JPS5949742A - Apparatus for detecting exhalation force - Google Patents

Apparatus for detecting exhalation force

Info

Publication number
JPS5949742A
JPS5949742A JP16104082A JP16104082A JPS5949742A JP S5949742 A JPS5949742 A JP S5949742A JP 16104082 A JP16104082 A JP 16104082A JP 16104082 A JP16104082 A JP 16104082A JP S5949742 A JPS5949742 A JP S5949742A
Authority
JP
Japan
Prior art keywords
output
circuit
microphone
plosive
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16104082A
Other languages
Japanese (ja)
Inventor
門脇 伸壽
村田 程夫
義則 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16104082A priority Critical patent/JPS5949742A/en
Publication of JPS5949742A publication Critical patent/JPS5949742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ry’r::業上の利用分野 本発明に発話に伴なうL1気流に対応する(N −41
4,(以1;、呼気力信刊と称す。)を検出する装置に
関するものである。
[Detailed description of the invention] ry'r:: Field of industrial use Corresponding to the L1 airflow accompanying speech (N -41
4, (hereinafter referred to as 1; exhalation force shinkan).

従来例の構成とその問題点 従来、発話に伴なう口気流の検出装置としては例えば、
榛細の白金線を検出部として用いた熱線式の流速側等が
あシ、口の前方の気流の速度を測定し電気信号を出力す
るものである。しかしながら、この流速側は構造が複雑
であり高価である。
Configuration of conventional example and its problems Conventionally, as a detection device for oral airflow accompanying speech, for example,
It uses a hot wire type flow velocity side that uses a thin platinum wire as the detection part, and measures the velocity of the air flow in front of the mouth and outputs an electrical signal. However, this flow rate side has a complicated structure and is expensive.

まだ、大型であるだめ5発話に伴なう口気流を検出する
際、口の前力に配置された検出部によりわずられしさを
感じる等の問題等があった。
However, there are still problems such as the detection part placed in the front of the mouth making it feel cumbersome when detecting the oral airflow associated with speech.

ところて、安価て小型のコンテンザマイクロホンを1」
の前方に配置することにより、発話に伴なう[−1気流
に対応する呼気力信号を出力としてfl)られることが
実験により確かめられた。しかしながら、このコンプン
サマイクロホンを取シ巻<室内の周囲雑音等により、コ
ンテンサマイクロボンは数十Hz以下の低周波成分を多
くイjする電圧変動を発生する。従って、全話語や発話
の仕方により、例えば、破裂音を含む栄2語を弱く発声
した用台、ときに破裂音時の呼気力信号は前記電圧変動
内に埋もれてしまうことがあり、コンデンザマイクロホ
ンで呼気力信号を検出することができなくなるという問
題が明らかとなった。
By the way, I have a cheap and small contenza microphone.
It has been experimentally confirmed that by placing the expiratory force signal in front of the speaker, an expiratory force signal corresponding to [-1 airflow fl) accompanying speech can be outputted. However, due to ambient noise surrounding the condenser microphone in the room, the condenser microphone generates voltage fluctuations that include many low frequency components of several tens of Hz or less. Therefore, depending on the whole language and the way it is uttered, for example, if the two words containing a plosive are weakly uttered, the expiratory force signal at the time of the plosive may be buried within the voltage fluctuation, and the condenser A problem was identified in which the microphone could no longer detect the expiratory force signal.

本発明の目的 本発明の目的は周囲性1音等の影響にかかわらず、発話
に伴なう呼気力信号を確実、簡便に検出する呼気力検出
装置を扶供することである。
OBJECTS OF THE INVENTION An object of the present invention is to provide an expiratory force detection device that reliably and easily detects an expiratory force signal accompanying speech, regardless of the influence of ambient sounds and the like.

