JPS5948822A - Vertical magnetic recording medium and its production - Google Patents

Vertical magnetic recording medium and its production

Info

Publication number
JPS5948822A
JPS5948822A JP57158096A JP15809682A JPS5948822A JP S5948822 A JPS5948822 A JP S5948822A JP 57158096 A JP57158096 A JP 57158096A JP 15809682 A JP15809682 A JP 15809682A JP S5948822 A JPS5948822 A JP S5948822A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic recording
perpendicular magnetic
antiferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57158096A
Other languages
Japanese (ja)
Inventor
Yasutaro Kamisaka
保太郎 上坂
Hideo Fujiwara
英夫 藤原
Sadao Hishiyama
菱山 定夫
Kazuo Shiiki
椎木 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP57158096A priority Critical patent/JPS5948822A/en
Priority to US06/513,422 priority patent/US4621030A/en
Priority to DE8383107031T priority patent/DE3377829D1/en
Priority to EP83107031A priority patent/EP0099564B1/en
Publication of JPS5948822A publication Critical patent/JPS5948822A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/676Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a vertical magnetic recording medium of high characteristics which enables the reduction in recording current, has a large S/N and is free from spike noise by providing a thin film having high magnetic permeability, a film of a antiferromagnetic material, a film having high magnetic permeability and a vertically magnetized film in this order on a substrate. CONSTITUTION:A thin film having high magnetic permeability such as Ni80Fe20, a thin film of an anti-ferromagnetic material such as Fe50Mn50, and a thin film having high magnetic permeability such as Co80Mo9.5Zr10.5 are formed successively on an annular non-magnetic substrate, whereafter a vertically magnetized film is formed of an alloy such as Co80Cr20 thereon to 0.03-0.3mu thickness. Since the thin film of the anti-ferromagnetic material is provided between the thin films having high magnetic permeability, the generation of spike noise is eliminated and the excellent vertical magnetic recording medium having a high S/N with the decreased current necessary for recording is obtd. If an amorphous metallic film is used for the film having high magnetic permeability on the antiferromagnetic layer, better performance is obtd. The higher S/N is obtainable by applying a magnetic field in the transverse direction of tracks in the stage of forming the respective magnetic layers. The much higher S/N is obtainable if the entire part is heat treated in a vacuum or inert gas or reducing gas kept a 350- 550 deg.C after the formation of the vertically magnetized film by using both upper and lower film having high magnetic permeability of which the Curie point is higher than the heat treatment temp. and the anti-magnetic material film of which the Neel temp. is higher than said heat treatment temp.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、垂直磁気記録媒:j(に−ひいてイ吏用する
磁気記録媒体に関するもぐ)である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a magnetic recording medium for use in perpendicular magnetic recording media.

〔従来技術〕[Prior art]

垂直磁気記録方式は、磁気テープ、−気ディスク等の磁
気記録媒体の走行方向とn;fffブj1右1、すなわ
ち、磁気記録媒体の厚さ方向に(ilI/(ヒ容易11
11をもった磁気記録用磁性媒体層1国1性E、 (i
ll (ヒ月憚)カニ表1笛に設けられた磁気記録媒体
を(走用し、この佑’i気i己録媒体の厚さ方向に強い
イ1°鼓イヒ多Yイ■を/−1じる垂1負(1(蔓気記
録用磁気ヘッドを用い、イiB、気言己録媒(本をj型
、さ方向に磁化し、この方向に磁(生“1481合のイ
1奴イヒを残留さ−ぎるよりにしプこもの−である。こ
σ)、Lうに、(1強気記録媒体の厚さ方向に残留(J
i(ヒ分イ■75二あるJ二、自己減磁界の発生が少な
く、損失σつ少ない、冑5’l!i度記録が可能になる
(例えは、4守Iji’1llB 52 134706
号参照)。
The perpendicular magnetic recording method is based on the running direction of a magnetic recording medium such as a magnetic tape or a disk, and the direction of the thickness of the magnetic recording medium.
11 for magnetic recording magnetic media layer 1 country 1 property E, (i
ll (Hi Monthly) The magnetic recording medium installed in the crab Table 1 flute is used (to run), and a strong 1° drum is applied in the thickness direction of the recording medium. 1 ji vertical 1 negative (1 It is more likely than not to remain in the recording medium.
i (Hibun I■752 J2, less self-demagnetizing field is generated, loss σ is less, 5'l!i degree recording is possible (for example, 4 Mori Iji'1llB 52 134706
(see issue).

以上のような垂直磁気記録方式に1小月4 i tシる
」(直磁気記録媒体としては、上面側に媒体面垂直方向
に磁化容易軸を有する磁性体層を設け、下面側に一層の
高透磁率磁性体層を設けた高透磁率磁性体層が一層構造
の記録媒体が高特性を有−ノーることが知られている(
例えば、特開昭52−78403号参照)。
The above-mentioned perpendicular magnetic recording method requires 4 bits per month (as a direct magnetic recording medium, a magnetic layer having an axis of easy magnetization perpendicular to the medium surface is provided on the upper surface side, and a layer of magnetic material is provided on the lower surface side. It is known that a recording medium having a single-layer structure with a high permeability magnetic layer provided with a high permeability magnetic layer has high characteristics (
For example, see Japanese Patent Application Laid-Open No. 52-78403).

しかしながら、上述した垂直磁化膜下の高透磁率磁性体
層が一層構造の記録媒体を用いて記録再生実験を行なう
と、スパイク状雑「が観測される。
However, when a recording/reproducing experiment is performed using a recording medium having a single-layer structure with a high permeability magnetic layer under the perpendicular magnetization film, spike-like irregularities are observed.

このスパーrり状剋1叶は垂直磁化膜のみからなる単層
構造の記録媒体を用いて記録再生実験を行なう際にQ」
、観測されないものである。
This spar-like shape is used for recording and reproducing experiments using a single-layer recording medium consisting of only a perpendicularly magnetized film.
, which is not observed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記スパイク状射1音の少ない、高パ
時性の垂irj 6Ti気8C録媒体fUfp供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-performance recording medium fUfp with fewer spikes and high performance.

