JPS5946881B2 - Novel hydrogen absorbent - Google Patents

Novel hydrogen absorbent

Info

Publication number
JPS5946881B2
JPS5946881B2 JP54057465A JP5746579A JPS5946881B2 JP S5946881 B2 JPS5946881 B2 JP S5946881B2 JP 54057465 A JP54057465 A JP 54057465A JP 5746579 A JP5746579 A JP 5746579A JP S5946881 B2 JPS5946881 B2 JP S5946881B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
nickel
magnesium
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54057465A
Other languages
Japanese (ja)
Other versions
JPS55149101A (en
Inventor
精二郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP54057465A priority Critical patent/JPS5946881B2/en
Publication of JPS55149101A publication Critical patent/JPS55149101A/en
Publication of JPS5946881B2 publication Critical patent/JPS5946881B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 本発明は、水素吸蔵量が大きく、適切な平衡圧を有し、
かつ反応速度も速い新規な水素吸収剤に関するものであ
る。
Detailed Description of the Invention The present invention has a large hydrogen storage capacity, an appropriate equilibrium pressure,
The present invention relates to a new hydrogen absorbent that also has a fast reaction rate.

水素は資源的に制限がなく、環境汚染も起さない物質で
あり、各種反応剤として広く用いられているばかりでな
く、エネルギー源としても注目されている物質である。
Hydrogen is a substance that has no resource limitations and does not cause environmental pollution, and is not only widely used as a variety of reactants but also attracts attention as an energy source.

しかしながら、水素の貯蔵あるいは運送に際しては、ガ
スボンベ充てん法、低温加圧液化法、吸収剤に吸収させ
る方法などが従来から行われているが、いずれも効率、
費用又は安全性の上で問題があり、また、金属あるいは
合金が水素を吸蔵、放出する際に生ずる多大の発吸熱を
エネルギー源として利用するに際しても、蓄エネルギー
、ヒート・ポンプ、サーマル・コンプレッサーなどの工
学的応用のための種々の使用目的に適合した水素平衡圧
特性、反応速度、活性化状態を示し、安価に入手しうる
金属又は合金はまだ知られていない。
However, when storing or transporting hydrogen, methods such as filling gas cylinders, low-temperature pressurized liquefaction, and absorbing it into absorbents have been used, but all of these methods have low efficiency and low efficiency.
Energy storage, heat pumps, thermal compressors, etc. have problems in terms of cost or safety, and also when using the large amount of heat generated when metals or alloys absorb and release hydrogen as an energy source. No metal or alloy is yet known that exhibits hydrogen equilibrium pressure characteristics, reaction rates, and activation states suitable for various uses in engineering applications, and that can be obtained at low cost.

例えば、第1図に示すように、温度10〜55°Cで使
用可能な、実線で示されるヒーティングサイクル(A、
B、C,D)を構成するために、X及びYで示される水
素平衡圧曲線をもつ2種の金属が要求された場合、現在
のところ、実際に入手しうる金属例えばランタン−ニッ
ケル系合金、カルシウム−ニッケル系合金は、!及びy
で示される水素平衡圧曲線であるので、所望のヒーティ
ングサイクルを実現することができない。
For example, as shown in Figure 1, heating cycles (A,
B, C, and D), if two metals with hydrogen equilibrium pressure curves shown by X and Y are required, currently available metals such as lanthanum-nickel alloys are required. , calcium-nickel alloy is! and y
Therefore, the desired heating cycle cannot be realized.

したがって、このような場合にX及びYで示される水素
平衡圧曲線をもつ金属を得ることが重要な課題となって
くる。
Therefore, in such cases, it becomes an important issue to obtain a metal having hydrogen equilibrium pressure curves represented by X and Y.

