JPS5950313A - Optical fiber rotary sensor - Google Patents

Optical fiber rotary sensor

Info

Publication number
JPS5950313A
JPS5950313A JP57159535A JP15953582A JPS5950313A JP S5950313 A JPS5950313 A JP S5950313A JP 57159535 A JP57159535 A JP 57159535A JP 15953582 A JP15953582 A JP 15953582A JP S5950313 A JPS5950313 A JP S5950313A
Authority
JP
Japan
Prior art keywords
optical fiber
light
semi
polarization
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57159535A
Other languages
Japanese (ja)
Inventor
Kazumasa Takada
和正 高田
Yutaka Sasaki
豊 佐々木
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57159535A priority Critical patent/JPS5950313A/en
Publication of JPS5950313A publication Critical patent/JPS5950313A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lasers (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To suppress the influence by Rayleigh scattering, also to suppress the influence by disturbance such as a temperature variation, vibration, etc., and to attain rotation angular velocity detecting sensitivity having high accuracy, by providing a means for rotating a polarizing direction of emitted light of both turning light propagated odd times in an optical fiber, and for making it incident again to the optical fiber. CONSTITUTION:Light which transmits a semi-permeable mirror 8 goes toward a laser 1 and a photodetector 5, but is cut by polarizer placed immediately before them. Light reflected by the semi-permeable mirror 8 passes through a total reflector 10 and a polarizer 11 (passing through only a direction vertical to the paper face), is reflected by a semi-permeable mirror 9 and is made incident again into an optical fiber from an end face B. In this case, the polarizing direction of the incident light is vertical to the paper face, therefore, it is propagated by a polarized wave of a direction (a) in the optical fiber (accordingly, the direction becomes vertical to the polarizing direction at the time of the first propagation). Subsequently, the light is propagated in the optical fiber, and therefore, it is emitted in the direction (a) of its polarizing direction, namely, in the direction parallel to the paper face, is divided into two equal parts by the semi-permeable mirror 8, and a part of it goes toward the photodetector 5. Light reflected by the semi-permeable mirror 8 passes through the total reflector 10, goes toward the polarizer 11, and is cut in this polarizer.

Description

【発明の詳細な説明】 (技術分野) 本発明は、地球の自転速度(〜10−4ラジアン/秒)
のように緩やかに回転する回転体の回転角速度を高精度
に検出することが可能な光フアイバ回転センサに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to the rotation speed of the earth (~10-4 radian/second)
The present invention relates to an optical fiber rotation sensor capable of highly accurately detecting the rotational angular velocity of a rotating body that rotates slowly.

(背景技術) 従来の光フアイバ回転セッサでは、光源(主にレーザ)
からの光を半透鏡で三等分し、三等分された光を、使用
する光ファイバのそれぞれの側の端面より光フアイバ内
に入射させ、光ファイバからの両川射光の干渉強度を受
光器で検出していた。
(Background technology) In conventional optical fiber rotation processors, a light source (mainly a laser) is used.
A semi-transparent mirror divides the light into three equal parts, and the divided light is input into the optical fiber from the end face of each side of the optical fiber to be used, and the interference intensity of the light emitted from both sides of the optical fiber is measured by the receiver. was detected.

