam irradiation point.

■ アモルファスシリコン全大面積の薄膜に形成するこ
とは技術的に容易であるために大面積の半導体装置検出
器全安価に実現できる。また、かかる半導体装置検出器
に適用する光学系′fr:WrJ単化することができる
■ Since it is technically easy to form a thin film of amorphous silicon over a large area, a large area semiconductor device detector can be realized at low cost. Further, the optical system 'fr:WrJ applied to such a semiconductor device detector can be simplified.

■ 光電効果により生じた電流を透明導電膜によって分
割するようにしているので、各アモルファスシリコン層
および抵抗部(透明導電膜)ft:それぞれの作用が最
も有効に行なわれるように個別に設計することができ、
これによって高感度化を図れる。
■ Since the current generated by the photoelectric effect is divided by the transparent conductive film, each amorphous silicon layer and the resistive part (transparent conductive film) ft: must be designed individually so that each function is performed most effectively. is possible,
This allows higher sensitivity to be achieved.

■ 各アモルファスシリコン層の膜厚を調整することに
より分光感度を変化することができる。
■ Spectral sensitivity can be changed by adjusting the thickness of each amorphous silicon layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、半導体装置検出器の従来例を示
す概念断面図および上面図、第3図、第4図および第5
図は、本発明に係る半導体装置検出器の一実施例を示す
断面図、上面図および下面図、第6図は、本発明に係る
半導体装置検出器の作用を説明するだめの概念断面図、
第7図は、本発明に係る半導体装置検出器の他の実施例
を示す斜視図である。 IO・ガラス基板、11 、15・・・透1pJ導電膜
、12−p型アモルファスシリコン層、13− i 1
1’41モルファスシリコン層、14・・n型アモルフ
ァスシリコン層、16 、17 、17’ 、 18 
、18’・・・電極。 第3図 匹 第6図 n 第7図
1 and 2 are conceptual cross-sectional views and top views showing conventional examples of semiconductor device detectors, and FIGS.
The figures are a cross-sectional view, a top view, and a bottom view showing one embodiment of a semiconductor device detector according to the present invention, and FIG. 6 is a conceptual cross-sectional view for explaining the operation of the semiconductor device detector according to the present invention.
FIG. 7 is a perspective view showing another embodiment of the semiconductor device detector according to the present invention. IO/glass substrate, 11, 15... transparent 1pJ conductive film, 12-p type amorphous silicon layer, 13- i 1
1'41 amorphous silicon layer, 14...n-type amorphous silicon layer, 16, 17, 17', 18
, 18'...electrode. Figure 3 Figure 6 Figure n Figure 7

Claims (1)

【特許請求の範囲】[Claims] p型アモルファスシリコン層にn型アモルファスシリコ
ン層およびn型アモルファスシリコン層を順次接合した
半導体層と、該半導体層の両面にそれぞれ接合した透光
性導電膜と、該透光性導電膜に対向配置した少なくとも
1対の棒状電極とを具えた半導体装置検出器。
A semiconductor layer in which an n-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially bonded to a p-type amorphous silicon layer, a light-transmitting conductive film bonded to both surfaces of the semiconductor layer, and disposed opposite to the light-transmitting conductive film. A semiconductor device detector comprising at least one pair of rod-shaped electrodes.
JP57161470A 1982-09-16 1982-09-16 Semiconductor optical position detector Granted JPS5950579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57161470A JPS5950579A (en) 1982-09-16 1982-09-16 Semiconductor optical position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57161470A JPS5950579A (en) 1982-09-16 1982-09-16 Semiconductor optical position detector

Publications (2)

Publication Number Publication Date
JPS5950579A true JPS5950579A (en) 1984-03-23
JPH04395B2 JPH04395B2 (en) 1992-01-07

Family

ID=15735702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57161470A Granted JPS5950579A (en) 1982-09-16 1982-09-16 Semiconductor optical position detector

Country Status (1)

