JPS5947771A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5947771A
JPS5947771A JP15746482A JP15746482A JPS5947771A JP S5947771 A JPS5947771 A JP S5947771A JP 15746482 A JP15746482 A JP 15746482A JP 15746482 A JP15746482 A JP 15746482A JP S5947771 A JPS5947771 A JP S5947771A
Authority
JP
Japan
Prior art keywords
film
gate
ohmic
electrode
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15746482A
Other languages
Japanese (ja)
Inventor
Yasushi Ose
小瀬 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15746482A priority Critical patent/JPS5947771A/en
Publication of JPS5947771A publication Critical patent/JPS5947771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a super high frequency GaAsFET of high reliability and excellent yield by a method wherein a gate-ohmic gap is contrived not to be influenced by the positioning accuracy for photo resist work performed by later processes. CONSTITUTION:An SiO2 film 2 is grown on a GaAs substrate 1 and an Si3N4 film 3 thereon, next photo resist 4 is coat-adhered at fixed positions 4a-4c, thereafter, the Si3N4-SiO2 film is removed by dry etching, and then wet etching is performed. Accordingly, the Si3N4 film of the upper layer spreads out of the SiO2 film of the lower layer, and the film generates at the fixed positions 4a- 4c, playing a role as the spacer at the time of the gate and ohmic electrodes. Al or Al/Ti is deposited by vapor as the gate metal, the dimension of the gate electrode is determined, AuGe/Ni is adhered as the ohmic metal 6, and then the dimension of ohmic electrode is determined by the shape and dimension of the Si3N4 film of the spacer.

Description

【発明の詳細な説明】 本発明は超高周波帯で動作するG a As電電界効果
上トランジスタ以下G a A s F E T と称
す)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a GaAs field effect transistor (hereinafter referred to as GaAsFET) that operates in an ultra-high frequency band.

現在、GHz 以上の超高周波帯において商業的5 ベ
ースでGaAsFETが生産され、さらに10 Gl(
zの如く高い周波数の素子のflit究がす\められて
いる。これらの超高周波GaAsFETはゲート電極に
ショットキーバリアr利用し、逆方向電圧忙印加するこ
とで、オーム接触?なすソース・ケート間の電流r制御
するという簡単な原理による。従ってまたゲート電極の
信頼度が直ちに1” E Tの信頼度に影響するから、
ゲート電極形成時に半導体基板にいささかも汚染があっ
てはならない。その意味で有機物汚染の源泉となる可能
性の強いホトレジスタの使用ケ避けたゲート形成法が必
要になる。また出力の大きいFETI得るには現在では
単一のFET1並列動作させるが、入力および出力のイ
ンビーターンス特性が揃っていなければならない。この
入出力lrケ性は主として、ゲート電(執とオーミック
電極(ソースおよびゲートm;極)との間隔によって支
配される。gにゲート・ソース間の抵抗値は重要である
Currently, GaAsFETs are produced commercially on a commercial basis in the ultra-high frequency band above GHz, and even more so on a 10 Gl (
Flit research for high frequency elements such as Z is progressing. These ultra-high frequency GaAsFETs use a Schottky barrier at the gate electrode and apply a reverse voltage to create ohmic contact. This is based on the simple principle of controlling the current r between the source and gate. Therefore, since the reliability of the gate electrode immediately affects the reliability of 1" ET,
The semiconductor substrate must not be contaminated at all during the formation of the gate electrode. In this sense, there is a need for a gate formation method that avoids the use of photoresists, which are likely to be a source of organic contamination. Furthermore, in order to obtain a FETI with a large output, one single FET is currently operated in parallel, but input and output interference characteristics must be the same. This input/output lr characteristic is mainly controlled by the distance between the gate electrode and the ohmic electrode (source and gate m; pole).The resistance value between the gate and the source is important in g.

J、 OGl(z lb作のG a A s F ET
の寸法は1例としてゲート長0.5μm、ソース・ゲー
ト間0.5μm の如く極めて小であるから寸法のバラ
ツキの++++IV++は特別に難しく、通常行なわれ
るマスク1合わせなどでは制御は困難であり、当然セル
フアジイメント方式の製法になる。
J, OGl (G a As F ET by z lb
For example, the dimensions are extremely small, such as the gate length of 0.5 μm and the source-to-gate distance of 0.5 μm, so it is particularly difficult to control the variation in dimensions by one mask alignment, etc. Naturally, it will be manufactured using a self-adjustment method.

