JPS59501994A - chemical drug drop reactor - Google Patents

chemical drug drop reactor

Info

Publication number
JPS59501994A
JPS59501994A JP58500086A JP50008682A JPS59501994A JP S59501994 A JPS59501994 A JP S59501994A JP 58500086 A JP58500086 A JP 58500086A JP 50008682 A JP50008682 A JP 50008682A JP S59501994 A JPS59501994 A JP S59501994A
Authority
JP
Japan
Prior art keywords
volume
reactants
reactant
conduit
conduits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58500086A
Other languages
Japanese (ja)
Inventor
シヨ−・スチユア−ト・パトリツク・ダグラス
Original Assignee
ショ−・スチュア−ト,パトリック・ダグラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ショ−・スチュア−ト,パトリック・ダグラス filed Critical ショ−・スチュア−ト,パトリック・ダグラス
Publication of JPS59501994A publication Critical patent/JPS59501994A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/14Mixing drops, droplets or bodies of liquid which flow together or contact each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7174Feed mechanisms characterised by the means for feeding the components to the mixer using pistons, plungers or syringes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/23Mixing of laboratory samples e.g. in preparation of analysing or testing properties of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3035Micromixers using surface tension to mix, move or hold the fluids
    • B01F33/30351Micromixers using surface tension to mix, move or hold the fluids using hydrophilic/hydrophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00828Silicon wafers or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00853Employing electrode arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00934Electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00968Type of sensors
    • B01J2219/0097Optical sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 化学薬剤滴反応器 本発明は液体化学反応剤同士を併合させるだめの方法、およびその方法に用いる 装置に関する。[Detailed description of the invention] chemical drug drop reactor The present invention provides a method for merging liquid chemical reactants, and a method for use in the method. Regarding equipment.

先行技術の記載 流動流の形の液体試料の分析のための自動分析装置は、1957年6月25日発 行の米国特許第2,797,149号および1959年3月24日発行の米国特 許第2、s 79,141号にスケッグス氏によって開示された。Description of prior art An automatic analyzer for the analysis of liquid samples in the form of flowing streams was introduced on June 25, 1957. U.S. Pat. No. 2,797,149 issued March 24, 1959. Disclosed by Mr. Skeggs in Patent No. 2, s 79,141.

そのような流動流は、連続する複数の節片を空気で分離することによ9節片とさ れるのが通例でおるが、別法としては、1969年11月18日にジョン・スマ イセ氏に対して発行された米国特許第8,479.141号に教示され・るよう に、不活性の非混和性液体で節片とすることもできる。そのような諸方法は、多 数の液体試料ンある特定な化学試験に付すことにより、それらの試料を分析する だめの極めて有効な手段を与える。Such a flow stream can be divided into nine segments by separating a plurality of consecutive segments with air. However, alternatively, on November 18, 1969, John Suma As taught in U.S. Patent No. 8,479.141 issued to Mr. Ise. Alternatively, they can be made into segments with an inert, immiscible liquid. There are many such methods. Analyze a number of liquid samples by subjecting them to certain chemical tests It provides an extremely effective means of defeat.

発明の概要 連続流動システムとは対照的に、本発明は連続流を用いて実施されない。連続流 の場合に制御はポンプまだは周期的に運転されるピストンを予め定めて速度で稼 動させて各液体についての適切流量を選択することによってなされるが、本発明 における液体諸成分は、閉じられた導管におけるある順序の個別の移動によって 制御され、各移動または一組の移動はその前の移動が完了してから起こるように なっている。例えば、既知容積のある反応剤を開口を介して移動させ、この移動 を停止させ、次いでその移動容積部分を母容積部分から分離させる。化合される べきすべての反応剤の各容積部分は非混和性液体によって収容され限定された後 に化合されること、ならびに個々の単一の反応剤試料は、存在する多量の非混和 性液体および制御方法の故に容易に取シ扱えること、を銘記すべきである。従っ て、各試料は液体諸成分の移動の変更の一連の順序によって処理、され、種々の 反応剤の複数の溜から随意に選択されるーまたは複数の反応剤と化合させられる 。それらの反応剤は従って導管系中で計量される。Summary of the invention In contrast to continuous flow systems, the present invention is not practiced with continuous flow. continuous flow In the case of This is done by selecting the appropriate flow rate for each liquid by The liquid components in are separated by a sequence of separate movements in a closed conduit. controlled, such that each move or set of moves occurs after the previous move has completed. It has become. For example, moving a known volume of reactant through an aperture and is stopped and its moving volume portion is then separated from the parent volume portion. be combined After each volumetric portion of all reactants is contained and confined by an immiscible liquid, As well as the fact that each single reactant sample is combined with a large amount of immiscible It should be noted that due to the nature of the liquid and the method of control, it is easy to handle. follow Each sample is then processed through a series of changing sequences of liquid component movements, resulting in various Optionally selected from a plurality of reservoirs of reactants - or combined with a plurality of reactants . The reactants are then metered into the conduit system.

また、液体諸成分を含む導管は好ましくは二枚の板を一緒に面対面接触させて保 持することによって構成され、一方または両方の板が、係合されるべき表面に一 組のくぼみまたはチャンネル群を有することも銘記されるべき従って私の発明の いくつかの目的は、 1.1リットル以上から10ナノリツトル以下までの範囲となシうる容積の反応 剤を用いて化学反応を実施すること、および 2、反復性化学操作を自動的に、かつ匹適しうる装置におけるよシも複雑でない 手段によって実施すること、および 3、反応剤の選択を連続的に与えることによシ、操作中の一層の柔軟性を可能と すること、および4、ラジオアイソトープおよび病原菌等の危険物質から作業者 を隔離すること、2よび 5、反応剤の汚染を低減ないし排除すること、および6、移送中に反応剤が偶発 的に混合漏れや損失するのを防ぐこと、および 7、導管系内で試料および反応剤を計量するための方法および装置を提供するこ と、である。Additionally, conduits containing liquid components are preferably kept together by two plates in face-to-face contact. one or both plates are aligned with the surface to be engaged. It should also be noted that having a set of recesses or channels therefore my invention Some purposes are 1. Reaction volume that can range from 1 liter or more to 10 nanoliters or less carrying out a chemical reaction using an agent, and 2. Perform repetitive chemical operations automatically and without complexity in suitable equipment. to be carried out by means; and 3. Continuous selection of reactants allows for greater flexibility during operation. 4. Protect workers from hazardous substances such as radioisotopes and pathogenic bacteria. isolating, 2 and 5. Reduce or eliminate contamination of reactants; and 6. Accidental contamination of reactants during transport. to prevent mixing leakage or loss, and 7. To provide a method and apparatus for metering samples and reactants within a conduit system. And so it is.

図面 第1図は反応剤の滴を作るだめの方法によって使用されている二つの導管の平面 図である。点を付けた領域はキャリヤー相を表わしている。drawing Figure 1 shows the planes of the two conduits used by the method of creating reactant droplets. It is a diagram. The dotted region represents the carrier phase.

第2図は、反応剤の滴を作るための別の方法によシ使用されている導管の平面図 である。FIG. 2 is a plan view of a conduit used in an alternative method for producing droplets of reactant. It is.

第3図は、滴同士を合体するための方法により使用されている導管の平面[F] である。Figure 3 shows the plane of the conduit [F] used by the method for coalescing the drops. It is.

第4図は、電気泳動によシ物質を分離するようにした、本発明による装置の一つ の平面図である。FIG. 4 shows one of the devices according to the invention, which is adapted to separate substances by electrophoresis. FIG.

第5図は、本発明による装置の一具体例の分解見取図である。FIG. 5 is an exploded diagram of one embodiment of the device according to the invention.

第6図は、第5図の装置の平面図である。6 is a plan view of the apparatus of FIG. 5; FIG.

