JPS5948678B2 - Food factory wastewater treatment method using symbiotic microorganisms - Google Patents

Food factory wastewater treatment method using symbiotic microorganisms

Info

Publication number
JPS5948678B2
JPS5948678B2 JP9422476A JP9422476A JPS5948678B2 JP S5948678 B2 JPS5948678 B2 JP S5948678B2 JP 9422476 A JP9422476 A JP 9422476A JP 9422476 A JP9422476 A JP 9422476A JP S5948678 B2 JPS5948678 B2 JP S5948678B2
Authority
JP
Japan
Prior art keywords
wastewater
strain
bacteria
yeast
food factory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9422476A
Other languages
Japanese (ja)
Other versions
JPS5319673A (en
Inventor
達治 小林
辰雄 祖谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9422476A priority Critical patent/JPS5948678B2/en
Publication of JPS5319673A publication Critical patent/JPS5319673A/en
Publication of JPS5948678B2 publication Critical patent/JPS5948678B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は共生微生物利用による食品工場廃水処理法に関
するものであり、詳しくは光合成細菌菌体及び該菌体と
共生関係を示す特定の菌株の三者を利用して両者の相乗
効果によってB、0.D値の高い食品工場排水の浄化を
高能率で行うとともに、飼料、肥料等として有効利用が
行える副生菌体を収穫することができる食品工場廃水処
理法に関するものである。
Detailed Description of the Invention The present invention relates to a food factory wastewater treatment method using symbiotic microorganisms, and more specifically, the present invention relates to a food factory wastewater treatment method using symbiotic microorganisms. Due to the synergistic effect of B, 0. The present invention relates to a food factory wastewater treatment method that can efficiently purify food factory wastewater with a high D value and harvest by-product microorganisms that can be effectively used as feed, fertilizer, etc.

一般に、光合成細菌、例えばロドシュードモナス属、ロ
ドスピリラム属、クロマチューム属に属する光合成細菌
が、有機性廃水の浄化に使用できることはよく知られて
おり、本発明者等も既に上記光合成細菌を利用して、し
尿の浄化(特公昭45−12631号)、羊毛洗浄廃液
の浄化(特公昭45−28234号)、澱粉廃液の浄化
(特公昭46−18670号)、炭化水素発酵廃液の浄
化C特公昭50−27668号)等に成功している。
In general, it is well known that photosynthetic bacteria, such as photosynthetic bacteria belonging to the genus Rhodopseudomonas, Rhodospirillum, and Chromatum, can be used to purify organic wastewater, and the present inventors have already utilized the above-mentioned photosynthetic bacteria. , Purification of night soil (Special Publication No. 45-12631), Purification of wool washing waste fluid (Special Publication No. 28234, Showa 45), Purification of starch waste fluid (Special Publication No. 18670, Showa 46), Purification of hydrocarbon fermentation waste fluid C Special Publication No. 1977 -27668), etc.

また本発明者等は、これ等の廃水処理時に副生ずる光合
成細菌菌体を、飼料として利用(特公昭47−1677
2号)、肥料として利用(特公昭45−14091号)
することにも成功し、実用化されている。
The present inventors also utilized photosynthetic bacterial cells produced as a by-product during wastewater treatment as feed (Japanese Patent Publication No. 47-1677
No. 2), used as fertilizer (Special Publication No. 45-14091)
It has also been successfully put into practical use.

本発明者は、光合成細菌を利用する有機性廃水処理につ
いての研究を進め、光合成細菌を利用して有機性廃水を
浄化処理するに当って、対象とする有機性廃水中におい
て光合成細菌と共生関係を示す特定の菌株を使用し、こ
の菌株と光合成細菌とを有機性廃水中で培養する場合に
は、極めて高い浄化効率を示すという舌泪すべき事実を
見出し、更にこの現象は有機性廃水の内の食品工場廃水
、特に澱粉を多量に誉んでいる廃水(例えば澱粉工場廃
水)、蛋白質、核酸類を多量に含んでいる廃。
The present inventor has conducted research on organic wastewater treatment using photosynthetic bacteria, and has established a symbiotic relationship with photosynthetic bacteria in the target organic wastewater when purifying organic wastewater using photosynthetic bacteria. We discovered the shocking fact that when we use a specific bacterial strain that exhibits Food factory wastewater in Japan, especially wastewater containing large amounts of starch (e.g. starch factory wastewater), protein, and nucleic acids.

水(例えば豆腐、ミソ、乳製品、魚、牛肉罐詰工場廃水
、屠殺場廃水)、脂肪を多量に含んでいる廃水(例えば
、魚、牛肉罐詰工場廃水、油抽出工場廃水)、ペクチン
、繊維素を多量に含んでいる廃水(例えば果物罐詰工場
廃水)、アルコール、酢、醤油等の発酵廃水(例えば発
酵工場廃液)を対象とした場合に顕著であり、またこの
場合に副生ずる菌体は飼料、肥料さして優れた性能を有
していることを確めて本発明を完成したものである。
Water (e.g. tofu, miso, dairy products, fish, beef packaging factory wastewater, slaughterhouse wastewater), wastewater containing large amounts of fat (e.g. fish, beef packaging factory wastewater, oil extraction factory wastewater), pectin, This is noticeable when wastewater containing a large amount of cellulose (e.g. wastewater from a fruit packing factory) or fermentation wastewater containing alcohol, vinegar, soy sauce, etc. (e.g. fermentation factory wastewater) is used. The present invention was completed after confirming that the plant has excellent performance as feed and fertilizer.

即ち、本発明は、食品工場廃水中で、ロドシュ:−ドモ
ナス属、ロドスピリラム属、クロマチューム属のいづれ
かに属する光合成細菌群から選ばれる光合成細菌菌体と
、該光合成細菌菌体と対象とする食品工場廃水中におい
て共生関係を示す下記の特定の菌株とを混合培養するこ
とによって、浄。
That is, the present invention provides for the production of photosynthetic bacterial cells selected from the group of photosynthetic bacteria belonging to the genus Rhodochium, Rhodospirillum, or Chromatum in food factory wastewater, and the photosynthetic bacterial cells and the target food. Purification is achieved by cultivating a mixture of the following specific bacterial strains that exhibit a symbiotic relationship in factory wastewater.

化処理を行うことからなる共生微生物利用による食品工
場廃水処理法である。
This is a food factory wastewater treatment method using symbiotic microorganisms that involves chemical treatment.