本発明の目的は上記の欠点?除去し、信頼性が高く、か
つ歩留りのよい超高周波G a A s F E T 
k製造する新規の製造方法?提供することにある。
Is the purpose of the present invention the above drawbacks? ultra-high frequency G
K new manufacturing method? It is about providing.

以下図面?参照して本発明の詳細な説明する。Is the drawing below? The present invention will be described in detail with reference to the following.

図においては、ゲート電極と一つのオーミック電極の製
造工程r示すが、他のオーミック電極も同時に行えばよ
いから省略しである。G a A s基板1上に5rU
z膜2を成長させ、さらにその上に5iaN4膜3ケ成
長させる。(図a)。次にホトレジスト4’に所定の泣
面4”+  4b、4cに塗布密着(図1))後、ドラ
イエツチングで5i3N4−8i(Jz膜ヤケ除去た後
、弗酸・弗化アンモニウム混そ、蛾でウエットエッチン
グオ行なうと、Si3N4とSi(〕2 とはウェット
エツチングに対して、エラチンクレートの差が太きいた
めエツチング後ホトレジスト加工くと、上層の5i3N
411りが下層の5i(J21117、r、 、v)は
り出シit S i 3N4−81o211L5Erf
r定’7J(n1#4a、4b、4cに生ずる( Il
l c )。Cの特殊の形状膜が本発明におけるゲート
電極及びオーミック電極形成時のスペーサとしての役割
rなすものである。以下、ゲート電極形成・オーミック
電極形成4涸別に順次行なう。4a14b間にゲート電
極に、4 b+  4 C間にオーミック電極形成r行
なうのであるが、先ずゲート電極形成〒図d〜図eにて
説明する。ゲート電極形成部分以外忙ホトレジスト14
でおおい、燐酸系エツチング液によpGaAs基板1r
エツチングしてリセス構造ケ形成するとともに、GaA
sの活性層1′の厚みヶ調整しゲート電極として所定の
ピンチオフ電圧が得られるようにする((9)d)。ホ
トレジスト14’?除去した後、ゲート金属としてA4
まtはAd/Tik蒸着する(図e)。このゲート電極
の寸法は図Cのスペーサのうち上層のS i 3N4膜
の形状・寸法によりで5まる。次にオーミック電極形成
企図f〜図りにて説明する。オーミック〒に極形成部分
以外忙ホトレジスト24でおおい、オーミック形成部分
に被着しているAl″!、たはA e / T i 2
エツチングで除去後、オーミックメタル6としてAuG
e/Niv?!着する(図f入この際もスペーサのうぢ
Si3N4膜の形状・寸法によりオーミック電極の寸法
がさだまる。ホトレジスト24孕除去した(図g)後、
既に形成されたゲートおよびオーミック電極のみrおお
うようにホトレジスト34の加工4行なう。スペーサの
8i0a膜2の厚みが十分とってあれば8ialq4膜
5と電極との間には充分の間隔がとれるからホトレジス
ト34はその間に入りこみ、各電極紫完全におおい保護
する。次にホトレジスト34rマスクとして不必要なゲ
ートメタル5rエツチングにより除去した後。
In the figure, the manufacturing process r of the gate electrode and one ohmic electrode is shown, but it is omitted because it is sufficient to perform the manufacturing process for other ohmic electrodes at the same time. 5rU on GaAs substrate 1
The Z film 2 is grown, and three 5iaN4 films are further grown on it. (Figure a). Next, after coating the photoresist 4' on the predetermined critical surfaces 4"+ 4b and 4c (Fig. 1)), dry etching 5i3N4-8i (after removing the Jz film discoloration, adding a mixture of hydrofluoric acid and ammonium fluoride, When wet etching is performed, Si3N4 and Si(]2 have a large difference in elastin rate compared to wet etching, so when photoresist is applied after etching, the upper layer 5i3N
411 beam is the lower layer 5i (J21117, r, , v) protruding sheet S i 3N4-81o211L5Erf
r constant '7J (occurs in n1 #4a, 4b, 4c (Il
lc). The specially shaped film C plays a role as a spacer when forming the gate electrode and ohmic electrode in the present invention. Hereinafter, the formation of the gate electrode and the formation of the ohmic electrode will be performed in sequence. A gate electrode is formed between 4a and 14b, and an ohmic electrode is formed between 4b+4c. First, the formation of the gate electrode will be explained with reference to FIGS. d to e. Busy photoresist 14 except for the gate electrode formation area
The pGaAs substrate 1r is covered with a phosphoric acid etching solution.
While etching to form a recess structure, GaA
The thickness of the active layer 1' of s is adjusted so that a predetermined pinch-off voltage can be obtained as a gate electrode ((9)d). Photoresist 14'? After removing, use A4 as gate metal.
Then Ad/Tik is deposited (Figure e). The dimensions of this gate electrode are calculated by 5 depending on the shape and dimensions of the upper layer of the Si 3N4 film in the spacer shown in FIG. Next, the ohmic electrode formation plan will be explained using diagrams f. The ohmic area is covered with a photoresist 24 except for the pole forming area, and the Al''!, or A e / T i 2 that adheres to the ohmic forming area is
After removing by etching, AuG is used as ohmic metal 6.
e/Niv? ! (Fig. f) At this time, the dimensions of the ohmic electrode are also affected by the shape and dimensions of the Si3N4 film of the spacer. After removing 24 layers of photoresist (Fig. g),
A photoresist 34 is processed so as to cover only the gate and ohmic electrode that have already been formed. If the 8i0a film 2 of the spacer is sufficiently thick, there will be a sufficient distance between the 8ialq4 film 5 and the electrodes, so the photoresist 34 will fit in between and completely protect each electrode. Next, the photoresist 34r is used as a mask and unnecessary gate metal 5r is removed by etching.