〔発明の概要〕[Summary of the invention]

ところで、スパイク状雑音は、垂直磁化膜のない、高透
磁率磁性体層のみからなる媒体にひいても上記のような
垂直磁化膜と高透磁率磁性体層との2層構造からなる媒
体と全く同様なものが観測される。すなわら、スパイク
状雑音は、高透磁率磁性体層とその上に設けられた垂直
磁化膜とのaは 万作用により生じるものでなく、尚透磁率磁性体へ 層のみから生じるものであることが本発明者らの実験の
結果から明らかとなった。
By the way, spike-like noise can be caused not only by a medium consisting only of a high permeability magnetic layer without a perpendicular magnetization film, but also by a medium having a two-layer structure of a perpendicular magnetization film and a high permeability magnetic layer as described above. Exactly the same thing is observed. In other words, spike-like noise is not caused by the universal action of the high permeability magnetic layer and the perpendicularly magnetized film provided thereon, but is generated only by the layer on the high permeability magnetic layer. This became clear from the results of experiments conducted by the present inventors.

また、スパイク状雑音は、媒体中で一様に発生するもの
でE’: ’i: < 、帛に発生する場所と発生しな
い場所がある。スパイク状雑音が発、生する場所と発生
しない場所の相違を調べたところ、スパイク状雑音が発
生すイ)場所では磁壁が3く発生1,7ており、スパイ
ク状雑音が発生しない場所では磁壁が々いことがわかっ
t二。
Further, spike-like noise is generated uniformly in the medium, and there are places where it occurs uniformly and places where it does not occur. When we investigated the differences between locations where spike-like noise occurs and locations where it does not occur, we found that 3 domain walls occur in locations where spike-like noise occurs1,7, and domain walls occur in locations where spike-like noise does not occur. I know it's tough.

以上のこ、ノーから、スパイク状雑音の発生を抑制する
ブ1めには、高透磁率磁性体層中の磁壁の発生を抑制す
ればよいことがわかつな。
From the above, it is clear that the first step to suppressing the generation of spike noise is to suppress the generation of domain walls in the high permeability magnetic layer.

さきに、本発明者ら(・よ、強磁性下イ牛・J磁性体の
界面で生じるカップリング現黛を利用すること、すなわ
ら、高透磁率W性体層上の所望の方向に磁界を印加しつ
つ反強磁性体膜を設けることにより磁壁の発生を抑制で
きることを2らきらかにした(特許出願中で、公知では
ない)。
First, the present inventors (... It has been shown that the generation of domain walls can be suppressed by providing an antiferromagnetic film while applying a magnetic field (patent pending, not publicly known).

上記発明は高透磁率磁性体層中の磁壁の発生を抑制する
には大変有効ではあるが、垂直磁化膜と高透磁率磁性体
層の中間に反強磁性体膜を設けるために、該反強磁性体
膜が存在しない場合にくらべて記録に必要な電流が太き
くS/Nも低くなる。
Although the above invention is very effective in suppressing the generation of domain walls in the high permeability magnetic layer, the antiferromagnetic film is provided between the perpendicular magnetization film and the high permeability magnetic layer. The current required for recording is larger and the S/N ratio is lower than in the case where no ferromagnetic film is present.

本発明は上記したこのような欠点を解消するためのもの
であり、スパイク雑音をなくシ、記録に必要な電流が少
なく、S/Nの高い高特性の垂直磁気記録媒体を得るた
めのものである。
The present invention is intended to eliminate the above-mentioned drawbacks, and to obtain a high-performance perpendicular magnetic recording medium that eliminates spike noise, requires less current for recording, and has a high S/N ratio. be.

本発明は、高透磁率磁性体層上の反強磁性体膜上にさら
に高透磁率膜を設け、該反強磁性体膜上の高透磁率膜上
に垂直磁化膜を設けるものであり、高透磁率膜上に直接
垂直磁化膜を設けることによシ、記録電流の減少を可能
にし、S/Nの大きなスパイク状If(音のない高特性
の垂直磁気記録媒体f:得るものである。
The present invention further provides a high permeability film on the antiferromagnetic film on the high permeability magnetic layer, and provides a perpendicular magnetization film on the high permeability film on the antiferromagnetic film, By providing a perpendicular magnetization film directly on a high magnetic permeability film, it is possible to reduce the recording current, and to obtain a spike-like If (silent, high performance perpendicular magnetic recording medium f) with a large S/N ratio. .

なお、高特性の垂直磁気記録膜を得るためには反強磁性
体膜を作製する際に所望の方向に磁界を   11印加
する必要があるが、スパイク信1音をなくシ、    
・より高特性の垂直磁気記録媒体を得るためには、下層
の高透磁率膜を作製する際にも所望の方向に磁界を印加
することが望ましく、さらに、上層の高透磁率膜を作製
する際にも所望の方向に磁界を印加することがよシ望ま
しい。
Note that in order to obtain a perpendicular magnetic recording film with high characteristics, it is necessary to apply a magnetic field in the desired direction when fabricating an antiferromagnetic film, but it is possible to eliminate one spike signal.
・In order to obtain a perpendicular magnetic recording medium with higher characteristics, it is desirable to apply a magnetic field in the desired direction when producing the lower layer high magnetic permeability film, and also to produce the upper layer high magnetic permeability film. It is particularly desirable to apply a magnetic field in a desired direction.

高透磁率膜の機能を充分に発揮させるためには、上記し
た所望の印加磁界方向は記録の際のトラック幅方向であ
ることが望ましい。後述するように、印加磁界方向が記
録の際のトラック幅坊向と−゛致する場合のS/Nは、
印加磁界方向がビット長方向と一致する場合のS/Hに
くらべて5dB大きく、記録電流ば20%少ない。
In order to fully demonstrate the function of the high magnetic permeability film, it is desirable that the above-mentioned desired applied magnetic field direction be in the track width direction during recording. As described later, when the direction of the applied magnetic field matches the direction of the track width during recording, the S/N is:
Compared to the case where the direction of the applied magnetic field matches the bit length direction, the S/H is 5 dB larger and the recording current is 20% smaller.

なお、垂直磁化膜として従来用いられているCo−Cr
合金−や、Co−Crに第3元素を添加した合金あるい
(l−iCo−几U合金等金用いる場5合には、反強磁
性体膜上の高透磁率11便は饋位的に非情質な磁性合金
であることが望ましい。この理由は、上記したCo−C
r系合金膜の手向磁気異方ヰはb c p結晶c +1
1+の膜面垂直方向への配向度と密暗に関連しており、
優位的に非晶質な金属である薄膜上のCo−Cr系自金
膜b c p結晶C軸の膜面垂直方向への配向度の方が
、結晶質、例えば、N1−pe合金膜上のCo−Cr合
金膜h c p結晶c l+l+の膜面垂直方向よシも
良い(昭和56年度電子曲信学会半導体・材料部門全国
大会予稿集p508)ことによるものである。
Note that Co-Cr, which is conventionally used as a perpendicular magnetization film,
When gold is used, such as alloys, Co-Cr alloys with a third element added (l-iCo-U alloys, etc.), the high magnetic permeability on the antiferromagnetic film is the most important. It is desirable to use a magnetic alloy that is insensitive to Co-C.
Directional magnetic anisotropy of r-based alloy film is b c p crystal c +1
It is related to the degree of orientation of 1+ in the direction perpendicular to the film surface and the density.
The degree of orientation of the b c p crystal C axis in the direction perpendicular to the film surface is higher than that on a crystalline film, for example, a N1-pe alloy film. This is due to the fact that the Co--Cr alloy film hcp crystal cl+l+ has a good vertical direction to the film surface (Proceedings of the 1981 Electronic Music Society Semiconductor/Materials Division National Conference, p. 508).