発明の構成 本発明の呼気力検出装置は、1]の前方に配置された第
1のマイクロホンとは別に、第2のマイクロボンを発話
に伴なう「1気流が影響しない位置に配置し、演算回路
により第1のマイクロホンの出力信号より第2のマイク
ロホンの出力信号を減容。
Composition of the Invention The exhalation force detection device of the present invention has a second microphone placed in front of the first microphone, and a second microphone placed in a position where the air flow accompanying speech does not affect the sound. The arithmetic circuit reduces the output signal of the second microphone from the output signal of the first microphone.

するように構成したものであり、マイク1−、ンを取り
巻く室内の周囲雑音等の影響をうけることなく発話に伴
なう呼気力を確実、簡便に検出することができるもので
ある。
This configuration allows the exhalation force associated with speech to be detected reliably and easily without being affected by ambient noise in the room surrounding the microphones 1-, 1-, 2-, etc.

実施例の説明 以ト、本発明の実施例について図面とともに説明する。Description of examples Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の呼気力検出装置を用いた破裂音抽出部
ろ゛の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing one embodiment of a plosive sound extraction section using the expiratory force detection device of the present invention.

第1図において、1は発話に伴なう呼気力信号と音声の
音圧を検出する第1コンデンザマイクロボンであ地風防
部分を取り除き発話者の口の前方に配置される。2は第
1コンテンサマイクロホント同等の第2コンテンザマイ
クロホンて゛あり、発話に伴なう口気流か影響しないよ
うに配置件される。
In FIG. 1, reference numeral 1 denotes a first condenser microbond for detecting an expiratory force signal and sound pressure of voice accompanying speech, and is placed in front of the speaker's mouth with the ground windshield removed. Reference numeral 2 denotes a second condenser microphone equivalent to the first condenser microphone, which is arranged so as not to affect the oral air flow accompanying speech.

3 ii: 第1コンテンザマイクロホン1の出力信号
1り第2コンテンザマイクロホン2の出力信”i ヲ’
61’j。
3 ii: Output signal 1 of the first contenza microphone 1 and output signal of the second contenza microphone 2 "i wo"
61'j.

qする減幻回路である。なお、減麹回路3ば、第2コン
デンザマイクロホン2の出力係号を反転するイン・・−
夕と加算回路で構成することもてきる84は減9回路3
の出力信号より破裂音のみを検出する破裂音抽出部であ
る。41−減發回路3の出力信号の低周波成分のみを通
過させるローパスフィルタであり、例えば遮断周波数2
00Hz−減衰傾度12dB10ct程度のアクティブ
フィルりでlt+)成される。42はe、!4−回路3
の出力信号の高周波成分のみを通過さぜるノ・イパスフ
ィルタてあり。
It is a subtraction circuit that does q. In addition, the koji reduction circuit 3 has an inverter for inverting the output coefficient of the second condenser microphone 2.
84 can also be composed of a subtraction circuit and an addition circuit.
This is a plosive extractor that detects only plosives from the output signal of the plosive. 41 - A low-pass filter that passes only the low frequency components of the output signal of the reduction circuit 3, for example, a cutoff frequency of 2
lt+) is achieved by an active fill of about 00 Hz-attenuation slope of 12 dB and 10 ct. 42 is e! 4-Circuit 3
Equipped with a no-pass filter that passes only the high frequency components of the output signal.