本発明の説明 本発明の方法および装置は、化学反応を開始および制御するのに、またに反応剤 の混合物を調製するのに用いることかでき、その場合に本発明方法は、工程1: 2またはそれ以上の反応剤を、場合により溶剤相中に溶解させて、一つの導管系 中へ別々の容積部分の形で分配し、その際各容積部分を、不活性かつ非混和性液 体により相互に分離させる工程、および工程2°その非混和性液体およびそれら の別々の容積部分を導管系内に、予め定められた別々の容積部分同士が相互にそ れぞれ合体するような操作順序で、移動させることによシ、それらの反応剤を併 合させる工程、からなる。Description of the invention The methods and apparatus of the present invention are useful for initiating and controlling chemical reactions. can be used to prepare a mixture of, in which case the method of the invention comprises step 1: Two or more reactants, optionally dissolved in a solvent phase, can be combined in one conduit system. in the form of separate volumes, each volume containing an inert and immiscible liquid. the process of separating them from each other by the body, and process 2° of their immiscible liquids and their separate predetermined volumes within the conduit system, and the predetermined separate volumes The reactants are combined by moving them in an order of operation that causes them to coalesce. It consists of a process of matching.

本発明の装置は、10ナノリツトル以下の容積の微視的量の反応剤の操作に特に 適しているが、1リットル以上の一層大きな量も使用しうる。この装置は単一の 容積量の反応剤を個々に処理することができる。The apparatus of the present invention is particularly suitable for handling microscopic amounts of reactants in volumes of 10 nanoliters or less. Although suitable, larger volumes of 1 liter or more may also be used. This device is a single Volumetric quantities of reactants can be treated individually.

個々の容積部分は、溜から小容積の反応剤をくびれ部分を介して、そしてその溜 に直角に付いた導管中へ、移動させることによシ、それらの潔白の母容積部分か ら分離されうる。かくして個々の容積部分はその導管に沿ってキャリヤー相を通 過させることによシその潔白の母容積部分から分離される。The individual volume sections carry a small volume of reactant from the reservoir through the waist and into the reservoir. By moving them into a conduit attached at right angles to the can be separated from The individual volumes thus pass through the carrier phase along their conduits. It is separated from its innocent mother volume by allowing it to pass through.

個々の容積の反応剤同士は、それらの容積部分を一緒に重力により通過させるこ とによ勺:あるいは複数の個々の容積部分の間からキャリヤー相を除去して、そ れらの容積部分が衝突するまで一緒に移動させることにより:あるいは一つの容 積部分がある位置に第2の容積部分の通路を部分的に塞ぐようにさせておき、次 いでそのようにして作られた未閉塞開口部分を介して第2の容積部分を移動させ 、両方の容積部分を一緒に通過させ合体させることによシニ相互に合体できる。Individual volumes of reactants can be forced through their volumes together by gravity. Toyoshi: Alternatively, the carrier phase can be removed from between several individual volumes. by moving their volumes together until they collide: or by moving them together until they collide. The passage of the second volume part is partially blocked at a position of the volume part, and the next moving the second volume through the unoccluded opening so created. , can be combined with each other by passing both volumes together and combining them.

反応剤は、液体、または装置内で凝縮されうる気体、またけ適当な溶剤中に溶解 された固体または気体、であってよい。このような反応剤液体(以下、反応剤と 称する)は、別の非混和性液体(以下、キャリヤー相と称する)によって、担持 され、限定され、また移動されることになる。適当なキャリヤー相には、鉱物油 類、軽質シリコーン油類、水および弗素化炭化水素類が包含される。The reactants can be liquids or gases that can be condensed in the equipment, or dissolved in a suitable solvent. It may be a solid or a gas. Such a reactant liquid (hereinafter referred to as reactant) (hereinafter referred to as carrier phase) is supported by another immiscible liquid (hereinafter referred to as carrier phase). It will be limited, moved, and moved. A suitable carrier phase is mineral oil. , light silicone oils, water and fluorinated hydrocarbons.

キャリヤー相はいくつかの物質の混合物であってもよく、そして反応剤とほぼ同 じ密度を有するのが好ましい。表面活性剤乞キャリヤーおよび/または反応剤相 に含ませて適当な表面性を生じさせること、例えば効果的な併合をさせること、 ができる。適当な表面活性剤には、コレステロール、ゼラチン、ナトリウムジオ キシノへティポール(Teepol)こはく酸塩、8よびトリ) 7 (Tri ton)−X−100が包含される。The carrier phase may be a mixture of several substances and is approximately the same as the reactants. Preferably, they have the same density. Surfactant carrier and/or reactant phase to create an appropriate superficiality, e.g. effective merging, Can be done. Suitable surfactants include cholesterol, gelatin, and sodium chloride. Teepol succinate, 8 and Tri) ton)-X-100.

導管の横断面は、導管内で使用されるべき滴の横断面と一般に同じ程度の大きさ であるが、それよりも小さな導管、またはそれよりも大きな滴(すなわち個々の 容積)を用いて滴が細長くなるようにしてもよい。The cross-section of the conduit is generally of the same order of magnitude as the cross-section of the drops to be used within the conduit. but smaller conduits or larger droplets (i.e. individual (volume) may be used to elongate the droplet.

キャリヤー相は、適宜な手段、例えば、フレキシブル管、フレキシブル板、口に ょる吹込または吸引、ポンプ類あるいはピストン類、にょって移動され・うる。The carrier phase can be transported by any suitable means, e.g., flexible tubes, flexible plates, spouts. It can be moved by blowing or suction, pumps or pistons.

ピストンは電気モータによって回転されるスクリュウねじによって運動させるこ とができる(それは随意に、マイクロプロセッサ法を用いて電子工学的に制御さ れうる)。The piston can be moved by a screw screw rotated by an electric motor. (optionally controlled electronically using microprocessor methods) ).

添付図面の第1図は、反応剤の大きな溜から予め定められた容積の滴を分離する 一方法を例示する。反応剤は、キャリヤー相1を含む導管中へ、サイドアーム2 から、小さな開口3を介して、吸引または押圧によって導入される。適正な容積 が導管中へ移行し終ったときに、キャリヤー相の流れが、その容積部分を潔白の 反応剤から分離し、そしてその容積部分を導管に沿って運ぶ。作られる滴の容積 は、少なくとも下記の3方法によって決定できる。Figure 1 of the accompanying drawings shows the separation of a drop of predetermined volume from a large reservoir of reactants. One method will be exemplified. The reactants are passed into the conduit containing the carrier phase 1 through the side arm 2. From there, through the small opening 3, it is introduced by suction or pressure. appropriate volume When the carrier phase has finished migrating into the conduit, the flow of the carrier phase cleans the volume. It is separated from the reactants and its volume is conveyed along a conduit. Volume of drops made can be determined by at least the following three methods.

1、開口を介して反応剤を押圧するだめのピストンを、移転される反応剤の容積 に対応する既知の距離だけ動かす。このピストンの動きが終了したときに、キャ リヤー相の相対的に速い短時間の流動によってその滴を切シ離す。1. Push the reactant through the opening of the reservoir piston, the volume of reactant to be transferred move by a known distance corresponding to . At the end of this piston movement, the cap A relatively fast short-term flow of the rear phase breaks off the drop.

2、多数個の滴が必要とされる場合には、キャリヤー相の連続流を導管に沿って 流がす。反応剤をそのとき同時に開口3を介して送ると、一連の複数の滴が形成 されることになり、各部はそれが導管に広がる直前に切り離される。このように 形成される滴の正確な寸法は二つの流れの強さに依存することになる。2. If multiple drops are required, a continuous stream of carrier phase can be applied along the conduit. Flow away. When the reactants are then simultaneously sent through the apertures 3, a series of drops is formed. The parts will be separated just before they are spread into the conduit. in this way The exact size of the droplets formed will depend on the strength of the two streams.