本発明者らは、前記のように所望の水素平衡圧特性を任
意に実現することができ、しかも水素貯蔵量及び反応速
度の大きい水素吸収剤を開発するために、鋭意研究を重
ねた結果、(A)マグネシウム−ニッケル系合金と、(
B)カルシウム−ニッケル系合金、ミツシュメタル−ニ
ッケル系合金及びチタン−コバルト系合金の中から選ば
れた金属又は合金との混合物を用いることにより、その
目的を達成しうろことを見出し、本発明をなすに至った
The present inventors have conducted extensive research in order to develop a hydrogen absorbent that can arbitrarily achieve the desired hydrogen equilibrium pressure characteristics as described above, and has a large hydrogen storage capacity and reaction rate. (A) Magnesium-nickel alloy, (
B) It was discovered that the object could be achieved by using a mixture with a metal or alloy selected from calcium-nickel alloy, Mitsushi metal-nickel alloy, and titanium-cobalt alloy, and the present invention was accomplished. reached.

「すなわち、本発明は、(A)マグネシウム−ニッケル
系合金20〜80重量%と、(B)カルシウム−ニッケ
ル系合金、ミツシュメタル−ニッケル系合金及びチタン
−コバルト系合金の中から選ばれた合金80〜20重量
%との混合物から成る水素吸収剤を提供するものである
``In other words, the present invention comprises (A) 20 to 80% by weight of a magnesium-nickel alloy, and (B) an alloy of 80% by weight selected from calcium-nickel alloys, Mitsushi metal-nickel alloys, and titanium-cobalt alloys. 20% by weight.

」本発明の(A)成分として用いるマグネシウム−ニッ
ケル系合金は、マグネシウム55〜80モル%とニッケ
ル45〜20モル%から成る合金、例えばマグネシウム
とニッケルの原子比が2:1のものである。
The magnesium-nickel alloy used as component (A) of the present invention is an alloy consisting of 55 to 80 mol% of magnesium and 45 to 20 mol% of nickel, for example, an atomic ratio of magnesium to nickel of 2:1.

この合金は、単独では420m1l&の水素吸蔵量を有
するが、水素放出温度は250℃と高い。
This alloy alone has a hydrogen storage capacity of 420 ml, but its hydrogen release temperature is as high as 250°C.

他方、本発明の(B)成分として用いるカルシウム−ニ
ッケル系合金は、カルシウム10〜20モル%とニッケ
ル90〜80モル%から成る合金、例えばカルシウムと
ニッケルの原子比が1:5のものである。
On the other hand, the calcium-nickel alloy used as component (B) of the present invention is an alloy consisting of 10 to 20 mol% calcium and 90 to 80 mol% nickel, for example, an atomic ratio of calcium to nickel of 1:5. .

この合金は、単独では112m1/gの水素を吸蔵しう
るが水素放出温度は250℃付近である。
This alloy alone can store 112 m1/g of hydrogen, but its hydrogen release temperature is around 250°C.

さらに、ミツシュメタル−ニッケル系合金は、希土類元
素の混合物であるミツシュメタル10〜20モル%とニ
ッケル90〜80モル%から成る合金、例えばミツシュ
メタルとニッケルの原子比が1:5の合金で、このもの
は室温付近で容易に水素を吸収、放出しうるが水素吸蔵
量は165m1/gと少ない。
Furthermore, the Mitshu metal-nickel alloy is an alloy consisting of 10 to 20 mol% of Mitshu metal, which is a mixture of rare earth elements, and 90 to 80 mol% of nickel, for example, an alloy in which the atomic ratio of Mitshu metal and nickel is 1:5. It can easily absorb and release hydrogen at around room temperature, but its hydrogen storage capacity is as small as 165 ml/g.

次にチクンーコバルト系合金ハ、チタン40〜60モル
%、コバルト60〜40モル%から成る合金、例えばチ
タンとコバルトの原子比が1:1の合金であり、このも
のは約120℃付近で水素を吸収、放出しうるが、その
吸蔵量は約150 rnl/gと少ない。
Next, Chikun-cobalt-based alloy C is an alloy consisting of 40 to 60 mol% titanium and 60 to 40 mol% cobalt, for example, an alloy with an atomic ratio of titanium and cobalt of 1:1. Although it can absorb and release hydrogen, its storage capacity is as small as about 150 rnl/g.