CF4  ドライエツチングによりスペーサの5r3N
4膜3r除去し、3i0s+膜2ケ途中までエッチする
(図h)。さらに弗酸−弗rヒアンモニウム混合液で残
りの5i(l膜rオーバーエツチング気味に除去?つづ
けるとサイドエッチによりホトレジスト34の下の部分
にあった5iQ2膜も完全に除去されるとともに同時に
残りの5iaN4膜及び5iaN4膜上のAuGe/N
i  も除去することができる。このようにしてスペー
サ七すべて除去した後ホトレジスト34奮除去しく図”
L合金操作によりGaA、sとA u G e / N
 i  との間にオーミックコンタクl−kとる。最後
に5iaN4132保護膜として成長させておおう(図
j)。
5r3N spacer by CF4 dry etching
4 film 3r is removed, and 3i0s+ film 2 is etched halfway (Figure h). Furthermore, the remaining 5i(l film r) was removed with a mixed solution of hydrofluoric acid and fluorhyammonium, with a slight overetching.Continuing, the 5iQ2 film under the photoresist 34 was completely removed by side etching, and at the same time, the remaining 5i(l film) was removed. 5iaN4 film and AuGe/N on 5iaN4 film
i can also be removed. After removing all seven spacers in this way, the photoresist was then removed.
GaA, s and A u G e /N by L alloy operation
An ohmic contact l-k is established between i and i. Finally, a 5iaN4132 protective film is grown (Figure j).

上記の説明かられかるように、本発明による製造方法で
けG aAs F’ E Tのゲート・オーミック間隔
は一度図すの段階のホトレジスト4の間隔葡キめればそ
れ以後の工程で行なうホトレジスト加工14.24.3
4の目合せ精度に影響されることがない。また電極形成
6 S i 3N4−8 i(lのスペーサのみによっ
てきまりホトレジスタ?用いない。
As can be seen from the above description, in the manufacturing method according to the present invention, the gate ohmic spacing of the GaAs F' ET can be adjusted once the spacing of the photoresist 4 at the step of drawing is determined. Processing 14.24.3
It is not affected by the alignment accuracy in step 4. In addition, the electrode formation is determined only by the spacer 6S i 3N4-8i (1) and no photoresistor is used.

特にゲート電極形成の場合には全くホトレジスタがG 
a A s基板上にない(図e)から極めて信頼性の高
いショットキ電極が形成される。
Especially in the case of gate electrode formation, the photoresistor is completely
An extremely reliable Schottky electrode is formed from the a As not on the substrate (Figure e).

これによって超高周波で特性の揃い1 しかも高信頼性
のGaAs FET f得ることができる。
This makes it possible to obtain a GaAs FET f with uniform characteristics and high reliability at ultra-high frequencies.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例ケ、具体例で示した工稈順欠示し
たものである。 3、l’−=−GaAs基板、2・・・・・・5IO2
,3,13・・・・・・8iaN4.4+  141 
24.34・・・・・・ホトレジスト、5・・・・・・
A4またはAll/T i 、  fi・・・・・・A
uGe/Ni 0
The figure shows one embodiment of the present invention, with the culm order shown in the specific example not shown. 3, l'-=-GaAs substrate, 2...5IO2
,3,13...8iaN4.4+ 141
24.34...Photoresist, 5...
A4 or All/T i, fi...A
uGe/Ni 0

Claims (1)