次に、本発明方法の構成、効果を説明する。Next, the configuration and effects of the method of the present invention will be explained.

先づ、本発明方法において使用する光合成細菌菌体並び
に特定菌株について述べる。
First, the photosynthetic bacterial cells and specific bacterial strains used in the method of the present invention will be described.

光合成細菌菌体としては、ロドシュードモナス属、ロド
スピリラム属、クロマチューム属のいづれかに属するも
のを用いる。
As the photosynthetic bacterium, one belonging to the genus Rhodopseudomonas, Rhodospirillum, or Chromatum is used.

例示すればロドシュードモナスカプシュラタス(Rho
dopseud−monascapsu 1atus
: 微工研菌寄第879号)、。
For example, Rhodopseudomonas capsulatus (Rho)
dopseud-monascapsu 1atus
: Microtechnical Research Bulletin No. 879).

ロドシュードモナスシュフエロイデス(Rhodo−p
seudomonasshhero 1des :
発酵研菌株第12203号)、ロドスピリラムルブラム
(Rhodosp i r i l l um rub
rum :微工研菌寄第878号、クロマチュームビノ
サム(Ohroma−tium vinosum:微工
研菌寄第890号)が挙げられる。
Rhodopseudomonas sulpheroides (Rhodo-p.
seudomonasshhero 1des:
Fermentation Research Institute strain No. 12203), Rhodospirillum rubrum
rum: Ohroma-tium vinosum No. 878, and Chromatium vinosum (Feikoken No. 890).

特定菌株としては、乳酸菌(Lactobacillu
s:発酵研菌株第3205号、第3532号、第355
3号、第3809号、第3961号、第3425号)、
アルコール酵母(発酵研菌株第2090号)、ビール酵
母(発酵研菌株第2017号)、パン酵母(発酵研菌株
第2046号、第2044号)、酒酵母(発酵研菌株第
2164号)、葡萄酒酵母(発酵研菌株第2363号)
、アシュブヤ(Ash−bya: 発酵研菌株第056
0号、第1355号)、カンジダ(Oandida:
発酵研菌株第0566号、第0691号、第1086
号、第0717号、第0617号、第0837号)、プ
レタノマイセス(Brettano−myces:発酵
研菌株第0627号、第0628号)、クリプトコック
ス(Oryptococcus :発酵研菌株第037
7号、第0378号、第0612号、第1193号、第
0411号、第0943号、第1420号)、デバリオ
マイセス(Debaryn−myces:発酵研菌株第
0015号、第0855号)、エンドマイコブシス(E
ndomy cops is :発酵研菌株第0101
号、第0844号、第0672号)、ハンセニュラ(H
ansenula :発酵研菌株第0140号、第01
48号)、クロッケラ(K 1oekera :発酵研
菌株第0868号)、ピヒヤ(P 1chia :発酵
研菌株第0193号)、ロドトルラ(Rho−doto
rula:発酵研菌株第1541号、第1433号)、
サツカロマイセス(Saccharomy ces :
発酵研菌株第0849号、第0504号、第0293号
、第0525号、第0021号)、シゾサツカロマイセ
ス(Schizosaccharomyces :発酵
研菌株第0345号)、トルロプシス(Torulo−
psis:発酵研菌株第0861号)、バチルス(Ba
cillus :発酵研菌株第3020号、第3968
号、第3514号、第3001号、第3951号)、ス
トレプトコックス(S treptcoccus:発酵
研菌株第12007号)、スタフイロコックス(Sta
−phy 1ococcus :発酵研菌株第3060
号)、シュードモナス(Psedomonas :発酵
研菌株第3445号、第3458号)、アスペルギルス
(Aspergi l lus :発酵研菌株第428
1号、第6086号、第4075号、第4091号)、
リゾプス(Rhizopus :発酵研菌株第4745
号、第4697号)、’yルイヴエロマイセス(Klu
−veromyces :発酵研菌株第0433号)、
ブリューロタス(Pleurotus:発酵研菌株第6
515号)、キューネロマイセス(Kuehnerom
yces :発酵研菌株第6141号)、フラムリナ(
Fla−mmulina:発酵研菌株第4901号)、
アセトバクター(Acetobacter :発酵研菌
株第3281号)、ストレプトマイセス(S trep
tomyces :発酵研菌株第3359号)、ノカ
ルディア(Noca rdi a :発酵研菌株第33
85号が挙げられる。
Specific bacterial strains include lactic acid bacteria (Lactobacillus
s: Fermentation Research Institute strain No. 3205, No. 3532, No. 355
No. 3, No. 3809, No. 3961, No. 3425),
Alcohol yeast (Hakkoken strain No. 2090), beer yeast (Hakkoken strain No. 2017), baker's yeast (Hakkoken strain No. 2046, 2044), sake yeast (Hakkoken strain No. 2164), wine yeast (Fukakken Bacterial Strain No. 2363)
, Ash-bya: Fermentation Research Institute Strain No. 056
No. 0, No. 1355), Candida (Oandida:
Fermentation Research Institute strain No. 0566, No. 0691, No. 1086
No., No. 0717, No. 0617, No. 0837), Brettano-myces (Fukkoken strain No. 0627, No. 0628), Oryptococcus: Ferkoken strain No. 037
No. 7, No. 0378, No. 0612, No. 1193, No. 0411, No. 0943, No. 1420), Debaryn-myces (Hakkoken strain No. 0015, No. 0855), Endomycobsis (E
ndomy cops is: Fermentation Research Institute Strain No. 0101
No., No. 0844, No. 0672), Hansenula (H
ansenula: Hakkoken strain No. 0140, No. 01
48), crockera (K1oekera: Hakkoken strain No. 0868), pihya (P1chia: Hakkoken strain No. 0193), Rho-doto
rula: Hakkoken Bacterial Strain No. 1541, No. 1433),
Saccharomyces:
Hakkoken strain No. 0849, No. 0504, No. 0293, No. 0525, No. 0021), Schizosaccharomyces (Hakkoken strain No. 0345), Torulopsis (Torulo-
psi: Ferkoken Bacterial Strain No. 0861), Bacillus (Ba
cillus: Fermentation Research Institute strain No. 3020, No. 3968
No., No. 3514, No. 3001, No. 3951), Streptococcus (Hakkoken Strain No. 12007), Staphylococcus (Sta.
-phy 1ococcus: Fermentation Research Institute strain No. 3060
), Psedomonas (Hakkoken strain No. 3445, No. 3458), Aspergillus (Hakkoken strain No. 428)
No. 1, No. 6086, No. 4075, No. 4091),
Rhizopus: Fermentation Research Institute Strain No. 4745
No. 4697), 'y Louis Vellomyces (Klu
-veromyces: Fermentation Research Institute strain No. 0433),
Pleurotus: Fermentation Research Institute Strain No. 6
No. 515), Kuehneromyces
yces: Fermentation Research Institute Strain No. 6141), Flammulina (
Fla-mmulina: Hakkoken strain No. 4901),
Acetobacter (Hakkoken strain No. 3281), Streptomyces (S.
tomyces: Hakkoken strain No. 3359), Nocardia (Hakkoken strain No. 33)
No. 85 is mentioned.