Country Link
JP (1) JPS5950579A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956778A (en) * 1982-09-27 1984-04-02 Toshiba Corp Position detector for semiconductor device
JPS5984587A (en) * 1982-11-08 1984-05-16 Anritsu Corp Location sensor
JPS61201482A (en) * 1985-03-04 1986-09-06 Komatsu Ltd Semiconductor optical position detector
JPS61216490A (en) * 1985-03-22 1986-09-26 Komatsu Ltd Semiconductor light position detector
JPS61229372A (en) * 1985-04-03 1986-10-13 Komatsu Ltd Semiconductor position detector
JPS61204243U (en) * 1985-06-08 1986-12-23
JPS62203346A (en) * 1986-03-04 1987-09-08 Hamamatsu Photonics Kk Semiconductor position detector
US4761547A (en) * 1985-03-18 1988-08-02 Kabushiki Kaisha Komatsu Seisakusho Semiconductor photoelectric conversion device for light incident position detection
EP0340412A2 (en) * 1988-03-07 1989-11-08 Kanegafuchi Chemical Industry Co., Ltd. Semiconductor light beam position sensor, and image input device using this sensor
JPH0274838A (en) * 1988-09-09 1990-03-14 Komatsu Ltd Triaxial force sensor
JPH0294863U (en) * 1989-01-11 1990-07-27
EP0877231A1 (en) * 1997-05-09 1998-11-11 Vishay S.A. Device for non-contact measuring of positon and displacement
JP2016510397A (en) * 2012-12-19 2016-04-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting one or more objects
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
JP2020523784A (en) * 2017-06-06 2020-08-06 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Sensor device and manufacturing method thereof
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997583A (en) * 1972-12-01 1974-09-14
JPS5587007U (en) * 1978-12-12 1980-06-16
JPS6057716A (en) * 1983-07-27 1985-04-03 アメリカン テレフオン アンド テレグラフ カムパニ− Waveform combining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997583A (en) * 1972-12-01 1974-09-14
JPS5587007U (en) * 1978-12-12 1980-06-16
JPS6057716A (en) * 1983-07-27 1985-04-03 アメリカン テレフオン アンド テレグラフ カムパニ− Waveform combining device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462187B2 (en) * 1982-09-27 1992-10-05 Tokyo Shibaura Electric Co
JPS5956778A (en) * 1982-09-27 1984-04-02 Toshiba Corp Position detector for semiconductor device
JPS5984587A (en) * 1982-11-08 1984-05-16 Anritsu Corp Location sensor
JPS61201482A (en) * 1985-03-04 1986-09-06 Komatsu Ltd Semiconductor optical position detector
US4761547A (en) * 1985-03-18 1988-08-02 Kabushiki Kaisha Komatsu Seisakusho Semiconductor photoelectric conversion device for light incident position detection
JPS61216490A (en) * 1985-03-22 1986-09-26 Komatsu Ltd Semiconductor light position detector
JPS61229372A (en) * 1985-04-03 1986-10-13 Komatsu Ltd Semiconductor position detector
JPS61204243U (en) * 1985-06-08 1986-12-23
JPS62203346A (en) * 1986-03-04 1987-09-08 Hamamatsu Photonics Kk Semiconductor position detector
US5126815A (en) * 1988-03-07 1992-06-30 Kanegafuchi Chemical Industry Co., Ltd. Position sensor and picture image input device
US5025297A (en) * 1988-03-07 1991-06-18 Kanegafuchi Chemical Industry Co., Ltd. Semiconductor light beam position sensor element and a position sensor and a picture image input device each using the same
EP0340412A2 (en) * 1988-03-07 1989-11-08 Kanegafuchi Chemical Industry Co., Ltd. Semiconductor light beam position sensor, and image input device using this sensor
JPH0274838A (en) * 1988-09-09 1990-03-14 Komatsu Ltd Triaxial force sensor
JPH0294863U (en) * 1989-01-11 1990-07-27
US6034765A (en) * 1997-05-09 2000-03-07 Vishay Sa Contactless position and displacement measuring device
FR2763122A1 (en) * 1997-05-09 1998-11-13 Vishay Sa NON-CONTACT POSITION MEASUREMENT AND MOVEMENT DEVICE
EP0877231A1 (en) * 1997-05-09 1998-11-11 Vishay S.A. Device for non-contact measuring of positon and displacement
JP2016510397A (en) * 2012-12-19 2016-04-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting one or more objects
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
JP2020523784A (en) * 2017-06-06 2020-08-06 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Sensor device and manufacturing method thereof
US11217619B2 (en) 2017-06-06 2022-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor device and method of manufacturing the same
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object

Also Published As

Publication number Publication date
JPH04395B2 (en) 1992-01-07

Similar Documents

Publication Publication Date Title
JPS5950579A (en) Semiconductor optical position detector
WO2001075977A1 (en) Semiconductor energy detector
JP2001291853A (en) Semiconductor energy detecting element
JPH0671097B2 (en) Color sensor
JPH10507877A (en) Three color sensor
JP4571267B2 (en) Radiation detector
US5126815A (en) Position sensor and picture image input device
JPH0550857B2 (en)
JPH0234975A (en) Photovoltaic element
JPS6249680A (en) Semiconductor position detector
JP7281443B2 (en) Photoelectric conversion element and photoelectric conversion device
JPS6334980A (en) Photovoltaic generating element
JPS5935486A (en) Photo semiconductor device
JPH06302851A (en) Beam-position detector
JPH021866Y2 (en)
JPH04241458A (en) Semiconductor optical detector
JPH021865Y2 (en)
JPS61140827A (en) Semiconductor photodetecting device
JPH04343276A (en) Light position detector
JPH03124071A (en) Semiconductor radiation-detecting element
JPH0521353B2 (en)
JPS63137319A (en) Position detector
JPS61229372A (en) Semiconductor position detector
JPS58191479A (en) Photoelectric element and method for photo detection using thereof
JPS6031259A (en) Photovoltaic device