本発明の吸収剤は、前記の(A)成分20〜80重量%
と(B)成分80〜20重量%とを物理的に混合するこ
とにより得られる。
The absorbent of the present invention comprises 20 to 80% by weight of the above component (A).
and 80 to 20% by weight of component (B).

そして、仄)成分と(B)成分の混合比を前記の範囲内
で変えることにより、水素吸蔵量、水素の吸収、放出温
度の異なる種々の吸収剤を調製することができる。
By changing the mixing ratio of component (d) and component (B) within the above-mentioned range, various absorbents having different hydrogen storage capacity, hydrogen absorption, and release temperature can be prepared.

本発明の吸収剤は使用に先立って、以下の方法に従って
活性化される。
Prior to use, the absorbent of the present invention is activated according to the following method.

すなわち、(A)成分と(B)成分の混合物を80〜1
20メツシユに粉砕し、適当なセルに充てんしたのち、
約300℃に加熱し、10−3T、orr程度で真空び
きする。
That is, the mixture of components (A) and (B) is 80 to 1
After crushing it into 20 mesh pieces and filling it into a suitable cell,
Heat to about 300°C and vacuum at about 10-3T orr.

次Qこ50気圧まで水素を導入したのち脱気し、再び水
素を導入するという操作を約10回繰り返す。
Next, hydrogen is introduced to a pressure of 50 atmospheres, degassed, and hydrogen is introduced again. This operation is repeated about 10 times.

本発明に従えば、(A)成分と(B)成分の組合せ、混
合比を適宜変化させることにより、水素平衡圧、吸収、
放出温度を調整しうるので、サーマル・コンプレッサー
、ヒートエンジン、ヒーティングサイクルなどの目的に
適した特性の水素吸収剤を提供することができる。
According to the present invention, by appropriately changing the combination and mixing ratio of components (A) and (B), hydrogen equilibrium pressure, absorption,
The ability to adjust the release temperature allows hydrogen absorbers to be provided with properties suitable for purposes such as thermal compressors, heat engines, heating cycles, etc.

そのほか、本発明の水素吸収剤は、水素貯蔵用、水素輸
送用としても好適である。
In addition, the hydrogen absorbent of the present invention is also suitable for hydrogen storage and hydrogen transport.

次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、各実施例中の水素平衡圧は、純度99.9999
9%以上の水素を用い、定容法による圧力変化から金属
水素化物中の水素濃度を求めることによって測定した。
Note that the hydrogen equilibrium pressure in each example is 99.9999 purity.
It was measured by using 9% or more hydrogen and determining the hydrogen concentration in the metal hydride from the pressure change using a constant volume method.

また、放出は、定容法と水置換を併用し、20〜80°
Cまではウォータバスにより、80℃以上は電気炉によ
り加熱して行った。
In addition, the release is carried out at 20 to 80° using a constant volume method and water displacement.
The temperature up to C was heated in a water bath, and the temperature at 80°C or higher was heated in an electric furnace.

実施例 1 「80〜120メツシユに粉砕したマグネシウム−ニッ
ケル系合金(Mg / Ni = 2 / 1 )とカ
ルシウム−ニッケル系合金(Ca / Ni = 1
/ 5 )を重量比で50:50又は20:80の割合
で混合することにより2種の混合物を調製した。
Example 1 Magnesium-nickel alloy (Mg/Ni = 2/1) and calcium-nickel alloy (Ca/Ni = 1) ground into 80-120 meshes
/5) at a weight ratio of 50:50 or 20:80 to prepare two types of mixtures.