最上層の垂直磁化膜のjワさが薄すき゛る」μ合には、
記録再生の際の出力が小さく、逆に垂直磁化膜の厚さが
厚すぎる場合には高透磁率膜の効果が弱くなるため記録
に必要な電流が大きくなりS/Nも小さくなる。この点
から、垂直磁化j摸の厚さは、望ましくは0.03μI
n以上、0.3μmn以下であり、さらに望ましくは0
.1μIn以上0.2μmn以下である。
If the top layer of perpendicularly magnetized film is too thin,
If the output during recording and reproduction is small and the thickness of the perpendicularly magnetized film is too thick, the effect of the high magnetic permeability film will be weakened, the current required for recording will be large, and the S/N will be small. From this point, the thickness of the perpendicular magnetization j is preferably 0.03 μI.
n or more and 0.3 μm or less, more preferably 0
.. It is 1 μIn or more and 0.2 μm or less.

しかしながら、垂IIt磁化膜として、Co−Cr合金
膜や、Co−Cr合金に第3元素を添加した薄膜あるい
はCo−几U膜等を用いる場合には、これらCO−Cr
合金系薄膜の膜厚がO53μIT]以下の場合にViI
+cp結晶C軸の結晶垂軸方向への配向度が膜厚0.3
μtn以上の薄膜の11Cp結晶C1l11+の膜面垂
直方向への配向度にくらべて劣り、したがって垂直磁気
特性の劣った膜となる(第18回東北大学電気通信研究
所主催垂直磁気記録シンポジウム論文集、p169)。
However, when using a Co-Cr alloy film, a thin film in which a third element is added to a Co-Cr alloy, or a Co-U film as the perpendicular IIt magnetization film, these CO-Cr
ViI when the thickness of the alloy thin film is less than O53μIT
The degree of orientation of the +cp crystal C axis in the direction of the crystal vertical axis is 0.3 in film thickness.
The degree of orientation in the direction perpendicular to the film surface is inferior to that of 11Cp crystal C1l11+ in a thin film of μtn or more, and therefore the film has inferior perpendicular magnetic properties (Proceedings of the 18th Perpendicular Magnetic Recording Symposium Sponsored by the Institute of Telecommunications, Tohoku University, p169).

これを改善する方法としては、真空中あるいは不活性ガ
ス中あるいは還元性ガス中の熱処理がある。ただし、熱
処理錦度が低すぎる場合には、熱処理の効果がなく、ま
た、熱処理温度が高すぎる場合には、−Co−Cr系合
金薄膜のfF直磁気特性はかえって劣化してしまう。
As a method for improving this, there is heat treatment in vacuum, inert gas, or reducing gas. However, if the heat treatment degree is too low, the heat treatment has no effect, and if the heat treatment temperature is too high, the fF direct magnetic properties of the -Co-Cr alloy thin film will deteriorate instead.

第1図は神々の膜厚のCo−Cr薄膜の熱処理温度と、
該薄膜hcp結晶C軸の配向Tlc′、(IT Cp結
晶(0002)面のX線回折線ロッキング曲線半値幅Δ
θ5.の変化率で示す)の関係を示す。第1図において
はΔθ、0が小さい方が垂直磁気特性の良い媒体である
。各曲線には膜厚を示しである。
Figure 1 shows the heat treatment temperature for a divinely thick Co-Cr thin film,
The orientation Tlc' of the C-axis of the thin film HCP crystal, the half-width Δ of the X-ray diffraction ray rocking curve of the (0002) plane of the IT Cp crystal;
θ5. (expressed as the rate of change). In FIG. 1, the smaller Δθ, 0 is, the better the perpendicular magnetic characteristics are. Each curve shows the film thickness.

第1図より、Co−Cr薄膜の垂直磁気特性を最大にす
る熱処理Y黒度は該薄膜の膜厚によって異なりCo−C
r薄膜の膜厚が0.03ttmJ?しトロ3μm以下の
場合には、熱処理高度1fよ350C以−ト550C以
下であり、Co−Cr薄膜の膜厚が0.1μm以上、0
.2μm以下の場合には、熱処理温度は、400t?以
上5oor=以下であると判断される。
From Figure 1, the heat treatment Y blackness that maximizes the perpendicular magnetic properties of the Co-Cr thin film varies depending on the thickness of the Co-Cr thin film.
Is the thickness of the r thin film 0.03ttmJ? When the thickness of the Co-Cr thin film is 3 μm or less, the heat treatment altitude is 350C or more and 550C or less from 1f, and the thickness of the Co-Cr thin film is 0.1 μm or more, 0.
.. In the case of 2μm or less, the heat treatment temperature is 400t? It is determined that the value is greater than or equal to 5oor and less than or equal to 5oor.

反強磁性体膜−ヒの高透磁率層表して優位的に非晶質な
金属薄膜を用いる場合には、該高透磁率膜の結晶化温度
が熱処理温度よりも高い必要がある。
When a predominantly amorphous metal thin film is used to represent the high magnetic permeability layer of the antiferromagnetic film, the crystallization temperature of the high magnetic permeability film must be higher than the heat treatment temperature.

該結晶化温度が熱処理温度よりも低い場合には、熱処理
の際に元来優位的に非晶質な全極が結晶化し、透磁率の
低下が生じる。
When the crystallization temperature is lower than the heat treatment temperature, all the poles that are originally predominantly amorphous are crystallized during the heat treatment, resulting in a decrease in magnetic permeability.

上層督よび下層の高透磁率膜のキュリ一点が熱処理温度
より低く、シかも反強磁性体膜のネール点が熱処理温度
よりも低い場合には、熱処理後高透磁率膜は単磁区構造
にならず記録再生を行なうとスパイク状雑音が多く観測
される。
If the Curie points of the upper and lower high magnetic permeability films are lower than the heat treatment temperature and the Neel point of the antiferromagnetic film is lower than the heat treatment temperature, the high magnetic permeability film will have a single domain structure after heat treatment. When recording and reproducing data, many spike-like noises are observed.