例えば遮断周波数300 Hz、減衰傾度12dB10
ct程度のアクティブフィルタで構成される。43d、
このバイパスフィルタ42の出力信゛号のパワーを検出
するパワー検出回路であり、例えば2乗回路舌を用いて
構成されるが、全波まだは半波整流回路等で代用すると
ともできる。44はこのパワー検出回路43の出力信刊
を積分する積分回路であり、例えば−次おくれ回路等が
用いられる。45はこの積分回路44の出力が犬なる時
、ローパスフィルタ41の出力を小とする処」里回路で
ありy例えば電圧制御tj■変利得増幅回路、割a回路
等で構成さノLる。さらKはゲート回路を用いることも
できる。
For example, cutoff frequency 300 Hz, attenuation slope 12 dB10
It consists of an active filter of about ct. 43d,
This is a power detection circuit that detects the power of the output signal of the bypass filter 42, and is configured using, for example, a square circuit, but it may be replaced with a full-wave or half-wave rectifier circuit. Reference numeral 44 denotes an integrating circuit that integrates the output signal of the power detection circuit 43, and for example, a negative second delay circuit or the like is used. 45 is a circuit that reduces the output of the low-pass filter 41 when the output of the integrating circuit 44 is negative, and is composed of, for example, a voltage control circuit, a variable gain amplifier circuit, a divider circuit, etc. Furthermore, a gate circuit can also be used for K.

第2図(イ)〜(グ→及び第3図(イ)〜(ブう(は第
1図Pこ71<シた破裂音抽出装丁rlの各部の信号波
形を示すものであり、第2図は破裂音、第3図は無声摩
擦音を含む中語を弱く発話し/ζ場合をそitそれ示し
ている。
Figures 2 (a) to (g) and Figure 3 (a) to (buu) show the signal waveforms of each part of the plosive sound extraction binding rl in Figure 1. The figure shows a weak utterance of a middle word containing a plosive, and Figure 3 shows a weakly uttered middle word containing a voiceless fricative.

第2図及び第3図において、波形A、aはそれぞオを破
裂音を含むll/rにj(と無声摩擦音を含む?V詔の
音声波形の代表例を表わし、波形B、bは第1図に示す
第1コンテンザマイクロホン1の出力信号を、波形G、
cは第2コンテンザマイクロホン2の出力信号を、波形
り、dは誠譜回路3の出力信号を、波形Jeはローパス
フィルタ41の出力信号を、波形F、fは]・イパスフ
ィルタ42の出力信号を、波形Cr、qは積分回路44
の出力係号を、波形H,hは処理回路45の出力波形を
それぞれ表わす。
In Figures 2 and 3, waveforms A and a represent typical examples of the speech waveforms of o, ll/r including plosives, j (and voiceless fricatives), and waveforms B and b respectively The output signal of the first contenza microphone 1 shown in FIG.
c is the output signal of the second contenza microphone 2; d is the output signal of the Seifu circuit 3; waveform Je is the output signal of the low-pass filter 41; waveform F, f is the output of the I-pass filter 42; The signal, waveform Cr, q is the integration circuit 44
The waveforms H and h represent the output waveforms of the processing circuit 45, respectively.

以北のような構成において、破裂音、例えば/に/ を
含む単語「あか/aka/Jを弱く発話した鳩舎、口の
前方に配置された第1コンテンサマイクロホン1は第2
図(ロ)に示すようなど成形Bを出力として生じる。
In a configuration like the one above, the first condenser microphone 1 placed in front of the pigeon's mouth is the second
Forming B is produced as an output as shown in Figure (b).

この出力波形Bは第1コンテンサマイクロホン1を取り
巻く室内の周囲雑音等により生じる出力、いわゆる電圧
変動と、口気流により生じる出力、すなわち呼気力信号
と、発話時の空気振動に基づく音L1.により生じる出
力とが邦貨さノ上だものである。すなわち、前記したよ
うに破裂時の呼気力信号が電圧変動に埋もfしてし甘い
、特JljS的に]1丁気力信号の検出が回灯な出力波
形となっている。
This output waveform B includes an output caused by ambient noise in the room surrounding the first condenser microphone 1, so-called voltage fluctuation, an output caused by mouth airflow, that is, an expiratory force signal, and a sound L1. The output produced by this is equivalent to Japanese currency. That is, as described above, the expiratory force signal at the time of rupture is easily submerged by voltage fluctuations, and the detection of the expiratory force signal has a round output waveform.