次に各混合物約1(Bi’をとり、約300℃に加熱し
ながら10−” ton /cI?Lの真空としたのち
、水素ガスを50気圧まで導入するという操作を10回
繰り返すことにより活性化した。
Next, take about 1 part of each mixture (Bi'), heat it to about 300°C, create a vacuum of 10-" ton/cI?L, and then introduce hydrogen gas to 50 atm. This operation is repeated 10 times to activate it. It became.

」活性化したマグネシウム−ニッケル系合金、カルシウ
ム−ニッケル系合金及び上記各混合物について250℃
で水素圧を500気圧から0.1気圧まで変化させて、
各水素圧における金属水素化物中の水素濃度を測定して
、水素放出試験を行った。
” 250°C for activated magnesium-nickel alloy, calcium-nickel alloy, and each of the above mixtures.
Change the hydrogen pressure from 500 atm to 0.1 atm,
A hydrogen release test was conducted by measuring the hydrogen concentration in the metal hydride at each hydrogen pressure.

結果を第2図にグラフとして示す。The results are shown graphically in FIG.

第2図において、縦軸は水素圧、横軸は合金1−当りの
水素のグラム数を表わし、曲線2−1はマグネシウム−
ニッケル系合金の水素放出曲線、曲線2−2はカルシウ
ム−ニッケル系合金の水素放出曲線、曲線2−3及び2
−4はそれぞれマグネシウム−ニッケル系合金/カルシ
ウム−ニッケル系合金が50150及び20/80の混
合物の水素放出曲線である。
In Figure 2, the vertical axis represents the hydrogen pressure, the horizontal axis represents the number of grams of hydrogen per 1-alloy, and the curve 2-1 represents the magnesium-hydrogen pressure.
Hydrogen release curves for nickel-based alloys, curve 2-2 are hydrogen release curves for calcium-nickel-based alloys, curves 2-3 and 2.
-4 are the hydrogen release curves of 50150 and 20/80 mixtures of magnesium-nickel alloy/calcium-nickel alloy, respectively.

第2図から、マグネシウム−ニッケル系合金とカルシウ
ム−ニッケル系合金の混合割合を調節することにより、
平衡圧力を自由に選択して使用目的に合致した条件とな
しうろことがわかる。
From Figure 2, by adjusting the mixing ratio of magnesium-nickel alloy and calcium-nickel alloy,
It can be seen that the equilibrium pressure can be freely selected to suit the intended use.

実施例 2 実施例1と同様にしてマグネシウム−ニッケル系合金(
Mg/Ni = 2/ 1 )とミツシュメタル−ニッ
ケル系合金(Mm / N i = 175 )から重
量比で70/30及び50150の活性化した混合物を
調製した。
Example 2 A magnesium-nickel alloy (
Activated mixtures of 70/30 and 50150 by weight were prepared from Mg/Ni = 2/1) and Mitsushi metal-nickel based alloy (Mm/Ni = 175).

活性化したマグネシウム−ニッケル系合金、ミツシュメ
タルーニッケル系合金及び上記各混合物について250
℃で水素圧を1000気圧から0.5気圧まで変化させ
て、各水素圧における金属水素化物中の水素濃度を測定
して、水素放出試験を行った。
250 for activated magnesium-nickel alloys, Mitsushi metal-nickel alloys, and each of the above mixtures.
A hydrogen release test was conducted by changing the hydrogen pressure from 1,000 atm to 0.5 atm at °C and measuring the hydrogen concentration in the metal hydride at each hydrogen pressure.