この問題を解決するには、熱処理時に所望の方向に磁界
を印加すること、あるいは上層あるいは下層の高透磁率
膜のキュリ一点が熱処理温度より高く、シかも反強磁性
体膜のネール点が熱処理温度よりも高いことが必要であ
る。
To solve this problem, apply a magnetic field in the desired direction during heat treatment, or the Curie point of the upper or lower high magnetic permeability film may be higher than the heat treatment temperature, and the Neel point of the antiferromagnetic film may be higher than the heat treatment temperature. It needs to be higher than the temperature.

以下、本発明の実施例により詳しく説明する。Hereinafter, the present invention will be explained in detail using examples.

〔発明の実施例〕[Embodiments of the invention]

実施例1 厚さ5關、外径10crn、内径2L′:mの環状ガラ
ス基板上にスパッタ法によりNig。F20合金を厚さ
1.0μm被着し、ついで同じくスノくツタ法によりF
 e Br) M n 5o 合金を厚さ0.2μm被
着し、さらにスパッタ法によりCo6゜M Oll、s
 Zr +o、s合金を厚さ1.0μm被着し、その上
にさらにCO8゜Cr、。合金薄膜を厚さ0.2μm被
着し、垂直磁気記録媒体とした。
Example 1 Nig was deposited on an annular glass substrate with a thickness of 5 cm, an outer diameter of 10 crn, and an inner diameter of 2 L': m by sputtering. F20 alloy was applied to a thickness of 1.0 μm, and then F20 was applied using the same method.
e Br) M n 5o alloy was deposited to a thickness of 0.2 μm, and Co6°M Oll,s was further coated by sputtering.
Zr + o, s alloy was deposited to a thickness of 1.0 μm, and then CO8°Cr was applied on top. A thin alloy film having a thickness of 0.2 μm was deposited to form a perpendicular magnetic recording medium.

N’80Fe!。合金薄膜、Fe、。Mn5゜合金薄膜
ならびにC080M Oll、6 Z r 1o、5合
金薄膜を作製する際には環状ガラス基板に接してその外
側訃よび内側に、それぞれ環状および円板状永久磁石を
配置せしめ、薄膜作製中は常に中心部に向かf)(ある
いは中心部から発する)放射状の磁界を印加するように
した。印加磁界の強さは基板の平均半径位置で約100
e程度とした。
N'80Fe! . Alloy thin film, Fe. When producing a Mn5° alloy thin film and a C080M Oll, 6 Zr 1o, 5 alloy thin film, annular and disk-shaped permanent magnets were placed in contact with the annular glass substrate on the outer side and on the inner side, respectively, during the thin film fabrication process. A radial magnetic field was always applied toward the center (or emitted from the center). The strength of the applied magnetic field is approximately 100 at the average radial position of the substrate.
It was set to about e.

こうして作製した垂直磁気記録、媒体に、第2図に示す
垂直磁気ヘッドを用いて記録を行ない、ギヤツプ長0.
3μm1巻数20ターンのフェライトヘッドを用いて記
録再生を行なったところ、スノくイク雑音は全く観測さ
れなかった。また、記録密度100 k、FRP Iに
しける最大出力の90%の出力を与える記録電流I00
は100mAであり、記録密度100 kFRPI、記
録周波数5MH1,帯域幅10M[lとした場合の8/
Nは40dBであつ7七〇 本実施例にむいては、Co−Cr薄膜を作製する際は、
上記環状および円板状永久磁石を取り除いたが、該環状
および円板状永久磁石を取りつけたまま、Co−Cr薄
膜を作製した場合の媒体に本実施例と同じ記録ヘッドお
よび再生ヘッドを用いて記録ならびに再生を行なったと
ころ、1.。
Recording was performed on the perpendicular magnetic recording medium thus produced using the perpendicular magnetic head shown in FIG. 2, with a gap length of 0.
When recording and reproducing was carried out using a 3 μm ferrite head with 20 turns per turn, no snow noise was observed at all. In addition, a recording current I00 that provides an output of 90% of the maximum output in FRP I at a recording density of 100 k is used.
is 100 mA, recording density is 100 kFRPI, recording frequency is 5 MH1, and bandwidth is 10 M [l].
N is 40 dB and 770 For this example, when producing a Co-Cr thin film,
Although the above-mentioned annular and disc-shaped permanent magnets were removed, the same recording head and reproducing head as in this example were used for a medium in which a Co-Cr thin film was fabricated with the annular and disc-shaped permanent magnets still attached. When recording and playing back, 1. .

は100mAと変らなかったが、記録密度100kFR
PI、記録周波数5 N I−I Z 、帯域幅10′
MHzとした場合の8/Nは39 dBであった。
was unchanged at 100mA, but the recording density was 100kFR.
PI, recording frequency 5 N I-I Z, bandwidth 10'
8/N in the case of MHz was 39 dB.

また、本実施例においては、N ”No F eH1合
金薄膜を作製した後、最終工程のCo@6Cr2゜薄膜
を作製するまですべて同一真空槽内で薄膜作製を行ない
、その間に試料を該真空槽外に出すことはなかったが、
実験あるいは装置の都合上、途中で試料を真空槽外に取
り出す必俊がある場合には、試料を取り出した後、改め
て真空槽内に試料をセットし、その後充分に真空リド気
を行なった後、試料表面を軽く巴ツチングして試料表面
を清浄化することが望ましい。
In addition, in this example, after fabricating the N''No FeH1 alloy thin film, all thin film fabrication was performed in the same vacuum chamber until the final step of fabricating the Co@6Cr2゜ thin film, and during that time, the sample was placed in the vacuum chamber. I never let it out, but
If it is necessary to take the sample out of the vacuum chamber midway through the experiment or due to the equipment, place the sample in the vacuum chamber again after taking it out, and then perform sufficient vacuum lidding. It is desirable to clean the sample surface by lightly scrubbing the sample surface.

実施例2 実施例1に訃いではNi、IoFe2o合金%Fe!l
Example 2 Compared to Example 1, Ni, IoFe2o alloy%Fe! l
.