上掲の特定菌株はいづれも、前記光合成細菌菌体と食品
工場廃水中において共生関係を示し顕著な浄化作用を示
すものである。
All of the above-mentioned specific strains exhibit a symbiotic relationship with the photosynthetic bacterial cells in food factory wastewater, and exhibit a remarkable purifying effect.

尚、本発明者等は永年にわたる厖大な実験結果から食品
工場廃水の種類に応じて、適切な菌株を上記の特定菌株
から選定し、前記光合成細菌菌体と混合培養を行う場合
にはより高い浄化効率が得られることを確認している。
In addition, based on the results of extensive experiments over many years, the present inventors have selected an appropriate strain from the above-mentioned specific strains according to the type of food factory wastewater, and when performing mixed culture with the photosynthetic bacteria, the It has been confirmed that purification efficiency can be achieved.

適切な組合せ例を示せば次の通りである。Examples of appropriate combinations are as follows.

A 澱粉を多量に含んでいる廃水に対しては、乳酸菌、
アルコール酵母、ビール酵母、パン酵母、酒酵母、葡萄
酒酵母、ハンセニュラ、サツカロマイセス、シゾサツカ
ロマイセス、トルロプシス。
A: For wastewater containing large amounts of starch, lactic acid bacteria,
Alcohol yeast, beer yeast, baker's yeast, sake yeast, wine yeast, Hansenula, Satucharomyces, Schizosatucharomyces, Torulopsis.

B 蛋白質、核酸類を多量に含んでいる廃水に対しては
、乳酸菌、カンジダ。
B For wastewater containing large amounts of proteins and nucleic acids, use lactic acid bacteria and Candida.

C脂肪を多量に含んでいる廃水に対しては、シュードモ
ナス、アスペルギルス。
Pseudomonas and Aspergillus for wastewater containing a large amount of C fat.

D ペクチン、繊維素を多量に含んでいる廃水に対して
は、アスペルギルス、サツカロマイセス、フラムリナ。
D For wastewater containing large amounts of pectin and cellulose, use Aspergillus, Satucharomyces, and Flammulina.

E アルコール、酢、醤油等の発酵廃水に対しては、ア
セトバクター、ストレプトマイセス、ノカルディア。
E For fermentation wastewater such as alcohol, vinegar, and soy sauce, Acetobacter, Streptomyces, and Nocardia.

次に、廃水処理の態様について述べる。Next, aspects of wastewater treatment will be described.

廃水処理に当っては、周知の光合成細菌菌体を利用する
廃水処理の場合と同様に、処理槽(培養槽)を準備し、
これに対象とする食品工場廃水を導入し、廃水中で前記
光合成細菌菌体と上記特定菌株とを混合培養すればよい
For wastewater treatment, as in the case of wastewater treatment using well-known photosynthetic bacterial cells, a treatment tank (culture tank) is prepared,
The target food factory wastewater may be introduced into the wastewater, and the photosynthetic bacterial cells and the specific bacterial strain may be mixed and cultured in the wastewater.

尚、処理槽には、必要に応じて照明装置、通気装置等を
設置すればよく、設置に当っては周知技術に依ればよい
Incidentally, a lighting device, a ventilation device, etc. may be installed in the processing tank as necessary, and the installation may be performed using a well-known technique.

廃水中で混合培養する前記光合成細菌菌体と上記特定菌
株とは、あらかじめ別々に種培養して置いたものを使用
すればよく、この場合には通常、前記光合成細菌菌体と
上記特定菌株とを1:1の割合で用い、被処理廃水に対
して約0.01%程度を接種するのみで浄化は達成され
る。
The photosynthetic bacterial cells and the specific bacterial strain to be mixedly cultured in wastewater may be seed-cultured separately in advance, and in this case, the photosynthetic bacterial cells and the specific bacterial strain are usually cultured separately. Purification can be achieved by inoculating about 0.01% of the wastewater to be treated by using it at a ratio of 1:1.

勿論、前記光合成細菌菌体と上記特定菌株との混合割合
及び使用量は、菌の種類、廃水の種類、収穫菌体の用途
等に応じて適宜選択することができる。
Of course, the mixing ratio and usage amount of the photosynthetic bacterial cells and the specific bacterial strain can be appropriately selected depending on the type of bacteria, the type of wastewater, the use of the harvested bacterial cells, etc.

また、種培養をする代りに、前記光合成細菌菌体と上記
特定菌株とを混合培養している被処理廃水の一部を用い
ることもでき、この場合には菌が増殖中の被処理廃水の
一部を採取して別の処理槽に投入すればよい。
Furthermore, instead of seed culture, it is also possible to use a portion of the wastewater to be treated in which the photosynthetic bacterial cells and the specific bacterial strain have been mixedly cultured, and in this case, the wastewater to be treated where the bacteria are growing All you have to do is collect a portion and put it into another treatment tank.

廃水処理の諸条件は、光照射下でも暗黒下でもよく、ま
た好気下でも嫌気下でもよいが、被処理廃水中の溶存酸
素量は0.1〜6ppI[lの範囲内とすることが共生
関係を良好に保つ上で好ましい。
The conditions for wastewater treatment may be under light irradiation or darkness, and may be under aerobic or anaerobic conditions, but the amount of dissolved oxygen in the wastewater to be treated should be within the range of 0.1 to 6 ppI [l]. This is preferable for maintaining a good symbiotic relationship.

処理時間は、使用する菌の種類、対象とする廃水の種類
によって異るが、混合培養を開始後、通常8〜24時間
程度で、被処理廃水中で増殖している菌を収獲すれば、
浄化は完了する。
The treatment time varies depending on the type of bacteria used and the type of wastewater to be treated, but if the bacteria growing in the wastewater to be treated are harvested within 8 to 24 hours after starting mixed culture,
Purification is complete.