しかしこのような構成では、光フアイバ内で生ずる散乱
光か散乱を起こすもとの左右両回り光と干渉してしまい
、これが回転角速度検出感度を低下させる原因になって
いた。そこで、この散乱の影響を抑える1こめに、図1
のような構成が提案されている。図1において、紙面に
水平方向に直線偏光しているレーザ1からの出射光は、
半透鏡2で2つに分けられ乞。このうち、半透鏡2で反
射された光は、対物レンズ3を通り偏波保持光ファイバ
6(コアの周辺に、コアの応力を印加するための応力伺
与部を有する構造)内を左回りに伝搬する。一方、半透
鏡2を透過した光は逆に元ファイバ内を右回りに伝搬す
る。ここで、光ファイバの端面ば、図1で、丸で囲んだ
図のようにA端面(図にオ6いて、余1線を引いた丸の
部分が応力付与部、小さな丸の部分がコア部)ではa方
向は紙面に対して水平方向に、B端面ではa方向は紙面
に対して垂直方向となっている。このため、光フアイバ
内の左lqlり元はa方向の偏波として、そして右回り
光は1〕方向の偏波として伝搬し、光ファイバからの両
川射ブC4の偏光方向はいずれも紙面に対して垂直とな
る。この構成では、光フアイバ内を伝搬する左右両回り
光の偏光方向は互いに直交しており、右回り(左回り)
に伝搬する光によって生ずる左回り(右回り)のレーり
散乱光と、もとの左回り(右回り)に伝搬する光との干
渉を抑えることが可能となる(後述)。なお、5は受光
器である。しかし、一般に偏波保持光ファイバにおける
a方向とb方向における屈折率が異なるために、光フア
イバ内を伝搬して受光器へ向う左右両回り光の光路長に
差が生じ、左右両回り光が干渉しにくくなると共に、温
度変動・振動等の外乱による影響を受けやずい欠点かあ
つ1こ。
However, in such a configuration, the scattered light generated within the optical fiber interferes with the original left and right light that causes the scattering, which causes a decrease in rotational angular velocity detection sensitivity. Therefore, in order to suppress the influence of this scattering, we decided to
A configuration like this has been proposed. In FIG. 1, the emitted light from the laser 1, which is linearly polarized in the horizontal direction on the paper, is
It is divided into two by half-transparent mirror 2. Of these, the light reflected by the semi-transparent mirror 2 passes through the objective lens 3 and travels counterclockwise within the polarization-maintaining optical fiber 6 (a structure having a stress applying part around the core for applying the stress of the core). propagates to On the other hand, the light transmitted through the semi-transparent mirror 2 propagates clockwise within the original fiber. Here, the end face of the optical fiber is the A end face as shown in the circle in Figure 1 (the circled part with the extra line drawn in the figure is the stress applying part, and the small circle part is the core). In part), the direction a is horizontal to the plane of the paper, and in the end face B, the direction a is perpendicular to the plane of the paper. Therefore, the left-handed light in the optical fiber propagates as a polarized wave in the a direction, and the right-handed light propagates as a polarized wave in the 1] direction, and the polarization directions of the two-way beam C4 from the optical fiber are both shown in the paper. It is perpendicular to the In this configuration, the polarization directions of both left and right lights propagating in the optical fiber are orthogonal to each other, and clockwise (counterclockwise)
It becomes possible to suppress interference between the counterclockwise (clockwise) Ray scattering light caused by the light propagating in the direction and the original counterclockwise (clockwise) propagation light (described later). Note that 5 is a light receiver. However, since the refractive index in the a-direction and the b-direction in a polarization-maintaining optical fiber is generally different, there is a difference in the optical path length of the left-right and left-handed lights that propagate within the optical fiber and head toward the receiver. One disadvantage is that it is less likely to interfere with the other, and is also susceptible to external disturbances such as temperature fluctuations and vibrations.