3、分離前の滴5の容積は、場合により目盛り付きアイピースを備えた望遠鏡ま たは顕微鏡を用いて、視覚的に推定される。適正な容積になったときに、その容 積部分をキャリヤー相の流動により分離する。3. The volume of the droplet 5 before separation is measured using a telescope or a telescope, optionally equipped with a graduated eyepiece. or visually using a microscope. When the appropriate volume is reached, the volume The product parts are separated by the flow of the carrier phase.

第2図は滴を形成するだめの別の方法を例示する。この場合、反応剤16は、形 成されるべき滴よシも可成り狭い巾の導管11中へ送られる。この導管はサイド アーム13の開口12と関連させて目盛シが付けられている。FIG. 2 illustrates another method of forming drops. In this case, the reactant 16 is in the form The drops to be produced are also directed into a conduit 11 of relatively narrow width. This conduit is on the side A scale is provided in relation to the opening 12 of the arm 13.

反応剤をその狭い導管中へある目盛14まで送り込み、次いでキャリヤー相をサ イドアームから導入し、かくして所要寸法の滴15を分離させる。The reactants are fed into the narrow conduit to a certain mark 14, and then the carrier phase is from the side arm, thus separating drops 15 of the required size.

第3図は、滴同士(これらは異なる寸法のものであってもよい)を合体する方法 を例示する。合体は、第3図の二つの導管23および25が合流して単一の導管 24乞、好ましくは図示のように1字形に、形成する部位で行われる。導管23 から導管24への流れが作られ、それは滴21を合体のための部位へ運ぶ。この 滴の表面が、導管28j6よび25の合流するスペース中へ突き出るときに、導 管23への供給弁が閉められる。今度は導管25から導管24への流れが、第2 の滴を上記の第1の滴をかすめて運び、そうすることによって、二つの滴が一緒 に押され、合体して単一の滴を形成する。Figure 3 shows how drops (which may be of different dimensions) can be combined. exemplify. Merging means that the two conduits 23 and 25 in Figure 3 join together to form a single conduit. 24, preferably in the shape of a single figure as shown, at the site to be formed. Conduit 23 A flow is created from the droplet 21 to the conduit 24, which carries the droplets 21 to the site for coalescence. this When the surface of the drop projects into the space where conduits 28j6 and 25 meet, the conduits The supply valve to pipe 23 is closed. This time, the flow from conduit 25 to conduit 24 is carry the droplet past the first droplet above, thereby bringing the two drops together. are pressed together and coalesce to form a single drop.

いずれかの滴が他のものよシも小さいならば、その小さい滴が流れる導管もそれ に応じて狭くすべきである。If any droplet is smaller than the others, then the conduit through which the smaller droplet flows will also be smaller. It should be narrowed accordingly.

すべでの導管はそれぞれの導管中で使用されるべき滴とほぼ同じ直径を有すべき である。All conduits should have approximately the same diameter as the drops to be used in each conduit. It is.

流体のいろいろな動きは、導管を、ピストン類、ポンプ類、あるいは圧縮ガスを 含むか減圧された溜へ接続することにより作られる。ソリッドステートのヒート ポンプを用いて、低温度での保持のためおよび不安定反応剤の貯留を可能とする ために、導管を冷却できる。加熱はそのヒートポンプを反転することによって達 成できる。Various movements of fluids can be achieved through conduits, pistons, pumps, or compressed gas. Contains or is made by connecting to an evacuated reservoir. solid state heat Pumps are used to maintain low temperatures and to allow storage of labile reactants. Therefore, the conduit can be cooled. Heating is achieved by reversing the heat pump. Can be done.

加熱および冷却は、別異のダクト内に流体を循環させることによっても達成でき る。Heating and cooling can also be achieved by circulating fluids in separate ducts. Ru.

合体後の反応剤は、その滴を導管に沿って上下に移動させることによって、ある いは必要ならば滴をくびれ部分に数回通すことによシ、完全に混合されうる。After coalescence, the reactants are transported to a certain location by moving the droplets up and down the conduit. Alternatively, if necessary, the drops can be thoroughly mixed by passing them through the waist several times.

滴を注射針で取出しまたけ導入しうるように出入口を設けることができる。An inlet/outlet may be provided so that drops can be removed with a needle and introduced over the syringe.

滴を管中へ移行させ、そして化学または生化学分析の何らかの標準器機へ移送す ることができる。あるいは、装置自体のパーツを、そのような器機の試料室をな すようにすることもできる。例えば導管を二枚の平らな透明壁で形成して分光計 の試料室をなすようにてきる。単一の透明壁を反射性表面と対向させたものも、 使用できる。Transfer the drop into a tube and transfer it to some standard instrument for chemical or biochemical analysis. can be done. Alternatively, parts of the instrument itself may be removed from the sample chamber of such an instrument. You can also do this. For example, by forming a conduit with two flat transparent walls, a spectrometer can be used. The sample chamber is arranged as follows. A single transparent wall facing a reflective surface can also be used. Can be used.

導管に電気泳動およびクロマトグラフィ用の物質を充填してもよい。The conduit may be filled with materials for electrophoresis and chromatography.

第4図は電気泳動に適用の導管を示す。電気泳動導管31に電気泳動物質を充填 する。電気泳動により分離されるべき試料を導管32から滴の形で導入する。こ の滴は一方の側で電気泳動物質(例えば、アガロース、ポリアクリルアミドまた はセルロースの界面と、そして他方の側で半透膜と、接合している。電極34を 含み、緩衝液で満たされそして必要によりガス排気口35を設けられた室を、こ の半透膜33は包んでいる。もう一つの滴36は、電気泳動物質の他端部と、お よびもう一つの半透膜および電極アッセンブリ37と、接合している。電流を両 電極間に流すと、諸成分が種々な速度で移動する。Figure 4 shows a conduit for electrophoresis applications. Filling the electrophoresis conduit 31 with electrophoresis substance do. The sample to be electrophoretically separated is introduced in the form of a drop through conduit 32. child A drop of electrophoresis material (e.g. agarose, polyacrylamide or is bonded to the cellulose interface and to the semipermeable membrane on the other side. electrode 34 This includes a chamber filled with a buffer solution and optionally equipped with a gas exhaust port 35. The semipermeable membrane 33 of is encased. Another drop 36 connects the other end of the electrophoretic material and and another semipermeable membrane and electrode assembly 37. Both current When flowing between electrodes, the components move at different speeds.

最も速い部分が受容筒中へ最初に移入する。この滴はある時間後に別の滴38に 交換し、このようにして種々の泳動分離部分を含む一連の複数の滴を捕集しうる 。The fastest part migrates into the receiving tube first. This drop turns into another drop 38 after a certain time. can be exchanged and thus collect a series of multiple drops containing various electrophoretic separation moieties. .

非常に少量の試料を取り扱うことができることによって、本発明の装置は高性能 液体クロマトグラフィと共に使用するのが適当となる。By being able to handle very small sample volumes, the device of the present invention has a high performance It is suitable for use with liquid chromatography.

本発明の装置は、細孔管によって慣用の高性能液体クロマトグラフィ(H,P、 L、C,)装置に、そして質量分析装置に接続しうる。The apparatus of the present invention uses conventional high performance liquid chromatography (H, P, L, C,) device and to a mass spectrometer.

滴の進行は、滴が通過するとき導管を通して伝えられる光の変動を検出すること により自動的に監視できる。Droplet progression is detected by detecting fluctuations in the light transmitted through the conduit as the droplet passes. can be automatically monitored.