尚、菌の収獲は周知手段に依ればよい。Incidentally, the bacteria may be harvested by well-known means.

上述の通りの態様によって廃水処理を行うに当って上記
特定菌株の内には、例えばアスペルギルスやリゾプスの
如く固定床がある場合には浄化活性が高くなる菌株があ
るので、これ等の菌株を選択、使用する場合には、周知
の固定床、回転口床を処理槽に設置することが望ましい
When treating wastewater in the manner described above, some of the specific bacterial strains mentioned above have a high purification activity when there is a fixed bed, such as Aspergillus and Rhizopus, so these strains are selected. When used, it is desirable to install a well-known fixed bed or rotary mouth bed in the treatment tank.

以上、説明した本発明方法に依れば、B、0.D値の高
い食品工場廃水、特にB、0.D値数千pp[Ilとい
う濃厚廃水を8〜24時間という高能率で数拾咽にまで
浄化でき、しかも処理に当って副生ずる菌体は飼料、肥
料として有効利用できるという利点をも有するものであ
る。
According to the method of the present invention described above, B, 0. Food factory wastewater with high D value, especially B, 0. It can purify concentrated wastewater with a D value of several thousand pp [Il] to a few phlegm in a highly efficient 8 to 24 hours, and also has the advantage that the bacterial cells produced as a by-product during treatment can be effectively used as feed and fertilizer. It is.

更に、果物罐詰工場廃水の如く、ペクチン、繊維素を多
量に含む廃水は、周知の活性汚泥法による浄化は困難と
されているが、本発明方法はかかる廃水にも適用できる
ものである。
Further, wastewater containing large amounts of pectin and cellulose, such as wastewater from a fruit canning factory, is difficult to purify using the well-known activated sludge method, but the method of the present invention can also be applied to such wastewater.

更にまた、発酵工業廃水の1種である廃糖蜜を原料とす
るアルコール発酵の廃水はB、D、D値が高いばかりで
なく茶褐色を呈しており、これを透明なものとすること
は非常に困難とされているが、本発明方法を適用すれば
、B、0.Dr直を下げるだけにとどまらず、透明なも
のとすることもできる。
Furthermore, wastewater from alcoholic fermentation, which uses blackstrap molasses as a raw material, which is a type of fermentation industrial wastewater, not only has high B, D, and D values, but also has a brown color, and it is extremely difficult to make it transparent. Although it is said to be difficult, if the method of the present invention is applied, B, 0. In addition to lowering the directivity of the doctor, it can also be made transparent.

次に、実施例によって本発明方法の構成、効果を説明す
る。
Next, the configuration and effects of the method of the present invention will be explained using examples.

実施例 1゜ 澱粉を多量に含み、B、0.D値5sooppmを示す
澱粉工場廃水を対象とし、光合成細菌菌体としてロドシ
ュードモナス力プシユラタス(微工研菌寄第879号)
を用い、これと共生関係を示す菌株として乳酸菌(発酵
研菌株第3205号)を用いて、次の通りの処理を行っ
た。
Example 1゜ Contains a large amount of starch, B, 0. Starch factory wastewater with a D value of 5 sooppm was targeted, and Rhodopseudomonas pusillatus (Feikoken Bibori No. 879) was detected as a photosynthetic bacterial cell.
The following treatment was carried out using lactic acid bacteria (Hakkoken Bacteria Strain No. 3205) as a strain that exhibits a symbiotic relationship with this.

先づ、上記澱粉工場廃水を処理槽に導入し、ここにあら
かじめそれぞれ種培養して置いた上記ロドシュードモナ
スカプシュラタスと上記乳酸菌とを1:1の割合で、廃
水全量に対して0.01%(湿菌量)の容量比で添加し
、廃水中の溶存酸素量(D、0)0.1〜1卿に保持し
た状態で混合培養した。
First, the starch factory wastewater was introduced into a treatment tank, and the Rhodopseudomonas capsulatus and the lactic acid bacteria, each of which had been seed-cultured in advance, were added at a ratio of 1:1 to 0.01% of the total amount of wastewater. % (wet bacteria amount) and mixed culture was carried out in a state where the amount of dissolved oxygen (D, 0) in the wastewater was maintained at 0.1 to 1.

12時間後、廃水中の菌体を集菌したところ菌体は廃水
11当り5.fl(乾燥型)収穫でき、菌体収穫後の処
理水のB、0.D値は35pIXnに下っていた。
After 12 hours, the bacteria in the wastewater were collected, and the number of bacteria was 5. fl (dry type) can be harvested, and B, 0. The D value had fallen to 35 pIXn.

尚、比較の為に、上記ロドシュードモナス力プシュラタ
ス単独の場合、上記乳酸菌単独の場合について上記と全
く同一の条件−添加量は廃水全量に対してそれぞれ0.
01%宛とした。
For comparison, in the case of the above-mentioned Rhodopseudomonas pusulatus alone and the above-mentioned case of lactic acid bacteria alone, the conditions were exactly the same as above, and the amount added was 0.0% to the total amount of wastewater.
It was addressed to 01%.

−で処理を行ったところ、前者の場合には菌体収穫量は
廃水11当り0.3g、B、0.D値は680pfll
lコ下ツテおり、後者の場合には菌体収穫量は廃水11
当り0゜5g、B、OD値はsooppmに下った。
- In the former case, the yield of bacterial cells was 0.3 g per 11 wastewater, B, 0. D value is 680pfl
In the latter case, the yield of bacterial cells is 11% of the wastewater.
The B and OD values fell to sooppm.

実施例 2〜19 実施例1.の乳酸菌を種々の菌株にかえ、処理時間も使
用する菌株に応じて変更した他は、実施例1、と全く同
一の条件で実施例1.と同じ廃水を対象として処理を行
った。
Examples 2-19 Example 1. Example 1 was carried out under exactly the same conditions as in Example 1, except that the lactic acid bacteria in Example 1 was changed to various strains and the treatment time was also changed depending on the strain used. The same wastewater was treated.

その結果を次の第1表に示す。The results are shown in Table 1 below.

尚、同表には比較の為に種々の菌株を単独で用いた場合
の結果も示した。
The same table also shows the results when various strains were used alone for comparison.