(発明の課題) 本発明はこのような問題を解決すべく、光フアイバ内を
伝搬する左右両回り光とも光フアイバ内を偶数回伝搬さ
せることにより、両党の光路長を一致させた構成としγ
こものであり、その特徴は、回転iii+hに対し垂直
な面内に置かれた曲率な有する光フアイバ内を回転方向
と同方向及び逆方向に伝搬する光の光路長が光ファイバ
の回転時に異なることを利用して光ファイバからの両回
り光の出射光の干渉強度により回転を検出する回転セン
サであって、光ファイバか偏波保持光ファイバであり、
光フアイバ内を伝搬する両回り光の偏光方向を偏波保持
光ファイバが偏波を保持する相互に直交する21方向及
び1)方向とするごとき元ファイバ回転センサにおいて
、光フアイバ内を奇数回伝搬した両回り光の出射光の偏
光方向を90°回転させてa方向の偏光をb方向とし、
b方向の偏光をa方向として再度光ファイバに入射させ
る手段が具備さね、るごとき光ファイバ回転センサにあ
る。
(Problems to be solved by the invention) In order to solve this problem, the present invention has a configuration in which the optical path lengths of both the left and right lights are made to be the same by making both the left and right lights propagate in the optical fiber an even number of times. γ
Its characteristic is that the optical path length of light propagating in the same direction and in the opposite direction to the rotation direction in an optical fiber with a curvature placed in a plane perpendicular to rotation iii+h differs when the optical fiber rotates. A rotation sensor that detects rotation based on the interference intensity of light emitted in both directions from an optical fiber using an optical fiber, which is an optical fiber or a polarization-maintaining optical fiber,
In an original fiber rotation sensor, the polarization direction of the light propagating in both directions in the optical fiber is the mutually orthogonal 21 direction and 1) direction in which the polarization maintaining optical fiber maintains the polarization. The polarization direction of the output light of the double-rotation light is rotated by 90 degrees, and the polarization direction of the a direction is changed to the b direction,
A similar optical fiber rotation sensor is provided with means for making the polarized light in the b direction enter the optical fiber again as the a direction.