一方、発話に伴なう口気流が影響しないように配置され
た第2コンデンサマイクロホン2は第2図0→に示すよ
うな波形Cを出力として生じる、この出力波形Cは第2
コンデンーリマイクロホン2を取り巻く室内の周囲雑音
等により生じる出力、いわゆる電圧変動と、発話時の空
気撮動に基づく宵月によシ生じる出力とが重信、された
ものである。
On the other hand, the second condenser microphone 2, which is arranged so as not to be affected by the oral airflow associated with speech, outputs a waveform C as shown in FIG.
The outputs generated by ambient noise in the room surrounding the condenser microphone 2, so-called voltage fluctuations, and the outputs generated by Yozuki based on the aerial photography during speech are considered to be important.

ここで1発話しない場合における第1コンテンザマイク
ロホン1と第2コンデンザマイクロホン2の出力信号は
、第2N−)、(ハ)に示すように同相。
Here, when no utterance is made, the output signals of the first condenser microphone 1 and the second condenser microphone 2 are in phase as shown in 2nd N-) and (C).

同しベル電用であることが実験で確かめらhノこ。It has been confirmed through experiments that it is the same one for Bell Den.

従って、第1コンテンザマイクロホン1の出力信号から
第2コンデンサマイクロホン2の出力信号を減算するよ
うな演算回路3よシ第2図に)に示すような波形りを出
力として得ることができる。
Therefore, the arithmetic circuit 3 that subtracts the output signal of the second condenser microphone 2 from the output signal of the first condenser microphone 1 can obtain a waveform as shown in FIG. 2 as an output.

この出力信号は周囲’Ai音等にょシ生じる出力、いわ
ゆる電圧変動のない呼気力信号である。
This output signal is an output generated by ambient sounds, etc., and is a so-called exhalation force signal without voltage fluctuation.

同様に、χlI+;声摩擦音、例えば/Φ/を含む坪語
1あふ(/aΦU/)」を弱く発話したj場合、第1コ
ンデンザマイクロホン1は第3図(ロ)に示すような波
形すを出力として生じる。
Similarly, when a user weakly utters χlI+; a vocal fricative, for example, "Tsubogo 1 afu (/aΦU/) containing /Φ/", the first condenser microphone 1 produces a waveform as shown in FIG. 3 (b). is produced as output.

また、第2コンデンザマイクロホン2は第3図(ハ)に
示すような波形Cを出力とじて生じる。従って、69回
路3よシ第3図に)に示すような波形dを出力として得
ることかで・きる。
Further, the second condenser microphone 2 outputs a waveform C as shown in FIG. 3(c). Therefore, the 69 circuit 3 can obtain a waveform d as shown in FIG. 3 as an output.

以」二のようにコンテンサマイクロボンを取す巻く室内
の周囲雑音等にかかわらず、−1だ、発話詔や発話の仕
方に関係なく1発話に伴なう呼気力信号を6′6′実、
簡便で検出することができる。
As shown in Figure 2, regardless of the ambient noise in the room surrounding the condenser microphone, it is -1, and the expiratory force signal associated with one utterance is 6'6', regardless of the utterance or the manner of utterance. fruit,
It is easy to detect.

さ1しに、破裂音発話時の++f気力信号は、非破裂音
発話時の緩慢な小さい呼気力信号に対し、立」二りの鋭
い大きなパルス状を呈し、これに対応してローパスフィ
ルタ4コの出力も代表的には第2図(ホ)K示すような
パルス状の波形Eとなり、一般の非破裂音発話時にロー
パスフィルタ41の出力が殆ど、生じないのに対し明ら
かに区別される。
First, the ++f force signal when a plosive is uttered has a sharp large pulse shape, compared to the slow and small expiratory force signal when a non-plosive is uttered, and the low-pass filter 4 corresponds to this. The output of E also typically has a pulse-like waveform E as shown in Figure 2 (E) K, which is clearly distinguishable from the output of the low-pass filter 41 which hardly occurs during general non-plosive utterances. .