第1表において上段はロドシュードモナス力プシュラタ
ス(微工菌寄第879号)と混合培養した場合の結果で
あり、下段は単独で用いた場合の結果である。
In Table 1, the upper row shows the results when the mixture was cultured with Rhodopseudomonas pusulatus (Keiko Bacteria No. 879), and the lower row shows the results when it was used alone.

実施例 20 蛋白質を多量に含み、B、0.D値3800pp[[l
を示す牛乳製品工場廃水を対象とし、光合成細菌菌体と
してロドシュードモナスシュフエロイデス(発酵研菌株
第3205号)を用い、これと共生関係を示す菌株とし
てバチルス(発酵研菌株第3020号)を用いて、次の
通りの処理を行った。
Example 20 Contains a large amount of protein, B, 0. D value 3800pp[[l
We used Rhodopseudomonas schuphaeroides (Fakkoken strain No. 3205) as the photosynthetic bacterial cell and Bacillus (Fakkoken strain No. 3020) as the bacterial strain that exhibits a symbiotic relationship with the photosynthetic bacteria. Then, the following processing was performed.

先づ、上記牛乳製品工場廃水を処理槽に導入し、こ\に
あらかじめそれぞれ種培養して置いた上記ロドシュード
モナスシェフエロイデスと上記バチルスとを1=1の割
合で、廃水全量に対して0.01%(湿菌量)の容量比
で添加し、廃水中の溶存酸素量(D、0)1゜oppm
に保持した状態で混合培養した。
First, the above milk product factory wastewater is introduced into a treatment tank, and the above Rhodopseudomonas chefheroides and the above Bacillus, which have been seed cultured in advance, are added to the tank at a ratio of 1=1 to 0% of the total amount of wastewater. Added at a volume ratio of .01% (wet bacteria amount), dissolved oxygen amount (D, 0) in wastewater 1° oppm
A mixed culture was carried out while maintaining the condition.

12時間後、廃水中の菌体を集菌したところ菌体は廃水
11当り4.0g(乾燥型)収穫でき、菌体収穫後の処
理水のB、0.D値は401)Xこ下っていた。
After 12 hours, the bacteria in the wastewater were collected, and 4.0g (dry type) of bacteria could be harvested per 11 liters of wastewater. The D value had dropped by 401)X.

比較の為に上記ロドシュードモナスシュフエロイデス単
独の場合、上記バチルス単独の場合について上記と全く
同一の条件−添加量は廃水全量に対してそれぞれ0.0
1%宛とした。
For comparison, in the case of Rhodopseudomonas schuphaeroides alone and the case of Bacillus alone, the conditions were exactly the same as above - the amount added was 0.0 for the total amount of wastewater, respectively.
1%.

−で処理を行つたところ、前者の場合には菌体収穫量は
廃水14当り0.2F、B、0.D値は75Qppmに
下っており、後者の場合には菌体収穫量は廃水11当り
0.2.?、B、0.D値は9001)I)mに下った
- In the former case, the yield of bacterial cells was 0.2 F, B, 0.2 F/14 wastewater. The D value has decreased to 75 Qppm, and in the latter case, the bacterial yield is 0.2 per 11 wastewaters. ? , B, 0. The D value fell to 9001)I)m.

実施例 21〜25 実施例20のバチルスを種々の菌株にかえ、処理時間も
使用する菌株に応じて変更した他は、実施例20と全く
同一の条件で実施例20と同じ廃ミ水を対象として処理
を行った。
Examples 21 to 25 The same waste water as in Example 20 was used under exactly the same conditions as in Example 20, except that the Bacillus in Example 20 was changed to various strains and the treatment time was also changed depending on the strain used. It was processed as follows.

その結果を次の第2表に示す。The results are shown in Table 2 below.

尚、同表には比較の為に種々の菌株を単独で用いた場合
の結果も示した。
The same table also shows the results when various strains were used alone for comparison.

第2表において上段はロ:4シュードモナスシュフエロ
イデス(発酵研菌株第3205号)と混合培養した場合
の結果であり、下段は単独で用いた場合の結果である。
In Table 2, the upper row shows the results when mixed culture with B:4 Pseudomonas schuphaeroides (Hakkoken strain No. 3205), and the lower row shows the results when it was used alone.

実施例 26 油脂を多量に含み、B、0.D値9400pI)!If
を示す魚肉加工製品工場廃水を対象とし、光合成細菌菌
体としてクロマチュームビノサム(微工研菌寄第890
号)を用い、これと共生関係を示す菌株としてアスペル
ギルス(発酵研菌株第4281号)を用いて、次の通り
の処理を行った。
Example 26 Contains a large amount of oil and fat, B, 0. D value 9400 pI)! If
The wastewater from a fish and meat processing factory exhibiting
The following treatments were carried out using Aspergillus (Hakkoken strain No. 4281) as a strain that exhibits a symbiotic relationship with Aspergillus.

先づ、上記魚肉加工製品工場廃水を処理槽に導入し、こ
Nにあらかじめそれぞれ種培養して置いた上記クロマチ
ュームビノサムと上記アスペルギルスとを1:1の割合
で、廃水全量に対して0.01%(湿菌量)の容量比で
添加し、廃水中の溶存酸素量(D、0)3.0ppmに
保持した状態で混合培養した。
First, the above fish meat processing product factory wastewater is introduced into a treatment tank, and the above Chromatum binosum and the above Aspergillus, which have been seed cultured in advance in this N, are added at a ratio of 1:1 to 0% of the total amount of wastewater. It was added at a volume ratio of .01% (wet bacteria amount), and mixed culture was carried out while maintaining the amount of dissolved oxygen in the wastewater (D, 0) at 3.0 ppm.

24時間後、廃水中の菌体を集菌したところ菌体は廃水
11当り1(1(乾燥菌)収穫でき、菌体収穫後の処理
水のB、0.D値は501)INn?こ下っていた。
After 24 hours, the bacteria in the wastewater were collected, and 1 (1 (dry) bacteria) could be harvested per 11 wastewater, and the B, 0.D value of the treated water after harvesting the bacteria was 501) INn? It was going down.

比較の為に上記クロマチュームビノサム単独の場合、上
記アスペルギルス単独の場合について上記と全く同一の
条件−添加量は廃水全量に対してそれぞれ0.01%宛
とした。
For comparison, the same conditions as above were used for the case of Chromatum vinosum alone and the case of Aspergillus alone, but the amounts added were each 0.01% based on the total amount of wastewater.