(発明の構成および作用) 図2は本発明の第1の実施例であって、1はレーザ、2
は半透鏡、3,4は対物レンズ、5は受光器、6は偏波
保持光ファイバ(コアの周囲に、コアに光学異方性を印
加するための応力付与部を伺加し1こブCファイバ、図
2の丸の中において、斜線fXls分は応力伺L1部、
小さな丸の部分がコアの?’、?IS分)、7は偏光子
、8,9は半透鏡、10は全反射鏡、11は偏光子であ
る。図2で、レーザ1がらの出力光は偏光子7により直
線偏光(図では紙面に平行な方向)となり、半透鏡2に
よりその光パワーは三等分さり、る。一方、光ファイバ
の入射端面のようすは、図中の丸で囲った中の図のよう
に、A端面ではa方向は紙面に平行な方向に、B端面で
はa方向は紙面に垂直な方向となっている。このため、
半透鏡2を通過した光は半透鏡9を通り、対物レンズ4
によってB端面より光フアイバ中に入射しく偏光方向は
b方向)光フアイバ中を伝搬した後A端面より出射し、
対物レンズ3で平行ブCmとなり(偏光方向は紙面に垂
直)半透鏡8で三等分される。半透@8を透過した光は
レーザlと受光器5へ向かうが、直前の偏光子7,8で
カットざ」1ろ(7,8はいずれも紙面に対し7て平行
な直線偏光な通過させるようになっているため)。一方
、半透鏡8で反射し1こ光は全反射鏡1o、偏光子I1
.(紙面に垂直な方向のみ通過)を通り、半透鏡9で反
射して内び13端而より光フアイバ内に入射する。この
とき、入射光の偏光方向は紙面に垂直であるために、光
フアイバ内はa方向の偏波で化1般することになる(従
って、1回目の伝搬時の偏光方向とは垂直な方向となる
)。そして光フアイバ内を伝搬した後、A端面より偏光
方向がa方向すなわち紙面に平行な方向で出射し半透鏡
8で三等分さ」11、一部は受光器5へ向がう。半透鏡
8で反射された光は全反射鏡10を通り偏光子11へ向
かい、ここでカントされる。一方、半透鏡2で反射され
たレーザ1かもの出力光は、A端面よりa方向の偏波で
入射し、光フアイバ内を伝搬した後B端面よりへ21方
向の偏波て、ずなわち紙面に垂直な方向の偏波方向で出
射し、半透鏡9で反射されて、偏光子11、全反射鏡1
0を通った後半透鏡8で反射されて再びA端面より光フ
アイバ内に入射しく1〕方向の偏波)、13端面より紙
面に平行な偏波て出射して受光器5へ向かう。
(Structure and operation of the invention) FIG. 2 shows a first embodiment of the invention, in which 1 is a laser, 2
3 and 4 are semi-transparent mirrors, 3 and 4 are objective lenses, 5 is a light receiver, and 6 is a polarization-maintaining optical fiber (a stress-applying part is added around the core to apply optical anisotropy to the core; C fiber, in the circle in Figure 2, the diagonal line fXls is the stress range L1,
Is the small circle part the core? ',? 7 is a polarizer, 8 and 9 are semi-transparent mirrors, 10 is a total reflection mirror, and 11 is a polarizer. In FIG. 2, the output light from the laser 1 is converted into linearly polarized light by a polarizer 7 (in the direction parallel to the paper plane in the figure), and its optical power is divided into three equal parts by a semi-transparent mirror 2. On the other hand, the state of the input end face of the optical fiber is as shown in the circled figure in the figure. On the A end face, the a direction is parallel to the plane of the paper, and on the B end face, the a direction is perpendicular to the paper plane. It has become. For this reason,
The light that has passed through the semi-transparent mirror 2 passes through the semi-transparent mirror 9 and passes through the objective lens 4.
Therefore, the light enters the optical fiber from the B end face (the polarization direction is in the b direction), propagates through the optical fiber, and then exits from the A end face,
The objective lens 3 forms a parallel beam Cm (the polarization direction is perpendicular to the plane of the paper), and the semi-transparent mirror 8 divides the light into three equal parts. The light transmitted through the semi-transparent @8 goes to the laser l and the receiver 5, but is cut by the polarizers 7 and 8 just before it. ). On the other hand, the light reflected by the semi-transparent mirror 8 is transferred to the total reflection mirror 1o and the polarizer I1.
.. (passes only in the direction perpendicular to the plane of the paper), is reflected by the semi-transparent mirror 9, and enters the optical fiber from the inner end 13. At this time, since the polarization direction of the incident light is perpendicular to the plane of the paper, the inside of the optical fiber is generally polarized in the a direction (therefore, the polarization direction during the first propagation is perpendicular to the direction of polarization). ). After propagating within the optical fiber, the light is emitted from the end face A with the polarization direction in the direction a, that is, in a direction parallel to the plane of the paper, and is divided into three equal parts by the semi-transparent mirror 8, with a portion directed toward the light receiver 5. The light reflected by the semi-transparent mirror 8 passes through the total reflection mirror 10 and heads toward the polarizer 11, where it is canted. On the other hand, the output light of the laser 1 reflected by the semi-transparent mirror 2 enters the A end face with polarization in the direction a, and after propagating within the optical fiber, it is polarized in the 21 direction from the B end face, i.e. It is emitted in a polarization direction perpendicular to the plane of the paper, is reflected by a semi-transparent mirror 9, and is transmitted to a polarizer 11 and a total reflection mirror 1.
After passing through 0, the light is reflected by the second half transparent mirror 8 and enters the optical fiber again from the A end face (polarized wave in the 1] direction), and exits from the 13 end face as a polarized wave parallel to the plane of the paper and heads toward the light receiver 5.

このような構造になっているために、光フアイバ内を右
回りに伝搬する光の偏光方向は、第1回目の伝j般で゛
は1〕方向、第2回目では21方向とプxろ1、一方y
r;ファイバ内を左回りに伝搬する光のitn!9′C
方向は、第1回目の伝1般て゛ば;!方向、第2回目の
伝搬では1)方向とブよっている。このため、光フアイ
バ内を伝搬ずろ左右両回り光の偏光方向は常に互いに直
交するだけで・はなく、第1回目の伝搬時と第2回目の
伝搬時とでその偏光方向も互いに直交していることかわ
かる。従って、光フアイバ内を伝搬した後、受光器へ向
かう左右両回り光の光路長は等しくなることがわかる。
Because of this structure, the polarization direction of light propagating clockwise in the optical fiber is generally in the 1 direction during the first propagation, and in the 21 direction during the second propagation. 1, while y
r; itn! of light propagating counterclockwise in the fiber; 9'C
The direction is the same as the first story! In the second propagation, the direction is 1). Therefore, not only are the polarization directions of the left and right lights propagating inside the optical fiber always orthogonal to each other, but also the polarization directions are orthogonal to each other during the first and second propagation. I know it's there. Therefore, it can be seen that after propagating within the optical fiber, the optical path lengths of the left and right lights heading toward the light receiver are equal.