〜1nso合金ならびにCo80 M 09.!I Z
I’ 10.5合金を作製する際にすべて基板に環状な
らびに円板状永久磁石を取りつシナた状態でスパッタを
行なったが、本実施例においては、まずa)Fi”e、
。Mn、。合金を作製する際のみ環状ならびに円板状永
久磁石を基板に取りつけた場合訃よびb)p’e、。M
n、。合金ならびに”AOFe2o 合金薄膜を作製す
る際に環状ならびに円板状永久磁石を、取りセJけた場
合の結果である。a)の場合には、記録肉牛のトラック
−胸中1%の領域でスパイク雑音が発生し5、b)の場
合には、記録再生のトラック−胸中01%の領域でスパ
イク雑音が発生した。
~1nso alloy and Co80 M 09. ! IZ
When producing the I'10.5 alloy, sputtering was carried out with annular and disk-shaped permanent magnets attached to the substrate, but in this example, a) Fi'e,
. Mn. When annular and disc-shaped permanent magnets are attached to a substrate only when producing an alloy, and b) p'e. M
n. These are the results when annular and disc-shaped permanent magnets are used to prepare thin films of AOFe2o alloy and AOFe2o alloy. In case 5.b), spike noise occurred in the 01% region of the recording/reproduction track-chest.

本実施例および実施例1より、反強磁性体膜の作製の場
合のみに所望の方向に磁界を印加するよりも、反強磁性
体膜ならびに下層の高透磁率膜を作表する際に所望の方
向に磁界を印加する方がより望−ましく、最下層の高透
磁率膜、反強磁性体膜ならびに上層の腎、透磁率脹のす
べてを作製する際に所望の方向に磁介を印加することが
さらに望ましいことがわかる。
From this Example and Example 1, it is clear that applying a magnetic field in a desired direction only when fabricating an antiferromagnetic film is more effective when producing a desired direction when tabulating an antiferromagnetic film and an underlying high-permeability film. It is more desirable to apply a magnetic field in the direction of the magnetic field, so that the magnetic field can be applied in the desired direction when fabricating the lowermost layer of high magnetic permeability film, antiferromagnetic material film, and upper layer of the kidney and permeability swell. It can be seen that it is more desirable to apply

実施例3 実施例1のNi8oFe26合金、Fel10Mn!t
o  合金ならびにCO,l。M Oa、s Z rl
o、5合金を作製する際に用いた環状および円板状永久
磁石の代りに、ヘルムホルツコイルを用いて一方向に向
く磁界を印加した。
Example 3 Ni8oFe26 alloy of Example 1, Fel10Mn! t
o alloy as well as CO,l. M Oa,s Z rl
In place of the annular and disk-shaped permanent magnets used in producing the o,5 alloy, a Helmholtz coil was used to apply a magnetic field directed in one direction.

こうして得た垂直磁気記録媒体に実施例1の垂直記録ヘ
ッドおよびMnZn  フェライトヘラトラ用いて、そ
れぞれ、記録および再生を行なったところ、記録に要す
る電流値および8/Nは記録媒体の場所、いいかえれば
印加された磁界の方向によシ異なるごとがわかった。
Recording and reproduction were performed on the perpendicular magnetic recording medium thus obtained using the perpendicular recording head of Example 1 and the MnZn ferrite spatula, respectively. It was found that the results differed depending on the direction of the applied magnetic field.

印加磁界方向がトラック幅方向と一致する場合には、記
録密度100kFRPIの場合の■。。は100mAで
あり、記録室1100kFRPI、記録周波数5 M 
I−I Z 、帯域幅10MH2(7)4合のS/Nは
40dBであり、実施例1の場合と同じであったが、印
加磁界方向が記録ビットの方向と一致する場合には工。
When the applied magnetic field direction coincides with the track width direction, ■ in the case of a recording density of 100 kFRPI. . is 100mA, recording chamber 1100kFRPI, recording frequency 5M
The S/N of I-I Z and bandwidth 10 MH2(7)4 was 40 dB, which was the same as in Example 1, but when the direction of the applied magnetic field coincided with the direction of the recorded bits.

。は120mA%S/Nは35 dBであった。. was 120 mA% S/N was 35 dB.

印加磁界方向が上記2方向以外の場合には、記録密度1
00kFRPII7)場合(7)I、。は100mA以
上120mA以下であり、記録密度LookFR,PI
、記録周波数5MH2,帯域幅10MH2の場合のS/
Nは35dB以上、4(ldJ3以下であった。
When the applied magnetic field direction is other than the above two directions, the recording density is 1.
00kFRPII7) Case (7)I,. is 100 mA or more and 120 mA or less, and the recording density LookFR, PI
, S/ for recording frequency 5MH2 and bandwidth 10MH2
N was 35 dB or more and 4 (ldJ3 or less).

以上のように、印加磁界方向がトラック幅方向と一致し
た場合に最高特性の垂!1. hp−1気記録媒体が得
られることがわかった。
As mentioned above, when the applied magnetic field direction coincides with the track width direction, the vertical characteristics are the best. 1. It was found that a HP-1 recording medium was obtained.

実施例4 厚さ5喘、外径10crn、内径2mの環状ガラス基板
上にスパッタ法によりc ogo M O(1,II 
z r to、s合金を厚さ1.0μm被着し、その上
にスパッタ法によりpe6Jinio 合金を厚さ0.
2 p m被着し、さらにスパッタ法によりCO8C0
8G、5Zrl。、6合金を厚さ1.0μm被着した後
、その上にCC6゜Cr2゜合金薄膜を厚さ0.2μm
被着して垂直磁気記録媒体を得た。
Example 4 COGO M O (1, II
A z r to, s alloy was deposited to a thickness of 1.0 μm, and then a pe6Jinio alloy was deposited to a thickness of 0.0 μm by sputtering.
2 pm was deposited, and then CO8C0 was deposited by sputtering.
8G, 5Zrl. , 6 alloy to a thickness of 1.0 μm, and then a CC6°Cr2° alloy thin film to a thickness of 0.2 μm on top of it.
A perpendicular magnetic recording medium was obtained.

該垂直磁気記録媒体を真空中、500tl’で、2時間
熱処理して第1回の試料とした。
The perpendicular magnetic recording medium was heat treated in vacuum at 500 tl' for 2 hours to obtain a first sample.

該試料に、第2図に示す垂直磁気ヘッドを用いて記録全
行ない、ギャップ長0.3μm1巻数20ターンのフェ
ライトヘッドを用いて記録再生を行なったところ、とこ
ろどころでスパイク状雑音が観測された。
When the sample was completely recorded using the perpendicular magnetic head shown in FIG. 2 and read/recorded using a ferrite head with a gap length of 0.3 μm and 20 turns per turn, spike-like noise was observed in some places.