同様に、二つの滴が合体するときには、両方の滴を介して通過している一つのビ ームから散乱される光が急に低減する。導管の不透明被覆に開けた窓を用いるこ とができ、そして多くの部位の監視が必要とされる場合には、光学繊維を用いて 、中央発光器からまだは中央検出器へ光を伝達できる。滴の位置も、滴を赤外線 発光器と検出器との間を通過させることによシ、または滴を誘導セルO のプレートの間を通過させることによシ、または導管の内容物の屈折率にもたら される変化により、検出できる。Similarly, when two drops merge, one droplet passing through both drops The light scattered from the beam suddenly decreases. Using an open window in the opaque coating of the conduit If this is possible and monitoring of many areas is required, optical fibers can be used. , light can still be transmitted from the central emitter to the central detector. The position of the drop also changes the drop by infrared light. or by passing the droplet between the emitter and the detector into the induction cell O. or the refractive index of the contents of the conduit by passing between the plates of It can be detected by the change in

本発明装置のいずれの自動式態様例においても、すべての圧力発生および監視手 段はマイクロプロセッサ捷たはコンピュータで制御できる。In either automatic embodiment of the device of the invention, all pressure generation and monitoring procedures are The stages can be controlled by a microprocessor or computer.

本発明装置の好ましい構成方法は、一枚の板の表面に適切な形状の凹部(くぼみ )またはチャンネル群を作り、この板を別の板と合せて締結または保持して閉じ たダクト捷たは導管を形成させることである。その第2の板は平らな面を有して いても、あるいは第1の板よシも軽度に刻んだ印象のくぼみ、または異なる形状 のくぼみを有していてもよい。三枚またはそれ以上の板を用いることによシ、導 管同士が相互にクロスオーバーする三次元の形態のものを作ることも可能である 。好捷しくけ、少なくとも1枚の板を透明、例えばガラスまたは有機ガラス、と して、操作進行を眼で観られるようにする。その他の板は、ケル(Kel)−F またはテフロン(水性反応剤について使用するのに適当な材料)、またはガラス 、有機ガラス、金属、ポリ塩化ビニル、ポリプロピレン等であってよい。A preferred method of constructing the device of the present invention is to form a recess (indentation) of an appropriate shape on the surface of a single plate. ) or create a group of channels and fasten or hold this board together with another board to close it. This is to form a duct cut or conduit. The second plate has a flat surface. Even if the first plate is slightly carved, the impression of a depression or a different shape may be formed. It may have a depression. By using three or more boards, It is also possible to create a three-dimensional structure in which the tubes cross over each other. . Advantageously, at least one plate is made of transparent material, such as glass or organic glass. so that the operation progress can be visually observed. Other boards are Kel-F or Teflon (a material suitable for use with aqueous reagents), or glass. , organic glass, metal, polyvinyl chloride, polypropylene, etc.

ガラスのくぼみはエツチングで付けることができる。Recesses in the glass can be added by etching.

プラスチックおよび金属はエツチング、モールド成形、または機械加工できる。Plastics and metals can be etched, molded, or machined.

電気接点は、いずれかの板に所望の形の金属層を析出させることによシ作ること がてきる。Electrical contacts may be made by depositing a metal layer of the desired shape on either plate. It's coming.

1 微生物は、適切な栄養を含む筒中て珊養し、また適正な温度で培養できる。1 Microorganisms can be cultured in cylinders containing appropriate nutrients and at appropriate temperatures.

滴の代シに、導管の可成シの長さ部分を占める一層大きな液セグメントを、滴を 同様にして、反応剤溜から分離して、他のセグメントと合体させてもよい。In place of the drop, a larger liquid segment that occupies the length of the conduit is added to the droplet. Similarly, it may be separated from the reactant reservoir and combined with other segments.

壁の汚染は下記のようにして低減できる:1、高度研磨した壁をもつ導管を構成 する:2、反応剤相をはじくがキャリヤー相を引き付ける材料で被覆するか1だ け作った壁をもつ導管を構成する=3、反応剤の各容積部分の通過前に少量の洗 浄液で導管を洗浄する: 4、キャリヤー相の流れを振動させて反応剤の滴またはセグメントが静止しない ようにして、それにより反応剤の周囲にキャリヤー相の膜が保持されるようにす る。Wall contamination can be reduced by: 1. Constructing conduits with highly polished walls. 2. Cover with a material that repels the reactant phase but attracts the carrier phase, or 1. = 3, with a small amount of wash before passing each volume of reactant. Clean the conduit with cleaning solution: 4. Vibrate the carrier phase flow so that the reactant droplets or segments do not come to rest. so that a film of carrier phase is maintained around the reactants. Ru.

管やパイプを所望の形状に接合して本発明方法に従う装置を構成できる。A device according to the method of the present invention can be constructed by joining tubes or pipes in a desired shape.

本発明は、医薬品、化学、生化学、地質学等の多くの分野において、注目すべき は、法医学および分子生物学研究のような極めて少量の容積を用いる操作におい て、応用されうる。本発明は精製操作中のサブサンプルの生物学的または化学的 分析の実施に、壕だクロマトグラフィまたは質量分析法による分析の前のサンプ ルの化学誘導体を作るのに、使用できよう。また非常に低い重力および圧力の条 件下の宇宙での化学分析または合成のためにも使用できよう。The present invention is useful in many fields such as medicine, chemistry, biochemistry, and geology. is ideal for operations with extremely small volumes, such as forensic and molecular biology research. can be applied. The present invention provides a method for determining biological or chemical For performing the analysis, samples must be prepared before analysis by chromatography or mass spectrometry. It could be used to make chemical derivatives of Also very low gravity and pressure conditions. It could also be used for chemical analysis or synthesis in space.

第5図は本発明の方法に従う装置の一具体例の分解見取図である。この具体例は 、予め定めた容積の二つの水性反応剤を滅菌条件下に混合しうる。FIG. 5 is an exploded diagram of one embodiment of an apparatus according to the method of the present invention. This specific example is , predetermined volumes of the two aqueous reactants can be mixed under sterile conditions.

この装置は、図示の形状のU字断面くぼみ43を機械加工で付けたテフロンブロ ック42を支持する鋼製底板41を有する。硅素ガラス板44をこのブロックに 対してクランプ45によって押しつけてあシ、クランプ45はナツト46および ボルト47によって締緊されている。This device consists of a Teflon block with a U-shaped recess 43 in the shape shown in the figure machined. It has a steel bottom plate 41 that supports a rack 42. Place the silicon glass plate 44 on this block. The clamp 45 is pressed against the nut 46 and It is tightened with a bolt 47.

このようにして形成されたU字断面導管の5つの分岐は、5つのストップコック 弁48に通じている。これらの導管の中間および外部対はテフロン管49によっ てキャリヤー相溜に接続されている。−キャリヤー相はミネラルスピリットであ る。残シの二つの分岐は、混合されるべき二つの反応剤のうちの一方をそれぞれ が含んでいるガラス注射器に接続されている。The five branches of the U-section conduit thus formed are connected to five stopcocks. It leads to valve 48. The middle and outer pairs of these conduits are connected by Teflon tubing 49. and is connected to the carrier reservoir. -The carrier phase is mineral spirits. Ru. The two branches of the residue each carry one of the two reactants to be mixed. is connected to a glass syringe containing.

第6図は第5図の装置の平面図であシ、第5図と同じ符号数字が用いられている 。溜55および58はミネラルスピリットで半分溝たされており、管56の端部 はミネラルスプリットの表面より下で開口しており、他方空気排気口57の端部 はそれぞれの液表面よシも上で開口している。空気を含む注射器60はミネラル スピリットの表面よシも上で溜56に接続されている。Figure 6 is a plan view of the device in Figure 5, and the same reference numbers as in Figure 5 are used. . Reservoirs 55 and 58 are half-fluted with mineral spirits, and the end of tube 56 is is open below the surface of the mineral split, while the end of the air outlet 57 is open above the surface of each liquid. The syringe 60 containing air is a mineral The surface of the spirit is also connected to the reservoir 56 at the top.

弁51および53の出入口は、二つの反応剤を含む二つの注射器61および62 へそれぞれ通じている。それらの導管は最初ホワイトスピリットで満たされる。The inlets and outlets of valves 51 and 53 are connected to two syringes 61 and 62 containing two reactants. It leads to each. Those conduits are initially filled with white spirit.