光フアイバ内を伝搬する左右両回り光の偏光方向が、互
いに直交するためにレーり散乱による影響か抑えられろ
Tjl山は、以下の通りてあく)。レーリ散乱は、ガラ
スが固化ずろ際の熱的ゆらぎに基因する屈折ゆらぎによ
るものであるため、微小散乱体を球で代表させて考える
と、レーり散乱によって生ずる電場(IF5は入射電場
EcJω1により以下の式となる。
Since the polarization directions of the left and right lights propagating in the optical fiber are orthogonal to each other, the influence of Ray scattering can be suppressed. Rayleigh scattering is due to refraction fluctuations caused by thermal fluctuations when the glass solidifies. Therefore, if we consider a sphere as a representative microscopic scatterer, the electric field (IF5) generated by Rayleigh scattering (IF5 is the following due to the incident electric field EcJω1) The formula is

×6.1(O〕t−kr)、、−−(1)ここで、入射
電場EcjO)LはX軸方向に直線偏光した光であると
してIEl−JCXとし/こ。光の伝搬方向はZ軸方向
としている。clvはレーり散乱を生ずる微小体積、i
は平均誘電率、Δεは誘電率のゆらぎ量、1.θ、ψは
微小体積clvを中心にした時の観測点の極座標を示す
。入射光の偏光方向はX軸であり、レーり散乱のうちで
コア内に閉じ込められる成分は、 oくθくθ。
×6.1(O]t-kr), --(1) Here, assuming that the incident electric field EcjO)L is light linearly polarized in the X-axis direction, it is assumed to be IEl-JCX. The propagation direction of light is the Z-axis direction. clv is the minute volume that causes Lehry scattering, i
is the average permittivity, Δε is the amount of fluctuation in the permittivity, 1. θ and ψ indicate the polar coordinates of the observation point centered on the minute volume clv. The polarization direction of the incident light is the X axis, and the component of Ley scattering that is confined within the core is θ×θ×θ.

で与えられる円錐内に進行する光であるとすれば、コア
内を伝搬するレーり散乱光のうちで)′偏光方向の光の
電場は となる。(2)式よりE、y■5LIT 2ψて゛あろ
ブ、二め、旧、E sy □ oとなる。同様にしてI
’: S 7.−Oであることもnll−明さA1、る
。このため、レーり散乱による直交偏波成分の発生量は
原理的にはセロとなる。すなわち、光フアイバ内を伝搬
ずろ光の偏光方向が亙いに直交している場合、通常の偏
波保持光ファイバでも、ツC:ファイバ内を一方に伝搬
する光の散乱光が他方に伝搬する九[4える影響は十分
抑えることが可能となる。
If the light travels within a cone given by , the electric field of the light in the polarization direction of the Leh scattered light propagating in the core will be . From the formula (2), E, y■5LIT 2ψ terob, second, old, E sy □ o. Similarly, I
': S 7. -O is also nll-brightness A1,ru. Therefore, in principle, the amount of orthogonally polarized components generated due to Rayleigh scattering is zero. In other words, if the polarization directions of the misaligned lights propagating in the optical fiber are far orthogonal, even in a normal polarization-maintaining optical fiber, the scattered light of the light propagating in one direction in the fiber will propagate in the other. 9 [4] It becomes possible to sufficiently suppress the negative effects.