つぎに、熱処理の際に、実施例1と同じ環状ならびに円
(汐状永久磁石を試料に取りつけ熱処理中に、放射状の
磁界が印加されるようにした。こうして得た試料を前述
の記録ヘッド訃よびフェライトヘッドを用いて記録なら
びに再生を行なったところ、スパイク状雑音は観測され
ず、記録密度100kFRPIllr悌ける最大出力の
90%を力える記録゛電流1110は100mAであり
、記録密度100 k FRP I、記録周波数5 M
 HZ 、帯域幅10MIIZとした場合のS / N
は45 dBであった。
Next, during the heat treatment, the same annular and circular permanent magnets as in Example 1 were attached to the sample so that a radial magnetic field was applied during the heat treatment. When recording and reproducing were performed using a ferrite head and a ferrite head, no spike-like noise was observed, and the recording current 1110 that outputs 90% of the maximum output at a recording density of 100 k FRP Illr was 100 mA, and the recording density was 100 k FRP Illr. , recording frequency 5M
S/N when HZ and bandwidth 10MIIZ
was 45 dB.

本実施例と実施例1との比較より、適切な熱処理を行な
うことにより、記録再生の際の記録電流には変化がない
がS / Nは大幅に向上できることがわかった。
From a comparison between this example and Example 1, it was found that by performing appropriate heat treatment, the recording current during recording and reproduction remained unchanged, but the S/N could be significantly improved.

実施例5 実施例4の反強磁性体膜Fe、。−M n 、、oの代
りに、スパッタ法によりネール点が770Uである■S
膜を0.2μm彼着したものを試料した。
Example 5 Antiferromagnetic film Fe of Example 4. −Mn,, Instead of o, ■S whose Neel point is 770U is obtained by sputtering.
A sample was prepared using a film with a thickness of 0.2 μm.

本試料を真空中500Cで2時間熱処理した後実施例1
の拵的磁気ヘッドを用いて記録を行ない、同じ〈実施例
1のフェライトヘッドを用いて再生を行なったところ窒
バイタ状雑音は全く観測されず、記録密度100kFR
PIにGlyる最大出力の90%の出力を与える記録電
流■。。は100mAであり、記録密度1’00kF’
RI)I、記録周波数5MH2,帯域幅10MH2とし
た場合のS/Nは45 dBであり、実施例4と同じ値
を得た。
Example 1 After heat treating this sample at 500C in vacuum for 2 hours
Recording was carried out using a magnetic head similar to that of Example 1, and reproduction was carried out using the same ferrite head as in Example 1. No nitride-like noise was observed at all, and the recording density was 100 kFR.
Recording current that gives 90% of the maximum output to the PI. . is 100mA, and the recording density is 1'00kF'
RI) I, recording frequency of 5 MH2, and bandwidth of 10 MH2, the S/N was 45 dB, which is the same value as in Example 4.

以上のように、高透磁率膜のキュリ一点しよび反強磁性
体膜のネール点が熱処理温度より高い場合には、熱処理
中に所望の方向に外部磁界を印加する必要はない。
As described above, if the Curie point of the high magnetic permeability film and the Neel point of the antiferromagnetic film are higher than the heat treatment temperature, it is not necessary to apply an external magnetic field in a desired direction during the heat treatment.

なお、熱処理中の外部磁界は、より正確には、熱処理後
の降温過程で行なうものであるが、実施例4の場合のよ
うに、環状ならびに円板状永久磁石を試料に取りつける
場合には、実験の都合上降温過程のみではなく熱処理前
より該永久磁石を取りつける必要があった。
More precisely, the external magnetic field during heat treatment is applied during the cooling process after heat treatment, but when annular and disc-shaped permanent magnets are attached to the sample as in Example 4, For convenience of the experiment, it was necessary to attach the permanent magnet not only during the temperature-lowering process but also before the heat treatment.

実施例5め熱処理温度以上のネール点を有する反強磁性
体としては、vS薄勝の外にx P r p e 03
 *BiFeO3,Ca2Fe、0.  等の化合物モ
有効f6るが、α−Fe203 のような弱強磁性を示
す物質も有効である。
Example 5 As an antiferromagnetic material having a Neel point higher than the heat treatment temperature, in addition to vs.
*BiFeO3, Ca2Fe, 0. Compounds such as f6 are effective, but substances exhibiting weak ferromagnetism such as α-Fe203 are also effective.

また、実施例1,2,3.4のF’efiOMn4o合
金の代りに、CoF3 * FeF3等の化合物も突効
である。
Furthermore, instead of the F'efiOMn4o alloy in Examples 1, 2, and 3.4, compounds such as CoF3*FeF3 are also effective.

〔発明の効果〕〔Effect of the invention〕

以上のように、基体上に高透磁率膜、反強磁性体膜、高
透h″柊率膜、卸直磁化膜を1−次噴み重ねて設けた構
造の垂直磁気記録媒体はスパイク状雑音の発生が極めて
少なく、記録に要する市1流も低く、且つS/Nが高い
ものである。
As described above, a perpendicular magnetic recording medium having a structure in which a high magnetic permeability film, an antiferromagnetic material film, a high permeability film, a high permeability film, and a direct magnetization film are stacked on a substrate in the first order has a spike-like structure. The generation of noise is extremely low, the amount of recording required is low, and the S/N ratio is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、陣々の瞭島り)Co−’Cr薄膜の熱処理温
度(雰囲気:A空、熱処理時間=2時間)と垂直磁気時
性(h c p &i晶(0002J面ロッキング曲線
の学値岬、の変化率て示した)の関係を;r、−1クラ
フであり、第2図frt 、本発明の実施例1C惨いて
用いた記録用垂直磁気記録ヘッドの断面図も・よ) Ll′ −
Figure 1 shows the relationship between the heat treatment temperature (atmosphere: A air, heat treatment time = 2 hours) of the Co-'Cr thin film (atmosphere: A empty, heat treatment time = 2 hours) and the perpendicular magnetic temporality (h c p & i crystal (0002 J plane rocking curve). The relationship between r and -1 graph is shown by the rate of change of the cape, and FIG. Ll′ −

Claims (1)