一つのサイクルについての操作順序は下記の通シである。The sequence of operations for one cycle is as follows.

1、弁48.51および52を開ける。弁53および54は閉じる。1. Open valves 48, 51 and 52. Valves 53 and 54 are closed.

2、注射器61を、反応剤がくびれ3に達するまで、移動し押し込む。2. Move and push the syringe 61 until the reactant reaches the constriction 3.

3、注射器61をさらに所要だけ移動させて、既知容積の反応剤をくびれ3を介 して押し込む。3. Move the syringe 61 further as required to inject a known volume of reactant through the constriction 3. and push it in.

4、弁51を閉じる。4. Close the valve 51.

5、注射器60を、〈ぼみ3を介して突き出ている容積の反応剤が切シ離され、 そして得られる滴がY形接合部64の方へ動くまで、引き出す。弁48を閉じる 。5. The syringe 60 is cut off with the volume of reactant protruding through the recess 3; The resulting drop is then withdrawn until it moves towards the Y-junction 64. Close valve 48 .

6、弁538よび54を開き、そして同様な操作順序で注射器62からの反応剤 の滴を作る。6. Open valves 538 and 54 and reactant from syringe 62 in the same order of operation. Make drops.

7、注射器60を、注射器62から生じた滴がY形接合部の中へ突出するまで、 引き出す。弁53′Sよび54を閉じる。この段階における両方の滴の位置が第 6図に示されている。7. Insert the syringe 60 until the drop produced from the syringe 62 protrudes into the Y-junction. Pull out. Close valves 53'S and 54. The position of both drops at this stage is It is shown in Figure 6.

8、弁48を開き、そして注射器61からの反応剤の滴がY形接合部64中へ動 くまで注射器60も引き出す。8. Open valve 48 and allow a drop of reactant from syringe 61 to move into Y-junction 64. Kuma also pulls out the syringe 60.

この接合部でその滴は他の滴に押し付けられ、雨滴が合体する。At this junction, the drop is pressed against another drop and the raindrops coalesce.

9、もし変色反応が起こる場合には、そのような変色は即ち記録することができ 、あるいは恒温制御されたコ4 イル67を用いである時間保持した後記録することができる。滴は、それをミネ ラルスピリットの溜59へ移すことにより、廃棄できる。9. If a color change reaction occurs, such color change can i.e. be recorded. , or thermostatically controlled co4 The data can be recorded using the file 67 after being held for a certain period of time. drops mine it It can be discarded by moving it to the Ral Spirit Reservoir 59.

滴を外部装置を用いて分析する場合には、滴を孔650反対の部位へ移行させ、 すべての弁を閉じ、栓66を除き、その滴を針付き注射器で取9出し、外部装置 へ移すことができる。次いて栓を元の位置に戻す。When the droplet is analyzed using an external device, the droplet is transferred to a site opposite the hole 650; Close all valves, remove the stopper 66, remove the drop with a needle-tipped syringe, and remove the drop from the external device. can be moved to Then return the stopper to its original position.

■、注射器60を取シ外し、空気を除去し、そして再び接続し、かくして装置を 別の操作サイクルのために準備しておく。■ Disconnect the syringe 60, remove the air, and reconnect it, thus completing the device. Be prepared for another operation cycle.

第5図は本発明の極めて単純な具体例を示すことを強調する。20以上の異なる 反応剤を導入するための溜を再する具体例が意図されている。弁を自動的に操作 すること、反応混合物をある期間保持するための導管の加熱および冷却領域およ び長期間にわたる反応剤の貯蔵も提案されている。It is emphasized that FIG. 5 shows a very simple embodiment of the invention. over 20 different Embodiments are contemplated in which the reservoir is refilled for the introduction of reactants. Automatically operate the valve heating and cooling areas of the conduit to hold the reaction mixture for a period of time. Storage of reactants for long periods and long periods of time has also been proposed.

上記の説明は多くの特定事項を含むけれども、これらは本発明の範囲に対する限 定であると解釈されるべきものでなく、むしろ、本発明のうちのわずかの好まし い具体例の例示として解釈されるべきである。他の多くの変更が可能であり、例 えば滴同士を重力によって押し付は合体させること、および油溶性反応剤につい ては水をキャリヤー相として使用すること、が可能である。従って本発明の詳細 な説明された具体例によって決定されるべきではなく、以下の請求の範囲および それらの法律的に認められる均等範囲によって決定されるべきである。Although the above description contains many specifics, these are limitations on the scope of the invention. should not be construed as limiting, but rather only some of the preferred embodiments of the invention. should be construed as an illustration of a specific example. Many other changes are possible, e.g. For example, the force of gravity forces droplets to coalesce, and for oil-soluble reactants. It is also possible to use water as a carrier phase. Therefore details of the invention The claims and claims below should not be determined by the specific examples described. It should be determined by their legally recognized equivalent range.

Figure 1゜ Figure 2゜ Figure 3 。Figure 1゜ Figure 2゜ Figure 3.

Figure l+。Figure l+.

Figure 5 。Figure 5.

Figure 6 。Figure 6.

国際謔杏@牛International Anzu @ Beef

Claims (1)