しかしながら、非破裂音のうちの無声摩F 、74、!
目に/Φ/の発話時には速度の早い動揺性の呼気力信号
を生じるだめ、ローパスフィルタ41の出力波形が破裂
音のそれと区別しにくくなる。すなわち、第3図は無声
摩擦音、特に/Φ/を含むt、i′1語1−あふ(/a
ΦU/)」を弱く発話した」易企てあり、ローパスフィ
ルタ41の出力は波形eのようVこ、第2図(ホ)に示
すような破裂音に対する波形Eと区別がつきにくくなり
、ローパスフィルタ41の出力のみでケよ1確な破裂高
の抽出が困蕪゛Cある。
However, voiceless F of non-plosive sounds, 74,!
When the word /Φ/ is uttered, a fast and oscillating expiratory force signal is generated, making it difficult to distinguish the output waveform of the low-pass filter 41 from that of a plosive. That is, Figure 3 shows the unvoiced fricatives, especially t, i'1 words 1-af (/a
The output of the low-pass filter 41 becomes difficult to distinguish from the waveform E for plosives as shown in Figure 2 (e), and the low-pass It is difficult to accurately extract the burst height using only the output of the filter 41.

これに対し、実験の結果、次の点が明らかとなった。即
チ、破裂音の場合のローパスフィルタ41の出力は破裂
がはじまった直後に生じるのに苅し、無声摩擦音、特に
/Φ/の場合のローパスフィルタ41の出力は摩擦の開
始時点よりがなりの後。
On the other hand, as a result of experiments, the following points became clear. In other words, the output of the low-pass filter 41 in the case of a plosive occurs immediately after the plosive begins, and the output of the low-pass filter 41 in the case of a voiceless fricative, especially /Φ/, occurs at a later point than the beginning of the fricative. rear.

多くは摩擦音区間の中火附近で牛しること、寸だ、破裂
音−の」場合のバイパスフィルタ42の出力に、第2図
(へ)に示すように破裂時点より以降の期間に生じるが
、一方、り1((声摩擦音、特に/Φ/の場合には第3
図(へ)に示すように摩擦全区間にゎだりイ1.じ、こ
の成分に摩擦による高声の音圧によるものの他、第1コ
ンテンザマイクロホン1の振動膜が1−1気流によりシ
ンダノ・に偏位ぜられることにより生じるものから成っ
ている、 ?t’fi−で、破裂音、無声摩擦音を発話しノこ時の
積分回路44の出力は、そILぞれ第2図(ト)、第3
図(ト)に示ずような波形G、qになる。す々ゎち、ロ
ー ハス7 、fルノ41に大きな出力を生しる時点で
の4:li分回路44の出力は破裂音に対し、;if!
l−声摩擦i7,1111′V?X遥かに犬となる。故
にこの積分回路44の出力によりローパスフィルタ41
の出力か小となるようにすれば、破裂音及び無声I9擦
音、行に/Φ/に対して、処理回路45の出力ばそれぞ
)を第2図ヴ→、第3四例に示ずような波形H,hとな
る。図より明らかなように、処理回路45より破裂1等
の場合には、JBr、声摩擦音の場合ンこ対し、電11
′変動のない届かに犬なるパルス出力がfl)らえり、
フイ11「声摩擦7′Aとの区別をIL僅に行ない1(
)るリアルタイツ・ての破裂音抽出装置か実現できる。
Most of the noises occur in the output of the bypass filter 42 in the case of ``sounds, plosives, and plosive sounds near medium heat in the fricative sound section,'' as shown in FIG. , while ri1 ((vocal fricative, especially /Φ/, the third
As shown in the figure (f), there is a difference in the entire friction section.1. Similarly, in addition to the sound pressure of high-pitched voices due to friction, this component also includes a component caused by the vibration membrane of the first contenza microphone 1 being deflected in a syndano direction by the 1-1 airflow. The outputs of the integrating circuit 44 when uttering a plosive and a voiceless fricative at t'fi- are shown in FIGS. 2 (g) and 3, respectively.
The waveforms G and q will be as shown in the figure (G). Susuwachi, the output of the 4:li branch circuit 44 at the time when it produces a large output on the Rohas 7 and f Luno 41 is against the plosive sound; if!
l-Voice friction i7, 1111'V? X Haruka becomes a dog. Therefore, the output of this integrating circuit 44 causes the low-pass filter 41 to
If the output of the processing circuit 45 is made small, the output of the processing circuit 45 for the plosive and the unvoiced I9 fricative, and /Φ/ in the line, respectively) are shown in Figure 2 V → and Example 34. This results in similar waveforms H and h. As is clear from the figure, the processing circuit 45 determines that JBr is the case for rupture 1, while for the voice fricative it is
'A dog pulse output fl) is received without fluctuation,
Fi 11 ``IL slightly distinguishes it from voice friction 7'A 1 (
) It is possible to realize a plosive sound extraction device using real tights.