−で処理を行ったところ、前者の場合には菌体収穫量は
廃水11当り0.8g、B、O,D値は800酵に下っ
ており、後者の場合には菌体収穫量は廃水11当り0.
7g、B、0.D値は1000咽に下った。
- In the former case, the bacterial yield was 0.8 g per 11 wastewater, and the B, O, and D values were 800 fermentations, and in the latter case, the bacterial yield was 0.8 g per 11 wastewater. 0 per 11.
7g, B, 0. The D value dropped to 1,000.

実施例 27〜29 実施例26のアスペルギルスを種々の菌株にかえ、処理
時間も使用する菌株に応じて変更した他は、実施例26
と全く同一の条件で実施例26と同じ廃水を対象として
処理を行った。
Examples 27 to 29 Example 26 except that the Aspergillus in Example 26 was replaced with various strains and the treatment time was also changed depending on the strain used.
The same wastewater as in Example 26 was treated under exactly the same conditions as in Example 26.

その結果を次の第3表に示す。The results are shown in Table 3 below.

尚、同表には比較の為に種々の菌株を単独で用いた場合
の結果も※※示した。
In addition, the same table also shows the results when various bacterial strains were used alone for comparison.

第3表において上段はクロマチュームビノサム(微工研
菌寄第890号)と混合培養した場合の結果であり、下
段は単独で用いた場合の結果である。
In Table 3, the upper row shows the results when the mixture was cultured with Chromatum binosum (Feikoken Binosum No. 890), and the lower row shows the results when it was used alone.

実施例 3゜ ペクチンを多量に含み、B、0.D値4600ppIl
lを示すみかん罐詰工場廃水を対象とし、光合成細菌菌
体としてロドスピリラムルブラム(微工研菌寄第878
号)を用い、これと共生関係を示す菌株としてアスペル
ギルス(発酵研菌株第4075号)を用いて、次の通り
の処理を行った。
Example 3: Containing a large amount of pectin, B, 0. D value 4600ppIl
The target was wastewater from a mandarin cannery factory exhibiting a
The following treatments were carried out using Aspergillus (Hakkoken strain No. 4075) as a strain that exhibits a symbiotic relationship with Aspergillus.

先づ、上記みかん罐詰工場廃水を回転口床を備えた処理
槽に導入し、こ\にあらかじめそれぞれ種培養して置い
た上記ロドスピリラムルブラムと上記アスペルギルスと
を1:1の割合で、廃水全量に対して0.01%(湿菌
量)の容量比で添加し、廃水中の溶存酸素量(D、0)
3.5ppm<こ保持した状態で混合培養した。
First, the waste water from the tangerine canning factory was introduced into a treatment tank equipped with a rotary spout, and the Rhodospirillum rubrum and Aspergillus species, each of which had been seed cultured in advance, were introduced into the tank in a 1:1 ratio. It is added at a volume ratio of 0.01% (wet bacteria amount) to the total amount of wastewater, and the dissolved oxygen amount (D, 0) in the wastewater is
Mixed culture was carried out with the concentration maintained at 3.5 ppm.

48時間後、廃水中の菌体を集菌したところ菌体は廃水
11当り6.0g(乾燥型)収穫でき、菌体収穫後の処
理水のB、0.D値は20ppmに下っていた。
After 48 hours, the bacteria in the wastewater were collected, and 6.0g (dry type) of bacteria could be harvested per 11 wastewaters. The D value had fallen to 20 ppm.

比較の為に上記ロドスピリラムルブラム単独の場合、上
記アスペルギルス単独の場合について上記と全く同一の
条件−添加量は廃水全量に対してそれぞれ0.01%宛
とした。
For comparison, in the case of Rhodospirillum rubrum alone and the case of Aspergillus alone, conditions were exactly the same as above, and the amounts added were each 0.01% based on the total amount of wastewater.

−で処理を行ったところ、前者の場合には菌体収穫量は
廃水14当り0.1g、B、0.D値は30001)川
こわずか下っているだけであり、後者の場合には菌体収
穫量は廃水11当り0.5.9 、 B、0.D値は7
001)I)IIIに下った。
- In the former case, the yield of bacterial cells was 0.1 g/14 wastewater, B, 0. The D value is 30,001), and in the latter case, the bacterial yield is 0.5.9 per 11 wastewater, B, 0. D value is 7
001) I) It went down to III.

実施例 31〜35 実施例30のアスペルギルスを種々の菌株にかえ、処理
時間も使用する菌株に応じて変更した他は、実施例30
と全く同一の条件で実施例30と同じ廃水を対象として
処理を行った。
Examples 31 to 35 Example 30 except that the Aspergillus in Example 30 was replaced with various strains and the treatment time was also changed depending on the strain used.
The same wastewater as in Example 30 was treated under exactly the same conditions as in Example 30.

その結果を次の第4表に示す。The results are shown in Table 4 below.

尚、同表には比較の為に種々の菌株を単独で用いた場合
の結果も示した。
The same table also shows the results when various strains were used alone for comparison.

第4表において上段はロドスピリラムルブラム(微工研
菌寄第878号)と混合培養した場合の結果であり、下
段は単独で用いた場合の結果である。
In Table 4, the upper row shows the results when mixed culture with Rhodospirillum rubrum (Feikoken Bacteria No. 878), and the lower row shows the results when it was used alone.

実施例 36 廃糖蜜を原料とするアルコールを発酵廃水で、B−OD
値4000111)Inを示し、茶褐色(比色値二波長
350M、0.95)を呈するものを対象とし、光合成
細菌菌体としてロドシュードモナスカプシュラタス(微
工研菌寄第879号)を用いこれと共生関係を示す菌株
としてカンジダ(発酵研菌株第0617号)を用いて、
次の通りの処理を行った。
Example 36 B-OD of alcohol made from blackstrap molasses with fermentation wastewater
The target species were those exhibiting a value of 4000111) In and a brown color (colorimetric value of 350M, 0.95), using Rhodopseudomonas capsulatus (Feikoken Bacteria No. 879) as the photosynthetic bacterial cell. Using Candida (Hakkoken strain no. 0617) as a strain that exhibits a symbiotic relationship with
The following processing was performed.

先づ、上記廃水を回転口床を備えた処理槽に導入し、と
5にあらかじめそれぞれ種培養して置いた上記ロドシュ
ードモナスカプシュラタスと上記カンジダとを1:1の
割合で、廃水全量に対して0.01%(湿菌量)の容量
比で添加し、廃水中の溶存酸素量(D、0) 2.0p
pmに保持した状態で混合培養した。
First, the above wastewater was introduced into a treatment tank equipped with a rotary spout bed, and in step 5, the above rhodopseudomonas capsulatus and the above Candida, which had been cultured in advance, were added to the entire wastewater at a ratio of 1:1. Added at a volume ratio of 0.01% (wet bacteria amount) to the amount of dissolved oxygen in wastewater (D,0) 2.0p
Mixed culture was performed while maintaining the temperature at pm.