【特許請求の範囲】 1、 一つの導管系中へ2種またはそれ以上の反応剤を別々の容積の液体の形で 分配し、その際に各々の容積の液体は他のものおよび未分配の反応剤から不活性 の非混和比液体により分離されるようにし、かくニーで導管系内のそれらの反応 剤を計量し、そして 前記導管系内の非混和1生液体および別々の容積の液体反応剤の流動を、予め定 められた別々の容、積の液体が互に個々別々((合体するような正確な順序で変 え、かくしてそれらの反応剤同士を併合させる: 工程からなる化学反応剤の併合方法。 2 前記別々の容積の化学反応剤は、前記導管との関係において、導管よりも小 さい直径をもつ実質的に球状の滴を形成することができる程、少ない、請求の範 囲第1項に請求の方法。 − a 前記別々の容積の化学反応剤は、前記導管との関係において、導管により細 長くされうる程多い、請求の範囲第1項に請求の方法。 生 前記別々の容積の反応剤の否々は、各化学反応剤を溜から開口を介して、最 初から前記キャリヤー相を含んでいる導管中へ送り、次いでそのキャリヤー相を 移動させである容積の反応剤を溜中の反応剤から分離させることにより形成させ 、そして前記開口を随意−絞ってそれにより導管系内の反応剤を計量する請求の 範囲第1項に請求の方法。 7 五 溜から送り出される反応剤の容積をそれが原形であると仮定し、その球体の 直径全測定することにより推定し、しかる後前記容積を調節し、そして分離する 請求の範囲第4項に請求の方法。 G 溜から送り出される反応剤の容積を、分離前に、反応剤が占める導管の長さ を測定することにより推定し、しかる後に前記容積を調節し、そして分離する請 求の範囲第4項に請求の方法。 7 溜から送り出される反応剤の容積ヲ、既仰距離にわたってピストンを動かす ことによってその容積を転置することにより、あるいは精密に検量較正されたポ ンプによって測定し、その後にその容積を分離する請求の範囲第4項に請求の方 法。 & 非混和性液体を、ろる別個の容積の反応剤が導管の開口を部分的にふさぐ1 で、移動させ、そのときにもう一つの別個の容積の反応剤をその開口から移動し て出させるがま、たはその開口中へ移動して入れるかして、それらの二つの別個 の容積が一緒に押圧され、かくして両者が合体するようにさせる請求の範囲第1 項に請求の方法。 9、 前記個々の容積の反応剤は懸濁状の微生物を含む請求の範囲第1項に請求 の方法。 10人面活性化学剤が前記化学反応剤中、または非混和性液体中、またはそれら の両者中に溶解されている請求の範囲第1項に請求の方法。 IL 二枚またはそれ以上の板を面対面で接触保持してなla る、化学反応剤同士を併合させるための装置であって、一枚またはそれ以上の板 が、他の板と係合されるべきその界面に一組のくぼみまたはチャンネル群を有し て複数の閉じだ導管が形成されるようにし、それらの導管は二またはそれ以上の 反応剤および不活性非混和性液体を含む複数の溜、ならびにそれら液体成分の移 動を生じさせ制御するための手段と連通し、それらの板は使用されるべき反応剤 に対して低親和性を示す表面を有し、かつそつの帯域を有し、そのような帯域は 化学反応剤の容積形成および合体を生じさせるものである、上記化学反応剤同志 を併合させるための装置。 12、前記導管は適当な形状に一組の管状要素を結合することにより構成される 請求の範囲第8項に請求の装置。 la T形またはY形に接合する三つの導管′(i−有し、これらの三つの導管 は非混和性液体のための複数の溜に結ばれており、6溜はその非混和性液体を移 動させるための手段を有し、かつそれらの導管のうちの−まだはそれ以上が複数 の反応剤のための溜と連通している請求の範囲第11または12項に請求の装置 。[Claims] 1. Two or more reactants in separate volumes of liquid form into one conduit system each volume of liquid is inert from the others and the undistributed reactants. The immiscible ratio of the liquids allows them to be separated and their reaction within the conduit system at knee measure the agent, and The flow of immiscible raw liquid and separate volumes of liquid reactants within said conduit system is predetermined. The separate volumes and volumes of liquids that have been mixed together are Eh, thus merging those reactants: A method of merging chemical reactants consisting of steps. 2. said separate volume of chemically reactive agent is smaller in relation to said conduit than said conduit; so small that it is possible to form substantially spherical drops with a small diameter. The method of claim in paragraph 1. − a. Said separate volumes of chemically reactive agents are narrowed by said conduits in relation to said conduits. The method as claimed in claim 1, wherein the method is as long as possible. The separate volumes of reactants are used to transport each chemical reactant from the reservoir through the opening to the top. initially into a conduit containing said carrier phase; Formed by moving a volume of reactant from the reactant in the reservoir. , and optionally throttling said opening thereby metering the reactant within the conduit system. The method claimed in Scope No. 1. 7 5 Assuming that the volume of the reactant sent out from the reservoir is in its original form, we can calculate the volume of the spherical Estimated by measuring the total diameter, then adjusting the volume and separating The method as claimed in claim 4. G. The volume of reactant delivered from the reservoir is determined by the length of the conduit occupied by the reactant before separation. estimate by measuring the volume, then adjust said volume, and separate the volume. Scope of Claim 4. The method as claimed in Item 4. 7. Move the piston over a predetermined distance to increase the volume of reactant pumped from the reservoir. by displacing its volume or by precisely calibrating the point. The claimed method in claim 4, in which the volume is measured by a pump and the volume is then separated Law. & A separate volume of reactant that filters the immiscible liquid partially blocks the opening of the conduit 1 and at the same time move another separate volume of reactant through the opening. These two separate parts can be separated by moving them into the opening, or by moving them into the opening. Claim 1 How to claim in section. 9. As claimed in claim 1, wherein said individual volumes of reactants contain suspended microorganisms. the method of. 10 surface-active chemical agents in said chemically reactive agents, or in immiscible liquids, or The method as claimed in claim 1, wherein the method is dissolved in both: IL: Hold two or more plates in contact with each other face-to-face. A device for merging chemically reacting agents, which consists of one or more plates. has a set of depressions or channels at its interface to be engaged with other plates. so that multiple closed conduits are formed, and those conduits have two or more Multiple reservoirs containing reactants and inert immiscible liquids and the transfer of those liquid components. The plates communicate with the means for producing and controlling the action of the reactants to be used. has a surface that exhibits a low affinity for The above-mentioned chemical reactants cause volume formation and coalescence of the chemical reactants. A device for merging. 12. The conduit is constructed by joining a set of tubular elements in a suitable shape. Apparatus as claimed in claim 8. la Three conduits' (i- have three conduits that join in T-shape or Y-shape is connected to multiple reservoirs for immiscible liquids, with six reservoirs for transferring the immiscible liquids. have means for moving the conduits; The apparatus as claimed in claim 11 or 12, in communication with a reservoir for a reactant of .
JP58500086A 1981-01-10 1982-11-09 chemical drug drop reactor Pending JPS59501994A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8100730 1981-01-10

Publications (1)

Publication Number Publication Date
JPS59501994A true JPS59501994A (en) 1984-11-29

Family

ID=10518913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58500086A Pending JPS59501994A (en) 1981-01-10 1982-11-09 chemical drug drop reactor

Country Status (5)

Country Link
EP (1) EP0124520A1 (en)
JP (1) JPS59501994A (en)
AU (1) AU1045983A (en)
GB (1) GB2097692B (en)
WO (1) WO1984002000A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340257A (en) * 2002-05-01 2003-12-02 Hewlett Packard Co <Hp> Mixer and mixing method
JP2005144356A (en) * 2003-11-17 2005-06-09 Tosoh Corp Micro flow path structure and method for producing fine particle using the same
JP2009291788A (en) * 2002-05-09 2009-12-17 Univ Of Chicago Device and method for transport and reaction by pressure-driven plug
JP2010523942A (en) * 2007-03-30 2010-07-15 富士フイルム株式会社 Microchannel cleaning method
JP6947463B1 (en) * 2020-04-08 2021-10-13 ビーエルテック株式会社 Flow analyzer and flow analysis method
WO2021205953A1 (en) * 2020-04-08 2021-10-14 ビーエルテック株式会社 Flow analysis device and flow analysis method