【特許請求の範囲】 ■、基体上に設けた高透磁率薄膜上に反強磁性体膜を設
Oす、該反強磁性体膜上に篩透磁率1を設け、さらに、
上層の該高透磁率膜上に垂直磁化膜を設けたことを特徴
とする垂直磁気記録媒体。 2、  ’t’r4’r請求の範囲第1項記載の垂直磁
気記録媒体Kt、−いて、前記反強磁性体膜上の前記高
透磁率膜が優位的に非晶質な金属からなることを特徴と
する垂直磁気記録媒体。 3、特許請求の範囲第1項もしくは第2項記載の垂直磁
気記録媒体において、前記垂iff磁化膜の膜厚を0.
03μIn以上、0.3μIn以下とすることを特徴と
する垂面磁気記録媒体。 4、特許請求の範囲第3項記載の垂1げ磁気記録媒体に
おいて、前記垂直磁化膜の膜厚f:0.1 B m以上
0.2μm以下とすることを特徴とする垂直磁気記録媒
体。 5、特許請求の範囲第1項乃至第4項のいずれかの項に
記載の垂直磁気記録媒体に忰いて、前記反強磁性体膜上
の高透磁率膜が優位的に非晶質な金属からなる薄膜であ
ることを特徴とする垂直磁気記録媒体。 6、特許請求の範囲第1項乃中相5項のいずれかの項に
記載の垂直磁気記録媒体にしいで、上層むよび下層の前
記高透磁率膜のキュリ一点が熱処理温度以上であり且つ
前記反強磁性体n像のイ、−ル点も前記熱処理温度以上
であることを特徴とする垂直磁気記録媒体。 7、基体上に設けた高透(IR率N膜土に反強磁性体膜
を設け、該反強磁性体n像に高透4jB率膜を設け、上
層の高速IG、+率膜上に垂直磁化膜を設り、かつ少な
くとも反強磁性体膜を設&−fる際に所望の方向に磁界
を印加することを、、PH5徴とする111直磁気記録
媒体の製造方法。 8、特許請求の範囲第7項記載の華1自磁気記録媒体の
製造方法に訃いて、前記基体上の高透磁率膜を作製する
際ならび該高透磁率膜」二〇反強磁性体膜を作製する際
に所望の方向に磁界を印加することを重機とする垂im
、 (9気記録媒体の製造方法。 9、を特許請求の範囲第7項記載の垂直磁気記録媒体の
製造方法に督いて、前記基体上の高透磁率膜を作製する
際訃よび該高透磁率膜上の反強磁性体膜を作製する際な
らびに該反強磁性体膜上の高透磁率膜を作製する際に所
望の方向に磁界を印加することを特徴とする垂直磁気記
録媒体の製造方法。 10.1時FHi’?求のり11囲第7項、第8項もし
くは第9項記載の垂直磁気記録媒体の製造方法に′しい
て、前記所望の磁界印加方向を記載の際のトラック幅方
向とすることを特徴とする垂直磁気記録媒体の製造方法
。 11、特許請求の範囲第7項乃至第10頌のいずれかの
項に記載の垂直磁気記録媒体の製造方法において、前記
反強磁性体膜上の前記高透磁率膜が優位的に非晶質な金
属からなることを特徴とする垂直磁気記録媒体の製造方
法。 12、要語特許請求の範囲第7項乃)9第11項のいず
れかの項に記載の垂直磁気記録媒<4.の製造方法にお
いて、前記垂直磁化膜の膜厚を0.03 tL1n以上
、0.3μIll以下とすることをtr# ’ibとす
る垂直磁気記録媒体の製造方法。 13、特許請求の範囲第12項記載の他iN砒気記録媒
体の製造方法において、該垂+k 7+’J:&気記録
媒体を、350tZ’以上550C以下の温度で、道ろ
ぢ′中あるいは不活性ガス中で+ろいく佳謹元(’J−
ガス中で熱処理することを特徴とする昂i[磁気記録U
体の製造方法。 14、特許請求の範囲第12.頃記載の和直陳気記録媒
体の製造方法においで、+1’、l Mj:伸泊磁化j
1位の膜厚を0.1μmn以上、02μmりじトとし、
該垂1白磁化膜作製後、400C以上、5001Z以下
の湿度で、舅債中あるハは不活性ガス中あるいe」。 還元性ガス中で熱処刑(−jることを〕特徴とする事i
白磁気記録媒体の製造方法。 15、特許請求の範囲第13項もしく(rよ第14項記
載の垂直磁気記録媒体の製造方法にむいて、前記熱処理
を行なう際に、前記所望の方向に磁界を印加することを
%徴とする垂直磁気記録媒体の製造方法。 16、特許請求の範囲第15項記載の垂直磁気記録媒体
の製造方法に督いて、前記所望の方向を記録の際のトラ
ック幅方向とすることを特徴とする垂直磁気記録媒体の
製造方法。 17、特許請求の範囲第13項乃至第16項のいずれか
の項に記載の垂直磁気記録媒体の製造方法において、前
記反強磁性体膜上の前記高透磁率膜が優位的に非晶質な
金属からなる薄膜であり、しかも該高透磁率膜の結晶化
温度が前記熱処理温度以上であることを特徴とする垂直
磁気記録媒体の製造方法。 18、特許請求の範囲第13項乃至第17項のいずれか
の項に記載の垂直磁気記録媒体の製造方法において、上
層セよび下層の前記高透磁率膜のキュリ一点が前記熱処
理温度以上であり且つ前記反強磁性体膜のネール点も前
記熱処理温度以上である反強磁性体膜を用いることを特
徴とする垂直磁気記録媒体の製造力θミ。
[Scope of Claims] (1) An antiferromagnetic film is provided on a high magnetic permeability thin film provided on a substrate, a sieve permeability of 1 is provided on the antiferromagnetic film, and further,
A perpendicular magnetic recording medium characterized in that a perpendicular magnetization film is provided on the high magnetic permeability film as an upper layer. 2. Perpendicular magnetic recording medium Kt according to claim 1, wherein the high magnetic permeability film on the antiferromagnetic film is predominantly made of an amorphous metal. A perpendicular magnetic recording medium characterized by: 3. In the perpendicular magnetic recording medium according to claim 1 or 2, the film thickness of the perpendicular IF magnetization film is set to 0.
1. A perpendicular magnetic recording medium characterized in that the particle diameter is 0.03 μIn or more and 0.3 μIn or less. 4. The perpendicular magnetic recording medium according to claim 3, wherein the thickness f of the perpendicular magnetization film is 0.1 B m or more and 0.2 μm or less. 5. In addition to the perpendicular magnetic recording medium according to any one of claims 1 to 4, the high magnetic permeability film on the antiferromagnetic film is made of a predominantly amorphous metal. A perpendicular magnetic recording medium characterized by being a thin film made of. 6. In the perpendicular magnetic recording medium according to any one of claims 1 to 5, the Curie point of the high magnetic permeability film of the upper layer and the lower layer is equal to or higher than the heat treatment temperature, and A perpendicular magnetic recording medium characterized in that the A and -A points of the antiferromagnetic n-image are also higher than the heat treatment temperature. 7. High permeability (IR rate N film provided on the substrate) An antiferromagnetic film is provided on the soil, a high permeability 4jB rate film is provided on the antiferromagnetic material N image, and the high speed IG and + rate films are provided on the upper layer. A method for manufacturing a 111 direct magnetic recording medium with a pH of 5, including providing a perpendicular magnetization film and applying a magnetic field in a desired direction when providing at least an antiferromagnetic film. 8. Patent In accordance with the method for producing a self-magnetic recording medium according to claim 7, when producing a high magnetic permeability film on the substrate, and producing an antiferromagnetic film, the high magnetic permeability film is Vertical immobilization equipment that applies a magnetic field in a desired direction
(9) A method for manufacturing a perpendicular magnetic recording medium according to claim 7. Production of a perpendicular magnetic recording medium characterized in that a magnetic field is applied in a desired direction when producing an antiferromagnetic film on a magnetic film and when producing a high magnetic permeability film on the antiferromagnetic film. Method. 10. In the method for producing a perpendicular magnetic recording medium as described in Section 7, Section 8 or Section 9 of Section 11 of FHi'? 11. A method for manufacturing a perpendicular magnetic recording medium according to any one of claims 7 to 10, wherein the anti-reinforcing A method for manufacturing a perpendicular magnetic recording medium, characterized in that the high magnetic permeability film on the magnetic film is made of predominantly amorphous metal. 12. Summary Claims 7 to 9) 11. The perpendicular magnetic recording medium according to any one of paragraphs <4. In the method of manufacturing a perpendicular magnetic recording medium, tr#'ib is such that the thickness of the perpendicular magnetization film is 0.03 tL1n or more and 0.3 μIll or less. 13. In addition to the method for producing an iN arsenic recording medium as described in claim 12, the arsenic recording medium is heated at a temperature of 350 tZ' or more and 550 C or less during the journey or In inert gas
[Magnetic recording U] characterized by heat treatment in gas
How the body is manufactured. 14. Claim 12. In the method for manufacturing a recording medium described in
The first film thickness is 0.1 μm or more, 02 μm thick,
After producing the white magnetized film, it was placed in an inert gas or at a humidity of 400C or more and 5001Z or less. Characterized by heat execution (-j) in a reducing gas
A method for manufacturing a white magnetic recording medium. 15. Claim 13 or (r) for the method of manufacturing a perpendicular magnetic recording medium according to claim 14, which includes applying a magnetic field in the desired direction when performing the heat treatment. 16. The method for manufacturing a perpendicular magnetic recording medium according to claim 15, characterized in that the desired direction is a track width direction during recording. 17. The method for manufacturing a perpendicular magnetic recording medium according to any one of claims 13 to 16, wherein the highly permeable magnetic recording medium on the antiferromagnetic film is A method for manufacturing a perpendicular magnetic recording medium, characterized in that the magnetic film is a thin film made of predominantly amorphous metal, and the crystallization temperature of the high magnetic permeability film is equal to or higher than the heat treatment temperature. 18, Patent In the method of manufacturing a perpendicular magnetic recording medium according to any one of claims 13 to 17, the Curie point of the high magnetic permeability film of the upper layer and the lower layer is equal to or higher than the heat treatment temperature, and 1. A perpendicular magnetic recording medium manufacturing capacity θ-mi characterized in that an antiferromagnetic film is used in which the Neel point of the ferromagnetic film is also higher than the heat treatment temperature.
JP57158096A 1982-07-19 1982-09-13 Vertical magnetic recording medium and its production Pending JPS5948822A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57158096A JPS5948822A (en) 1982-09-13 1982-09-13 Vertical magnetic recording medium and its production
US06/513,422 US4621030A (en) 1982-07-19 1983-07-13 Perpendicular magnetic recording medium and manufacturing method thereof
DE8383107031T DE3377829D1 (en) 1982-07-19 1983-07-18 Perpendicular magnetic recording medium and manufacturing method thereof
EP83107031A EP0099564B1 (en) 1982-07-19 1983-07-18 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158096A JPS5948822A (en) 1982-09-13 1982-09-13 Vertical magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS5948822A true JPS5948822A (en) 1984-03-21