24時間後、廃水中の菌体を集菌したところ菌体は廃水
11当り8.0g(乾燥型)収穫でき、菌体収穫後の処
理水のB、O,D値は40ppInに下っていた。
After 24 hours, the bacteria in the wastewater were collected, and 8.0g (dry form) of bacteria could be harvested per 11 ounces of wastewater, and the B, O, and D values of the treated water after harvesting the bacteria had fallen to 40 ppIn. .

また処理水の比色値は波長350Mで0.08程度とな
り、透明水となった。
Furthermore, the colorimetric value of the treated water was approximately 0.08 at a wavelength of 350M, indicating that the water was transparent.

比較の為に上記ロドシュードモナス力プシュラタス単独
の場合、上記カンジダ単独の場合について上記と全く同
一の条件−添加量は廃水全量に対してそれぞれ0.01
%宛とした。
For comparison, in the case of the above Rhodopseudomonas pushulatus alone and the above case of Candida alone, the conditions were exactly the same as above - the amount added was 0.01 for each of the total amount of wastewater.
%.

−で処理を行ったところ、前者の場合には菌体収穫量は
廃水11当り0.3g、B、0.D値は450p餌こ下
っており、処理水の比色値は波長350履で0.85程
度であり、後者の場合には菌体収穫量は廃水11当り0
.5.9BO,D値は600p川こ下り、処理水の比色
値は波長350Mで0.80程度であった。
- In the former case, the yield of bacterial cells was 0.3 g per 11 wastewater, B, 0. The D value is 450p, and the colorimetric value of the treated water is about 0.85 at a wavelength of 350p, and in the latter case, the bacterial yield is 0 per 11 wastewater.
.. The BO, D value was 600p downstream, and the colorimetric value of the treated water was about 0.80 at a wavelength of 350M.

実施例 37〜41 実施例36のカンジダを種々の菌株にかえ、処理時間も
使用する菌株に応じて変更した他は、実施例36と全く
同一の条件で実施例36と同じ廃水を対象として処理を
行った。
Examples 37-41 The same wastewater as in Example 36 was treated under exactly the same conditions as in Example 36, except that Candida in Example 36 was replaced with various strains and the treatment time was also changed depending on the strain used. I did it.

その結果を次の第5表に示す。The results are shown in Table 5 below.

尚、同表には比較の為に種々の菌株を単独で用いた場合
の結果も示した。
The same table also shows the results when various strains were used alone for comparison.

第5表において上段はロドシュードモナスカプシュラタ
ス(微工研菌寄第879号)と混合培養した場合の結果
であり、下段は単独で用いた場合の結果である。
In Table 5, the upper row shows the results when the mixture was cultured with Rhodopseudomonas capsulatus (Feikoken Bacteria No. 879), and the lower row shows the results when it was used alone.

尚、処理水の比色値については実施例35の場合と同様
の結果を得た。
Regarding the colorimetric value of the treated water, the same results as in Example 35 were obtained.

Claims (1)

【特許請求の範囲】 1 食品工場廃水中で、 四ドシュードモナス(Rhodopseudomona
s )属、ロドスピリラム(Rhodosp i r
i l Ium)属、クロマチューム(Ohromat
ium)属のいづれかに属する光合成細菌群から選ばれ
る光合成細菌菌体と、乳酸菌(Lactobaci l
1us)、アルコ→し酵母、ビ→し酵母、パン酵母、
酒酵母、葡萄酒酵母、アシュブヤ(Ashbya)、カ
ンジダ(Oandida)、ブレタノマイセス(B r
e t tanomyces )、クリプトコックス(
C!ryptococus)、テバリオマイセス(De
baryomyces)、エンドマイコブシス(End
nmyccepsis )、ハンセニュラ(Hanse
−nula)、クロッケラ(K 1oekera )、
ピヒヤ(Pichia)、ロドトルラ(Rhodoto
rula)、サツカロマイセス(5accharo、m
yces )、シゾサッカロマイセス(Schizos
accharomyces)、トルロプシス(Toru
lopsis )、バチルス(Baci−flus)、
ストレプトコックス(S t rep tococcu
s )スタフイロコックス(S taphy 1oco
ccus )、シュードモナス(P s eudomo
n a s )、アスペルギルス(Asper gi
l 1us)、リゾプス(Rh 1zopus )、ク
ルイヴエロマイセス(K luyveromyces
)、ブリューロタス(P le+]rotus )、キ
ューネロマイセス(Kuehneromyces )、
フラムリナ(Flammu−1ina)、アセトバクタ
ー(Acetobacter )、ストレプトマイセス
(S treptomyces )、ノカルディア(N
ocardia)から選ばれる対象とする食品工場廃水
中において前記光合成細菌菌体と共生関係を示す菌株と
を、混合培養することによって、浄化処理を行うことを
特徴とする共生微生物利用による食品工場廃水処理法。
[Scope of Claims] 1. In food factory wastewater, Rhodopseudomonas
s), genus Rhodospirillum (Rhodospirillum)
I l Ium) genus, Chromatium
Photosynthetic bacterial cells selected from the group of photosynthetic bacteria belonging to the genus Ium) and lactic acid bacteria.
1 us), Arco → Shi yeast, Bi → Shi yeast, Baker's yeast,
Sake yeast, wine yeast, Ashbya, Candida, Brettanomyces (B r
et tanomyces), Cryptococcus (
C! ryptococcus), Thevariomyces (De
Baryomyces), Endomycobsis (End)
nmyccepsis), Hansenula (Hanse
-nula), Crockera (K 1oekera),
Pichia, Rhodoto
rula), Satucharomyces (5accharo, m
yces), Schizosaccharomyces
accharomyces), torulopsis (Toru
lopsis), Bacillus (Bacillus),
Streptococcus (Streptococcus)
s) Staphylococcus (S taphy 1oco
ccus), Pseudomonas (Pseudomonas)
n a s ), Aspergillus ( Asper gi
Rh 1us), Rhizopus, Kluyveromyces
), Ple+] lotus, Kuehneromyces,
Flammu-1ina, Acetobacter, Streptomyces, Nocardia (N
Food factory wastewater treatment by utilizing symbiotic microorganisms, characterized in that purification treatment is performed by mixed culturing of the photosynthetic bacterial cells and a strain exhibiting a symbiotic relationship in target food factory wastewater selected from P. ocardia. Law.
JP9422476A 1976-08-07 1976-08-07 Food factory wastewater treatment method using symbiotic microorganisms Expired JPS5948678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9422476A JPS5948678B2 (en) 1976-08-07 1976-08-07 Food factory wastewater treatment method using symbiotic microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9422476A JPS5948678B2 (en) 1976-08-07 1976-08-07 Food factory wastewater treatment method using symbiotic microorganisms