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK429682A (en) * 1982-09-28 1984-03-29 Inflow Aps INTEGRATED MICRO-ROOM SYSTEMS FOR CONTINUOUS FLOW ANALYSIS
US4683212A (en) * 1982-09-30 1987-07-28 Technicon Instruments Corporation Random access single channel sheath stream apparatus
CA1238900A (en) * 1982-11-15 1988-07-05 Stephen Saros Single channel continuous slug flow mixing of discrete fluid components
DE3577750D1 (en) * 1984-10-18 1990-06-21 Hewlett Packard Gmbh METHOD FOR TREATING A LIQUID IN A TUBE.
US4770653A (en) * 1987-06-25 1988-09-13 Medilase, Inc. Laser angioplasty
US4990459A (en) * 1988-04-25 1991-02-05 Kabushiki Kaisha Toshiba Impurity measuring method
DE59105165D1 (en) * 1990-11-01 1995-05-18 Ciba Geigy Ag Device for the preparation or preparation of liquid samples for chemical analysis.
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
DE19507638C2 (en) * 1995-03-04 1997-09-25 Danfoss As Analyzer
US5842787A (en) * 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
AU1874099A (en) * 1997-11-19 1999-06-07 Elena Gromakovskaja Device for sequential discharge of flowable reagents
US6085775A (en) * 1998-12-15 2000-07-11 Marconi Commerce Systems Inc. Convertible manifold for a fuel delivery system
FR2795476B1 (en) * 1999-06-22 2001-07-27 Biomerieux Sa VALVE FOR DIRECTING A FLUID IN AN ANALYSIS CARD
DE10002500A1 (en) * 2000-01-21 2001-07-26 Univ Albert Ludwigs Freiburg Capillary action mixer for mixing components which are analyzed during reaction, e.g. in DNA sequencing, uses capillary action to feed the reactants into the mixer
AU2001290879A1 (en) 2000-09-15 2002-03-26 California Institute Of Technology Microfabricated crossflow devices and methods
US7232109B2 (en) 2000-11-06 2007-06-19 California Institute Of Technology Electrostatic valves for microfluidic devices
TW593122B (en) * 2001-02-13 2004-06-21 Qinetiq Ltd Microchannel device
EP1447127B1 (en) * 2001-02-23 2007-07-04 Japan Science and Technology Agency Apparatus for producing emulsion
EP1741482B1 (en) * 2001-02-23 2008-10-15 Japan Science and Technology Agency Process and apparatus for producing microcapsules
EP1384022A4 (en) 2001-04-06 2004-08-04 California Inst Of Techn Nucleic acid amplification utilizing microfluidic devices
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
AU2002351187A1 (en) 2001-11-30 2003-06-17 Fluidigm Corporation Microfluidic device and methods of using same
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
AU2003224817B2 (en) 2002-04-01 2008-11-06 Fluidigm Corporation Microfluidic particle-analysis systems
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
JP2006507921A (en) 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Method and apparatus for fluid dispersion
WO2004028955A2 (en) 2002-09-25 2004-04-08 California Institute Of Technology Microfluidic large scale integration
AU2003299541A1 (en) 2002-10-02 2004-05-25 California Institute Of Technology Microfluidic nucleic acid analysis
US20100022414A1 (en) 2008-07-18 2010-01-28 Raindance Technologies, Inc. Droplet Libraries
US7041481B2 (en) 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
GB0307428D0 (en) 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
US7476363B2 (en) 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
EP1615721B1 (en) 2003-04-03 2014-06-18 Fluidigm Corporation Microfluidic devices and methods of using same
US20050145496A1 (en) 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
WO2004091763A2 (en) 2003-04-10 2004-10-28 President And Fellows Of Harvard College Formation and control of fluidic species
WO2004103565A2 (en) * 2003-05-19 2004-12-02 Hans-Knöll-Institut für Naturstoff-Forschung e.V. Device and method for structuring liquids and for dosing reaction liquids into liquid compartments immersed in a separation medium
WO2005010147A2 (en) * 2003-06-13 2005-02-03 The General Hospital Corporation Device and method for contacting pocoliter volumes of fluids
GB0315438D0 (en) * 2003-07-02 2003-08-06 Univ Manchester Analysis of mixed cell populations
US7413712B2 (en) 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
CN104069784B (en) 2003-08-27 2017-01-11 哈佛大学 electronic control of fluidic species
DE10360269A1 (en) * 2003-12-17 2005-07-28 Friedrich-Schiller-Universität Jena To mix fluids together in small volumes without mechanical movement e.g. at micro-titration plates, for analysis, a reagent is added with a lower surface tension and a high concentration gradient to generate a high heat of solution
US20050221339A1 (en) * 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
US7655470B2 (en) 2004-10-29 2010-02-02 University Of Chicago Method for manipulating a plurality of plugs and performing reactions therein in microfluidic systems
US9477233B2 (en) 2004-07-02 2016-10-25 The University Of Chicago Microfluidic system with a plurality of sequential T-junctions for performing reactions in microdroplets
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US20100137163A1 (en) 2006-01-11 2010-06-03 Link Darren R Microfluidic Devices and Methods of Use in The Formation and Control of Nanoreactors
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
WO2008063227A2 (en) 2006-05-11 2008-05-29 Raindance Technologies, Inc. Microfluidic devices
EP3536396B1 (en) 2006-08-07 2022-03-30 The President and Fellows of Harvard College Fluorocarbon emulsion stabilizing surfactants
WO2008097559A2 (en) 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
WO2008130623A1 (en) 2007-04-19 2008-10-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
DE102007032951B4 (en) 2007-07-14 2010-09-02 Karlsruher Institut für Technologie Apparatus and method for supplying a liquid flow from at least two liquid sections into a measuring cell
WO2009015390A2 (en) 2007-07-26 2009-01-29 University Of Chicago Co-incuating confined microbial communities
WO2009149257A1 (en) 2008-06-04 2009-12-10 The University Of Chicago The chemistrode: a plug-based microfluidic device and method for stimulation and sampling with high temporal, spatial, and chemical resolution
US9132394B2 (en) 2008-09-23 2015-09-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US8633015B2 (en) 2008-09-23 2014-01-21 Bio-Rad Laboratories, Inc. Flow-based thermocycling system with thermoelectric cooler
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
US8951939B2 (en) 2011-07-12 2015-02-10 Bio-Rad Laboratories, Inc. Digital assays with multiplexed detection of two or more targets in the same optical channel
US8709762B2 (en) 2010-03-02 2014-04-29 Bio-Rad Laboratories, Inc. System for hot-start amplification via a multiple emulsion
US9598725B2 (en) 2010-03-02 2017-03-21 Bio-Rad Laboratories, Inc. Emulsion chemistry for encapsulated droplets
US10512910B2 (en) 2008-09-23 2019-12-24 Bio-Rad Laboratories, Inc. Droplet-based analysis method
US11130128B2 (en) 2008-09-23 2021-09-28 Bio-Rad Laboratories, Inc. Detection method for a target nucleic acid
WO2011120006A1 (en) 2010-03-25 2011-09-29 Auantalife, Inc. A Delaware Corporation Detection system for droplet-based assays
US9492797B2 (en) 2008-09-23 2016-11-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US9764322B2 (en) 2008-09-23 2017-09-19 Bio-Rad Laboratories, Inc. System for generating droplets with pressure monitoring
US8663920B2 (en) 2011-07-29 2014-03-04 Bio-Rad Laboratories, Inc. Library characterization by digital assay
US9417190B2 (en) 2008-09-23 2016-08-16 Bio-Rad Laboratories, Inc. Calibrations and controls for droplet-based assays
WO2010111231A1 (en) 2009-03-23 2010-09-30 Raindance Technologies, Inc. Manipulation of microfluidic droplets
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
KR101702154B1 (en) 2009-03-24 2017-02-03 유니버시티 오브 시카고 Device for carrying out a reaction
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
US10196700B2 (en) 2009-03-24 2019-02-05 University Of Chicago Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes
EP2446278B1 (en) 2009-06-26 2021-11-17 President and Fellows of Harvard College Fluid injection
EP2473618B1 (en) 2009-09-02 2015-03-04 Bio-Rad Laboratories, Inc. System for mixing fluids by coalescence of multiple emulsions
WO2011042564A1 (en) 2009-10-09 2011-04-14 Universite De Strasbourg Labelled silica-based nanomaterial with enhanced properties and uses thereof
WO2011079176A2 (en) 2009-12-23 2011-06-30 Raindance Technologies, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
JP2013527022A (en) 2010-01-24 2013-06-27 インスチチュート・ケミィ・フィジズネジ・ポルスキージ・アカデミィ・ナウク System and method for automatic formation and manipulation of liquid mixtures.
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US8535889B2 (en) 2010-02-12 2013-09-17 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
JP2013524171A (en) 2010-03-25 2013-06-17 クァンタライフ・インコーポレーテッド Droplet generation for drop-based assays
JP6155419B2 (en) 2010-03-25 2017-07-05 バイオ−ラッド・ラボラトリーズ・インコーポレーテッド Droplet transport system for detection
EP2622103B2 (en) 2010-09-30 2022-11-16 Bio-Rad Laboratories, Inc. Sandwich assays in droplets
WO2012061444A2 (en) 2010-11-01 2012-05-10 Hiddessen Amy L System for forming emulsions
DE102010054879B4 (en) 2010-12-17 2013-07-18 Institut für Bioprozess- und Analysenmesstechnik e.V. Arrangement and method for conditioning fluid compartments
EP3859011A1 (en) 2011-02-11 2021-08-04 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
EP2675819B1 (en) 2011-02-18 2020-04-08 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
WO2012129187A1 (en) 2011-03-18 2012-09-27 Bio-Rad Laboratories, Inc. Multiplexed digital assays with combinatorial use of signals
CA2834291A1 (en) 2011-04-25 2012-11-01 Biorad Laboratories, Inc. Methods and compositions for nucleic acid analysis
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
DE202012013668U1 (en) 2011-06-02 2019-04-18 Raindance Technologies, Inc. enzyme quantification
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
CN106423314B (en) * 2011-09-28 2021-03-02 哈佛学院院长等 Systems and methods for droplet generation and/or fluid manipulation
EP2761306A4 (en) * 2011-09-30 2015-07-01 Univ British Columbia Methods and apparatus for flow-controlled wetting
WO2013155531A2 (en) 2012-04-13 2013-10-17 Bio-Rad Laboratories, Inc. Sample holder with a well having a wicking promoter
BR112015003354A8 (en) 2012-08-14 2018-01-16 10X Genomics Inc microcapsule methods and compositions
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9388465B2 (en) 2013-02-08 2016-07-12 10X Genomics, Inc. Polynucleotide barcode generation
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
CA2894694C (en) 2012-12-14 2023-04-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2014201196A2 (en) * 2013-06-14 2014-12-18 President And Fellows Of Harvard College Coalescence of droplets
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
WO2015157567A1 (en) 2014-04-10 2015-10-15 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
EP3889325A1 (en) 2014-06-26 2021-10-06 10X Genomics, Inc. Methods of analyzing nucleic acids from individual cells or cell populations
KR20170073667A (en) 2014-10-29 2017-06-28 10엑스 제노믹스, 인크. Methods and compositions for targeted nucleic acid sequencing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
EP3244992B1 (en) 2015-01-12 2023-03-08 10X Genomics, Inc. Processes for barcoding nucleic acids
EP4286516A3 (en) 2015-02-24 2024-03-06 10X Genomics, Inc. Partition processing methods and systems
MX2017010857A (en) 2015-02-24 2017-12-11 10X Genomics Inc Methods for targeted nucleic acid sequence coverage.
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
US10774370B2 (en) 2015-12-04 2020-09-15 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
TWI557163B (en) * 2015-12-15 2016-11-11 國立清華大學 Mold for microfluidic chips device
WO2017138984A1 (en) 2016-02-11 2017-08-17 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
US11029293B2 (en) * 2016-10-18 2021-06-08 Institut National D'optique Method and system for the detection of a chemical species in solution
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP4029939B1 (en) 2017-01-30 2023-06-28 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
CN110945139B (en) 2017-05-18 2023-09-05 10X基因组学有限公司 Method and system for sorting droplets and beads
CN116064732A (en) 2017-05-26 2023-05-05 10X基因组学有限公司 Single cell analysis of transposase accessibility chromatin
US10844372B2 (en) 2017-05-26 2020-11-24 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US20190064173A1 (en) 2017-08-22 2019-02-28 10X Genomics, Inc. Methods of producing droplets including a particle and an analyte
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
WO2019083852A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Microfluidic channel networks for partitioning
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods and systems for nuclecic acid preparation and chromatin analysis
EP3700672B1 (en) 2017-10-27 2022-12-28 10X Genomics, Inc. Methods for sample preparation and analysis
EP3625361A1 (en) 2017-11-15 2020-03-25 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
EP3752832A1 (en) 2018-02-12 2020-12-23 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
CA3095588A1 (en) 2018-04-02 2019-10-10 Dropworks, Inc. Systems and methods for serial flow emulsion processes
WO2019195166A1 (en) 2018-04-06 2019-10-10 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
WO2020168013A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
EP3938537A1 (en) 2019-03-11 2022-01-19 10X Genomics, Inc. Systems and methods for processing optically tagged beads
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
EP3950772A1 (en) 2020-08-05 2022-02-09 Emulseo SAS Novel fluorosurfactants and uses thereof in microfluidics
AU2022227563A1 (en) 2021-02-23 2023-08-24 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
CN114700004B (en) * 2022-05-20 2023-06-02 东莞理工学院 Soap film type micro-chemical reactor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK150802C (en) * 1974-09-16 1988-02-01 Bifok Ab METHOD AND APPARATUS FOR CONTINUOUS HIGH-SPEED ANALYSIS OF A LIQUID TEST IN A BEARING FLOW
US4130394A (en) * 1977-10-03 1978-12-19 Technicon Instruments Corporation Short sample detection
US4210809A (en) * 1979-03-16 1980-07-01 Technicon Instruments Corporation Method and apparatus for the non-invasive determination of the characteristics of a segmented fluid stream
US4315754A (en) * 1979-08-28 1982-02-16 Bifok Ab Flow injection analysis with intermittent flow
US4253846A (en) * 1979-11-21 1981-03-03 Technicon Instruments Corporation Method and apparatus for automated analysis of fluid samples
DE3168903D1 (en) * 1980-08-28 1985-03-28 Du Pont Flow analysis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340257A (en) * 2002-05-01 2003-12-02 Hewlett Packard Co <Hp> Mixer and mixing method
JP4610864B2 (en) * 2002-05-01 2011-01-12 ヒューレット・パッカード・カンパニー Mixing apparatus and mixing method
JP2009291788A (en) * 2002-05-09 2009-12-17 Univ Of Chicago Device and method for transport and reaction by pressure-driven plug
JP2011212679A (en) * 2002-05-09 2011-10-27 Univ Of Chicago Device and method for pressure-driven plug transport and reaction
JP2012254452A (en) * 2002-05-09 2012-12-27 Univ Of Chicago Device and method for pressure-driven plug transport and reaction
JP2015024406A (en) * 2002-05-09 2015-02-05 ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago Device and method for conveyance and reaction by pressure driving plug
JP2017104863A (en) * 2002-05-09 2017-06-15 ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago Device and method for pressure-driven plug transport and reaction
JP2005144356A (en) * 2003-11-17 2005-06-09 Tosoh Corp Micro flow path structure and method for producing fine particle using the same
JP2010523942A (en) * 2007-03-30 2010-07-15 富士フイルム株式会社 Microchannel cleaning method
JP6947463B1 (en) * 2020-04-08 2021-10-13 ビーエルテック株式会社 Flow analyzer and flow analysis method
WO2021205953A1 (en) * 2020-04-08 2021-10-14 ビーエルテック株式会社 Flow analysis device and flow analysis method
US11906407B2 (en) 2020-04-08 2024-02-20 Bl Tec K.K. Flow analysis device and flow analysis method