図3は本発明の第2の実施例である。図3では、図2に
おいて光が空間−中を伝搬する部分を光ファイバで置き
かえたものである。従って、第1の実施例における半透
鏡ば、光ファイバで作製しプこ光フアイバ3d13カプ
ラーで置きかえた構成となっている。(へ4.J、 L
!’、 I)igonnct et al IEEE、
J、 Qt+;+ntumJfllccLron QE
 −18+陥4.746 (1982)参照)図3に示
し1ご構成l(おいて、’、3d13カプラー10を通
りイ」回りに伝(般した後、3(113カプラー12−
)13へ向かう光の偏光方向と、3dBカプラー10を
辿り左回りに伝搬して3 (113カゾラー]3−>1
2へと向かう九の偏光方向とは互いに平行となっている
。従って、この部分(12,11、13を結ぶ光ファイ
バ)でのレーリ散乱の影響か存在するか、その元ファイ
バの長さを十分短くすることによって(〈]0α)、こ
の影響を抑えろことが可能となる。
FIG. 3 shows a second embodiment of the invention. In FIG. 3, the portion in which light propagates through space in FIG. 2 is replaced with an optical fiber. Therefore, the semi-transparent mirror in the first embodiment is made of an optical fiber and replaced with a 3d13 optical fiber coupler. (to 4. J, L
! ', Igonnct et al IEEE,
J, Qt+;+ntumJfllccLron QE
-18 + 4.746 (1982)) shown in Figure 3.
) 13, the light propagates counterclockwise following the 3dB coupler 10 and becomes 3 (113 Casolar] 3->1
The polarization directions of 9 toward 2 are parallel to each other. Therefore, it is possible to find out if there is an effect of Rayleigh scattering in this part (the optical fiber connecting 12, 11, and 13), and to suppress this effect by making the length of the original fiber sufficiently short (〈]0α). It becomes possible.

(発明の効果) 以」二説明したように、本発明によれば、ブ0ファイバ
中のレーり散乱による影響を抑えると同時に、温度変動
・振動等の外乱(Cよろ影響も抑えろことが可能であろ
プこめに、高1fi度の回転角速度検出感度の達成が可
能であるという利点かある。
(Effects of the Invention) As explained below, according to the present invention, it is possible to suppress the influence of Ray scattering in the B0 fiber, and at the same time suppress the influence of external disturbances such as temperature fluctuations and vibrations. However, there is an advantage in that it is possible to achieve rotational angular velocity detection sensitivity of high 1 fi degree.

【図面の簡単な説明】[Brief explanation of drawings]

図1は従来の光フアイバ回転センサの構成図、図2は本
発明の第1の実施例の構成図、図3は本発明の第2の実
施例の構成図である。 ■・・・・・・レーザ   2・・・・・・半透鏡3 
、4・・対物レンズ  5・・・・受光器6・・・fl
ui //ν1呆」寺つ゛Cファイバ7・・・・・・偏
9′C子    8,9・・・半透鏡10・・・・・全
反射鏡   11・・・・ilu: )’(、子+2.
 I:(、11・・・・・・光フアイバ型:3(113
力プラー特iiQ出願人 日本電信電話公社 tl−冒′1出1卯イリ111人 弁理 十   山  木  恵  −
FIG. 1 is a block diagram of a conventional optical fiber rotation sensor, FIG. 2 is a block diagram of a first embodiment of the present invention, and FIG. 3 is a block diagram of a second embodiment of the present invention. ■・・・Laser 2・・・Semi-transparent mirror 3
, 4... Objective lens 5... Light receiver 6... fl
ui //ν1ゆ゛C fiber 7...Polarized 9'C fiber 8,9...Semi-transparent mirror 10...Total reflection mirror 11...ilu: )'(, Child +2.
I: (, 11... Optical fiber type: 3 (113
Power Puller Special IIQ Applicant Nippon Telegraph and Telephone Public Corporation TL-111 Patent Attorney Megumi Toyamaki -

Claims (1)