Publications (2)

Publication Number Publication Date
JPS5319673A JPS5319673A (en) 1978-02-23
JPS5948678B2 true JPS5948678B2 (en) 1984-11-28

Family

ID=14104332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9422476A Expired JPS5948678B2 (en) 1976-08-07 1976-08-07 Food factory wastewater treatment method using symbiotic microorganisms

Country Status (1)

Country Link
JP (1) JPS5948678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178864A (en) * 2006-11-17 2008-08-07 Sankootekku Kk Solid-liquid separation method for alcoholic beverage lees, and solid-liquid separation device therefor

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371440A (en) * 1981-09-23 1983-02-01 National Tax Administration Agency Method of treating a waste water rich in protein
JPS6028893A (en) * 1983-07-26 1985-02-14 Tax Adm Agency Treatment of waste water
JPS62183899A (en) * 1986-02-06 1987-08-12 Eno Shiyokusan Kk Method for treating liquid such as unrefined 'sake' waste liquid
JPS63173583A (en) * 1987-01-13 1988-07-18 Akira Yamazaki Culture of mycelium of basidiomycetes and ascomycetes
JPH06343399A (en) * 1993-06-11 1994-12-20 Katsuyoshi Ueda Formable gluten
JPH07132081A (en) * 1993-11-10 1995-05-23 Masakazu Ito Cell composition
US7314732B2 (en) 2000-02-17 2008-01-01 Tfk Inc. Drug and manufacturing method of same
EP1172434B1 (en) * 2000-02-17 2007-01-10 TFK Co., Ltd. Purple photosynthetic bacteria and health foods
JP2002306158A (en) * 2000-05-15 2002-10-22 Makoto Kumazaki Composite culture material, method for producing composite culture material, precultured material, method for producing precultured material and method for producing microbial preparation
CN100403921C (en) * 2005-06-06 2008-07-23 北京新纪元三色生态科技有限公司 A feed addictive, its preparation process and use
JP2009201354A (en) * 2005-12-22 2009-09-10 Saihatsu Ko Microorganism formulation for inhibiting harmful gas in pasture, field, fishery culture pond or the like
BR112013017809A8 (en) * 2011-01-12 2019-08-27 Inocucor Tech Inc composition, site bioremediation method, methods for affecting plant growth, for treating a surface and fluid, for preparing an article, a food supplement, and a mixed culture, and for food supplementation, and, article
WO2016038460A2 (en) 2014-09-09 2016-03-17 Inocucor Technologies, Inc. Microbial compositions and methods
WO2016178086A1 (en) 2015-05-01 2016-11-10 Inocucor Technologies, Inc. Microbial compositions and methods for bioprotection
CN106978370A (en) * 2017-04-14 2017-07-25 哈尔滨明慧生物技术开发有限公司 Handle the composite bacteria agent and its processing house refuse method of house refuse
CN109486716B (en) * 2018-12-10 2020-11-06 江南大学 Composite microbial inoculum for treating heavy metal in water and preparation method thereof
CN113371848B (en) * 2021-06-29 2022-09-16 内蒙古阜丰生物科技有限公司 Comprehensive treatment process of amino acid wastewater
CN113402124B (en) * 2021-07-02 2022-09-16 内蒙古阜丰生物科技有限公司 Method for reducing blood sugar and collecting salt from amino acid wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178864A (en) * 2006-11-17 2008-08-07 Sankootekku Kk Solid-liquid separation method for alcoholic beverage lees, and solid-liquid separation device therefor

Also Published As

Publication number Publication date
JPS5319673A (en) 1978-02-23

Similar Documents

Publication Publication Date Title
JPS5948678B2 (en) Food factory wastewater treatment method using symbiotic microorganisms
Sawant et al. Fungal citric acid production using waste materials: a mini-review
Liggett et al. Corn steep liquor in microbiology
Hatvani et al. Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process
US4183807A (en) Treatment of waste water rich in nutrients
CN101457190B (en) Method for preparing spirit flavoring wine or spirit flavour liquid mainly with fragrance
CN102337299B (en) Preparation method of bacillus flocculant
CN111019838A (en) Endophytic fungus and extract and application thereof
US1751459A (en) Process for biological purification of waste water
JP4153685B2 (en) Microorganism, microorganism-containing composition, and method for producing organic fertilizer using the microorganism
WO1993020180A1 (en) A method of inducing malolactic fermentation in wine or fruit juice by direct inoculation with a non-activated starter culture
CN102260633A (en) Research on functional artificial pit mud and application of functional artificial pit mud
Gray et al. Fungal protein for food and feeds. II. Whole sweet potato as a substrate
US4035517A (en) Process for treating the residue from the distillation of white wine
JPH0449396B2 (en)
CN1662641A (en) Compositions for improving the flavor of alcoholic beverage made from grape
Okagbue Fermentation research in Nigeria
Kühn et al. FUNGAL PURIFICATION OF AN INDUSTRIAL EFFLUENT CONTAINING VOLATILE FATTY ACIDS BY MEANS OF A CROSSFLOW–MICROSCREEN TECHNIQUE
Atolagbe et al. Characterization of [alpha]-Amylase from Soursop (Annona muricata Linn.) Fruits Degraded by Rhizopus stolonifer
JPH0975072A (en) High-aggregation active variant
CN1118565C (en) Zymophyte and wild oblonga fermented beverage prepared from same, and preparation process thereof
CN113957109B (en) Industrial green production process of polystictus glycopeptide
CN115521927B (en) Complex enzyme preparation capable of reducing content of higher alcohol and application thereof
JPH0236320B2 (en) HAISUISHORIHOHO
Ahlawat et al. Dye decolorization potential of spent substrates from Agaricus bisporus and Pleurotus sp. –a laboratory study