なおン本−)−r IA例にお“ては破裂音抽出装置r
5,1に適用し70例を示しだが、こノ′1.に限るも
のQ(rl、なく本発明の呼気力検出装置は摩擦音検出
装置バ、ハ行γ1検出装尚′なとに適用することもi−
+J能である。
Naonhon-)-r In the case of IA, there is a plosive extraction device.
5.1 and showed 70 examples, but this '1. The expiratory force detection device of the present invention may be applied to a friction sound detection device, a γ1 detection device, etc.
+J Noh.

まだ、本実施例においては第1コンテンザマイクロボン
は1個であったが、[ニ1の前刃に複数のコンテンサマ
イ/70ホンを配置し、これう各コンテンザマイクロホ
ンの出力信号から第2コンデンザマイクロボンの出力信
号を減算するようにしてもよい。
In this embodiment, there was only one first contenza microphone, but a plurality of contenza microphones/70 microphones were arranged on the front blade of 2, and the second contenza microphone was The output signal of the condenser microbond may be subtracted.

発明の効果 以」二の説明から明らかなように、本発明による呼気力
検出装置は、センサーとして2個の同等のコンテンザマ
イクロホンを用いるのみてよく、回路も簡単であるので
、安価、小型でかつ装置を節部になし尚るとともに、周
囲有1音等にか力・わらず、確実、リアルタイムでの呼
気力信号の検出かり能である。
As is clear from the explanation in ``Effects of the Invention'', the expiratory force detection device according to the present invention only needs to use two equivalent condenser microphones as sensors, and the circuit is simple, so it is inexpensive and small. In addition, the device is not attached to the joint, and the expiratory force signal can be detected reliably and in real time regardless of the presence of surrounding sounds or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の呼気力検出装置を用いた破裂音抽出装
置の一実施例を示すブロック図、第2図(イ)〜(ホ)
、第3図(イ)〜(力は同装置の構成各部の信号波形図
である。 1・・・・・・第1コンテンサマイクロホンー2・・・
・・・第2コンテンザマイクロホン、3・・・・・・6
1回路。 將8′「出願人  工業技術院長  石 坂 誠 −第
2図 α   ktl / (へ) 第3図 7.7f
FIG. 1 is a block diagram showing an embodiment of a plosive sound extraction device using the expiratory force detection device of the present invention, and FIG. 2 (A) to (E)
, Fig. 3(A) - (The figures are signal waveform diagrams of each component of the device. 1...First condenser microphone-2...
...Second contenza microphone, 3...6
1 circuit. Sho 8' Applicant Makoto Ishizaka, Director General of the Agency of Industrial Science and Technology - Figure 2 α ktl / (to) Figure 3 7.7f

Claims (1)