Family

ID=15664211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158096A Pending JPS5948822A (en) 1982-07-19 1982-09-13 Vertical magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS5948822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273413A (en) * 1985-09-25 1987-04-04 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for manufacturing magnetic recording medium
US7601443B2 (en) 2004-10-28 2009-10-13 Samsung Electronics Co., Ltd. Perpendicular magnetic recording media with laminated soft magnetic underlayer
JP4591806B2 (en) * 2001-05-14 2010-12-01 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273413A (en) * 1985-09-25 1987-04-04 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for manufacturing magnetic recording medium
JP4591806B2 (en) * 2001-05-14 2010-12-01 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
US7601443B2 (en) 2004-10-28 2009-10-13 Samsung Electronics Co., Ltd. Perpendicular magnetic recording media with laminated soft magnetic underlayer

Similar Documents

Publication Publication Date Title
EP0099564B1 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US4544591A (en) Perpendicular magnetic recording medium
JPS5948822A (en) Vertical magnetic recording medium and its production
US4609593A (en) Magnetic recording medium
JPH056738B2 (en)
JP2579184B2 (en) Magnetic recording media
JPS5856231A (en) Magnetic recording medium
JPH0380445A (en) Magneto-optical recording medium
JP3386270B2 (en) Magnetic head and magnetic recording device
JPH05258272A (en) Prependicular magnetic recording medium and its production
JPS58143401A (en) Magnetic recording and reproducing device
JPH056327B2 (en)
JPS6111919A (en) Magnetic recording medium
JPH04305807A (en) Co-based soft magnetic thin film and magnetic head formed by using this film
JPS6069815A (en) Magnetic recording medium
JPS6371924A (en) Magnetic recording medium
JPS5933628A (en) Manufacture of vertical magnetic recording medium
JPS5996518A (en) Magnetic head for vertical magnetic recording
JPH1012437A (en) Alloy magnetic film with substrate for magnetic head, its manufacture and magnetic head
JP2001266325A (en) Perpendicular magnetic recording medium
JPS61104431A (en) Production of vertical recording magnetic medium
JPH04117611A (en) Magnetic recording medium
JPH07122931B2 (en) Perpendicular magnetic recording medium
JPS6177128A (en) Magnetic recording medium
JPS58125235A (en) Manufacture of magnetic recording medium