【特許請求の範囲】 ゲートがショットキ電極、ソースおよびドレインがオー
ミック電極であるリセス構造のC1a A S電界効果
形トランジスタの製造において* G a A s基板
上に2種の薄膜r成長させる工程と、ポトレジスト加工
でゲートおよびオーミック電極の形成部の窓あけ勿同時
に行なう工程と、前記二層のエラテンクレートの差r利
用して上層が下層よりVより出した構造の所定の電極位
置にある二層構造のスペーツーr形成する工程と勿含み
、以後の工程でゲート電極、オーミック電極形成ケ夫々
別個に行ない。 各電極の位置、相互間の距離が前記スペーサの上層によ
り完全に定まV、特にゲート電極形成のときにはホト・
レジスタが基板上に存在しないこと?特徴とする() 
a A 8電界効果形トランジスタの製造方法。
[Claims] In the production of a recessed C1a AS field effect transistor in which the gate is a Schottky electrode and the source and drain are ohmic electrodes, a step of growing two types of thin films on a G a As substrate; The two layers are placed at predetermined electrode positions in a structure in which the upper layer protrudes from the V than the lower layer by making use of the difference r between the two layers' Elaten crates. In addition to the step of forming the spacer structure, the gate electrode and ohmic electrode are formed separately in subsequent steps. The position of each electrode and the distance between them are completely determined by the upper layer of the spacer, especially when forming the gate electrode.
That there are no resistors on the board? Feature()
a Method for manufacturing an A8 field effect transistor.
JP15746482A 1982-09-10 1982-09-10 Manufacture of semiconductor device Pending JPS5947771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15746482A JPS5947771A (en) 1982-09-10 1982-09-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15746482A JPS5947771A (en) 1982-09-10 1982-09-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5947771A true JPS5947771A (en) 1984-03-17

Family

ID=15650234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15746482A Pending JPS5947771A (en) 1982-09-10 1982-09-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5947771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104483A (en) * 1986-10-22 1988-05-09 Mitsubishi Electric Corp Semiconductor device
GB2534519A (en) * 2013-10-31 2016-07-27 Kawasaki Heavy Ind Ltd Hydraulic shovel drive system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162461A (en) * 1978-06-13 1979-12-24 Matsushita Electric Ind Co Ltd Manufacture for semiconductor device
JPS5730376A (en) * 1980-07-30 1982-02-18 Fujitsu Ltd Manufacture of schottky barrier fet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162461A (en) * 1978-06-13 1979-12-24 Matsushita Electric Ind Co Ltd Manufacture for semiconductor device
JPS5730376A (en) * 1980-07-30 1982-02-18 Fujitsu Ltd Manufacture of schottky barrier fet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104483A (en) * 1986-10-22 1988-05-09 Mitsubishi Electric Corp Semiconductor device
GB2534519A (en) * 2013-10-31 2016-07-27 Kawasaki Heavy Ind Ltd Hydraulic shovel drive system
GB2534519B (en) * 2013-10-31 2019-12-11 Kawasaki Heavy Ind Ltd Hydraulic excavator drive system

Similar Documents

Publication Publication Date Title
JPS5947771A (en) Manufacture of semiconductor device
JP3378561B2 (en) Method for manufacturing semiconductor device
JPS62204576A (en) Manufacture of vertical type transistor
JPS5961073A (en) Manufacture of semiconductor device
JPS5921193B2 (en) Method for manufacturing field effect transistors
JPH07114193B2 (en) Method of forming fine pattern
JPS5852351B2 (en) Manufacturing method of semiconductor device
JPS62162364A (en) Manufacture of semiconductor device
JPH0228333A (en) Manufacture of semiconductor device
JPS6239071A (en) Manufacture of semiconductor device
JP2788273B2 (en) Method for forming electrode for semiconductor device
JPH0240924A (en) Manufacture of semiconductor device
JPS59167028A (en) Manufacture of compound semiconductor integrated circuit device
JPH0442940A (en) Manufacture of semiconductor device
JPS6390171A (en) Manufacture of field effect transistor
JPS6246577A (en) Manufacture of semiconductor device
JPS58135667A (en) Semiconductor device
JPH0327536A (en) Manufacture of field effect transistor
JPS60134482A (en) Manufacture of semiconductor device
JPS6239072A (en) Manufacture of semiconductor device
JPS63127589A (en) Manufacture of semiconductor device
JPH04196541A (en) Manufacture of semiconductor device
JPH027444A (en) Manufacture of field-effect transistor
JPH046838A (en) Formation method for t-shaped offset gate
JPS60132322A (en) Manufacture of semiconductor device