【特許請求の範囲】[Claims] 口の前力に配置された第1のマイクロホンと、第1のマ
イクロポンと同等で、かっ、発話に伴なう[コ気流が影
響しないように配置された第2のマイクロポンと、前記
第1のマイクロホンの出力信号より第2のマイク「コポ
ンの出力信号を減毅する減切回路とを(iteiえ、前
記減貌゛回路の出カイ菖号より発話時の口気流に対応す
る呼気力信号を検出することを特徴とする呼気力検出装
置。
A first microphone placed at the front of the mouth; A reduction circuit that reduces the output signal of the second microphone from the output signal of the first microphone is used. An expiratory force detection device characterized by detecting a signal.
JP16104082A 1982-09-17 1982-09-17 Apparatus for detecting exhalation force Pending JPS5949742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16104082A JPS5949742A (en) 1982-09-17 1982-09-17 Apparatus for detecting exhalation force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16104082A JPS5949742A (en) 1982-09-17 1982-09-17 Apparatus for detecting exhalation force

Publications (1)

Publication Number Publication Date
JPS5949742A true JPS5949742A (en) 1984-03-22

Family

ID=15727449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16104082A Pending JPS5949742A (en) 1982-09-17 1982-09-17 Apparatus for detecting exhalation force

Country Status (1)

Country Link
JP (1) JPS5949742A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118784A (en) * 1985-11-18 1987-05-30 Oki Electric Ind Co Ltd Speed controller for dc motor
WO2005034750A1 (en) * 2003-10-07 2005-04-21 Olympus Corporation Sleep aspiration state measurement device
US7182050B2 (en) 2002-01-31 2007-02-27 Mazda Motor Corporation Control device for spark-ignition engine
US7219634B2 (en) 2002-01-31 2007-05-22 Mazda Motor Corporation Spark ignition engine control device
JP2016042162A (en) * 2014-08-19 2016-03-31 大学共同利用機関法人情報・システム研究機構 Living body detection device, living body detection method, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155400A (en) * 1979-05-24 1980-12-03 Nissan Motor Voice detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155400A (en) * 1979-05-24 1980-12-03 Nissan Motor Voice detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118784A (en) * 1985-11-18 1987-05-30 Oki Electric Ind Co Ltd Speed controller for dc motor
US7182050B2 (en) 2002-01-31 2007-02-27 Mazda Motor Corporation Control device for spark-ignition engine
US7219634B2 (en) 2002-01-31 2007-05-22 Mazda Motor Corporation Spark ignition engine control device
WO2005034750A1 (en) * 2003-10-07 2005-04-21 Olympus Corporation Sleep aspiration state measurement device
JP2016042162A (en) * 2014-08-19 2016-03-31 大学共同利用機関法人情報・システム研究機構 Living body detection device, living body detection method, and program

Similar Documents

Publication Publication Date Title
US7499553B2 (en) Sound event detector system
US10176824B2 (en) Method and system for consonant-vowel ratio modification for improving speech perception
JPS5949742A (en) Apparatus for detecting exhalation force
CN114586095A (en) Real-time speech detection
JP2010175465A (en) Speaker direction estimation device
JPS6329759B2 (en)
JPS6258519B2 (en)
JPH036519B2 (en)
JPS63163494A (en) Intensity detector
JPS58150997A (en) Speech feature extractor
Vijayendra et al. Word boundary detection for Gujarati speech recognition using in-ear microphone
JPS58120300A (en) Plosive extractor
JPS6260716B2 (en)
JPH0139120B2 (en)
JPS58223190A (en) Plosive identifier
JPS59202500A (en) Explosive sound detector
JPS59149399A (en) Consonant sorter
JPS6039700A (en) Detection of voice section
JPS61149999A (en) Inhaling force detector
JPS6029796A (en) Voice recognition equipment
JPS6355280B2 (en)
JPS6331794B2 (en)
JPS636600A (en) Nasal detector
JPS60194500A (en) Frictivity detector
JP2006325076A (en) Microphone for learning