【特許請求の範囲】[Claims] 回転軸に対し垂直な面内に置かれ1こ曲率を有するブC
ファイバ内を回転方向と同方向及び逆方向に伝搬する光
の光路長が光ファイバの回転時に異゛なることを利用し
て光ファイバからの両回り光の出射光の干渉強度により
回転を検出する回転センサであって、光ファイバが偏波
保持光ファイバであり、元ファイバ内を伝搬する両回り
光の偏光方向を偏波保持光ファイバが偏波を保持する相
互に直交するa方向及びb方向とするごとき光フアイバ
回転センサにおいて、光フアイバ内を奇数回伝搬した両
回り元の出射光の偏光方向を90°回転させてa方向の
偏光をb方向とし、b方向の偏光をa方向として再度光
ファイバに入射させる手段が具備されることを特徴とす
る光フアイバ回転センサ。
A block C placed in a plane perpendicular to the axis of rotation and having a curvature of 1
Utilizing the fact that the optical path lengths of light propagating in the same direction and in the opposite direction to the rotational direction within the fiber differ when the optical fiber rotates, rotation is detected by the interference intensity of the light emitted from the optical fiber in both directions. In the rotation sensor, the optical fiber is a polarization-maintaining optical fiber, and the polarization direction of the bidirectional light propagating in the original fiber is set in mutually orthogonal directions a and b in which the polarization-maintaining optical fiber maintains the polarization. In an optical fiber rotation sensor like An optical fiber rotation sensor characterized by comprising means for inputting light into an optical fiber.
JP57159535A 1982-09-16 1982-09-16 Optical fiber rotary sensor Pending JPS5950313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57159535A JPS5950313A (en) 1982-09-16 1982-09-16 Optical fiber rotary sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57159535A JPS5950313A (en) 1982-09-16 1982-09-16 Optical fiber rotary sensor

Publications (1)

Publication Number Publication Date
JPS5950313A true JPS5950313A (en) 1984-03-23

Family

ID=15695888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159535A Pending JPS5950313A (en) 1982-09-16 1982-09-16 Optical fiber rotary sensor

Country Status (1)

Country Link
JP (1) JPS5950313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018857A (en) * 1988-09-15 1991-05-28 Honeywell Inc. Passive ring resonator gyro with polarization rotating ring path
JP2007127650A (en) * 2005-11-02 2007-05-24 Honeywell Internatl Inc Transmission mode rfog, and method of detecting rotation with rfog

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018857A (en) * 1988-09-15 1991-05-28 Honeywell Inc. Passive ring resonator gyro with polarization rotating ring path
JP2007127650A (en) * 2005-11-02 2007-05-24 Honeywell Internatl Inc Transmission mode rfog, and method of detecting rotation with rfog
JP2013101151A (en) * 2005-11-02 2013-05-23 Honeywell Internatl Inc Transmission mode rfog and method of detecting rotation by rfog

Similar Documents

Publication Publication Date Title
CN105705907A (en) Energy-efficient optic gyroscope devices
CN115014318B (en) Hollow microstructure optical fiber gyroscope
JPS6385313A (en) Sagnack ring rotaion sensor and method of forming sagnack ring rotation sensor
CN110554464B (en) Miniaturized single polarization fiber resonant cavity
CN114674302B (en) Dual-polarization optical fiber gyroscope with dead-end optical power recycling function
JPS5950313A (en) Optical fiber rotary sensor
JPH08233583A (en) Optical fiber coil
CN206400200U (en) Faraday rotation mirror and fibre optic interferometer
JP2791414B2 (en) Fiber optic gyro
JPS59152412A (en) Connecting method of polarization plane maintaining optical fiber
JPH0792325A (en) Polarized light selecting element and light source module and optical fiber gyro
JPS61223824A (en) Reflection type optical sensor
JPH0117276B2 (en)
JPH03205507A (en) Optical gyroscope
JPS6040908A (en) Optical gyroscope
CN105865434A (en) Fiber gyroscope frequency stabilization apparatus and frequency stabilization method thereof
JPS5957169A (en) Double refractive interferometer sensor
JPS5993417A (en) Optical directional coupler
JPS6055011B2 (en) temperature detection device
JPS59107267A (en) Optical fiber rotation sensor
JPS6135940Y2 (en)
JPS60218020A (en) Total single-polarization fiber rotary sensor
JPS62291514A (en) Optical-fiber rotating sensor
JPS60122312A (en) Optical heterodyne system optical fiber gyroscope
JPS6332339A (en) Optical fiber dispersion measuring instrument