Also Published As

Publication number Publication date
EP0124520A1 (en) 1984-11-14
GB2097692A (en) 1982-11-10
WO1984002000A1 (en) 1984-05-24
GB2097692B (en) 1985-05-22
AU1045983A (en) 1984-06-04

Similar Documents

Publication Publication Date Title
JPS59501994A (en) chemical drug drop reactor
EP1928571B1 (en) Device and method for microfluidic control of a first fluid in contact with a second fluid, wherein the first and second fluids are immiscible
US6893547B2 (en) Apparatus and method for fluid injection
US6866762B2 (en) Dielectric gate and methods for fluid injection and control
KR100451154B1 (en) Method for handling fluid in substrate and device for it
EP2061598B1 (en) Method for sampling flowable materials
EP1972374B1 (en) Microfluidic device and analyzing device using the same
JP2018511779A (en) Microfluidic probe head for supplying an array of individual liquid volumes separated by spacers
AU2016337312A1 (en) Microfluidic arrangements
JPH11508182A (en) Microfabricated differential extraction device and method
US7404930B2 (en) Method and system for performing in continuous flow a biological, chemical or biochemical protocol
JP6931540B2 (en) Liquid feeding method using a sample processing chip, liquid feeding device for a sample processing chip
US20160310947A1 (en) Controlling fluid micro-compartments
Vykoukal et al. A programmable dielectrophoretic fluid processor for droplet-based chemistry
CN110369011A (en) Micro liquid transfer device, control equipment and control method based on hydraulic-driven
Giridharan et al. Computational simulation of microfluidics, electrokinetics, and particle transport in biological mems devices
JP2003200041A (en) Device for injecting various reactants successively and synchronously in parallel
CN113588896A (en) Micro-channel device and method for establishing high-flux programmable multi-concentration medicine
JP2004157097A (en) Liquid control mechanism
De Mello et al. Chip technology for micro-separation
Daïeff Confined particles in microfluidic devices: a review
Lee et al. Biochemical Reaction on A Chip Using A Quantitative Volume Control