結果を第3図にグラフとして示す。第3図において、縦
軸は水素圧、横軸は合金1ゆ当りの水素のグラム数を表
わし、曲線3−1はマグネシウム−ニッケル系合金の水
素放出曲線、曲線3−2はミツシュメタル−ニッケル系
合金の水素放出曲線、曲線3−3及び3−4はそれぞれ
マグネシウム−ニッケル系合金/ミツシュメタル−ニッ
ケル系合金が70/30及び50150の混合物の水素
放出曲線である。
The results are shown graphically in FIG. In Figure 3, the vertical axis represents hydrogen pressure, the horizontal axis represents the number of grams of hydrogen per 1 alloy, curve 3-1 is the hydrogen release curve for magnesium-nickel alloy, and curve 3-2 is the hydrogen release curve for Mitsushi metal-nickel alloy. Hydrogen release curves of alloys, curves 3-3 and 3-4 are hydrogen release curves of 70/30 and 50150 mixtures of magnesium-nickel alloy/Mitsuhmetal-nickel alloy, respectively.

第3図から、マグネシウム−ニッケル系合金とミツシュ
メタル−ニッケル系合金の混合割合を調節することによ
り、平衡圧力を自由に選択して使用目的に合致した条件
となしうろことがわかる。
From FIG. 3, it can be seen that by adjusting the mixing ratio of the magnesium-nickel alloy and the Mitshu metal-nickel alloy, the equilibrium pressure can be freely selected to meet the intended use.

実施例 3 実施例1と同様にしてマグネシウム−ニッケル系合金(
Mg/11’J i =271 )とチタン−コバルト
系合金(Ti/Co=1/1)とから重量比で80/2
0及び50150の活性化した混合物を調製した。
Example 3 A magnesium-nickel alloy (
Mg/11'J i = 271) and titanium-cobalt alloy (Ti/Co = 1/1) at a weight ratio of 80/2.
An activated mixture of 0 and 50150 was prepared.

活性化したマグネシウム−ニッケル系合金、チタン−コ
バルト系合金及び上記各混合物について250°Cで水
素圧を100気圧から0.5気圧まで変化させて、各水
素圧に・おける金属水素化物中の水素濃度を測定して、
水素放出試験を行った。
The activated magnesium-nickel alloy, titanium-cobalt alloy, and each of the above mixtures were heated at 250°C and the hydrogen pressure was varied from 100 atm to 0.5 atm. Measure the concentration and
A hydrogen release test was conducted.

結果を第4図にグラフとして示す。The results are shown graphically in FIG.

第4図において、縦軸は水素圧、横軸は合金1にg当り
の水素のグラム数を表わし、曲線4−1はマグネシウム
−ニッケル系合金の水素放出曲線、曲線4−2はチタン
−コバルト系合金の水素放出曲線、曲線4−3及び4−
4はそれぞれマグネシウム−ニッケル系合金/チタン−
コバルト系合金が80/20及び50150の混合物の
水素放出曲線である。
In Figure 4, the vertical axis represents hydrogen pressure, the horizontal axis represents the number of grams of hydrogen per gram of alloy 1, curve 4-1 is the hydrogen release curve for magnesium-nickel alloy, and curve 4-2 is the hydrogen release curve for titanium-cobalt. Hydrogen release curves of series alloys, curves 4-3 and 4-
4 is magnesium-nickel alloy/titanium-
This is a hydrogen release curve of a mixture of 80/20 and 50150 cobalt-based alloys.

第4図から、マグネシウム−ニッケル系合金とチタン−
コバルト系合金の混合割合を調節することにより、平衡
圧力を自由に選択して使用目的に合致した条件となしう
ろことがわかる。
From Figure 4, we can see that magnesium-nickel alloy and titanium
It can be seen that by adjusting the mixing ratio of the cobalt-based alloy, the equilibrium pressure can be freely selected to meet the conditions that meet the intended use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヒーティングサイクル図、第2図、第3図及び
第4図は各実施例における水素平衡圧特性を示すグラフ
である。
FIG. 1 is a heating cycle diagram, and FIGS. 2, 3, and 4 are graphs showing hydrogen equilibrium pressure characteristics in each example.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)マグネシウム−ニッケル系合金20〜80
重量%と、(B)カルシウム−ニッケル系合金、ミツシ
ュメタル−ニッケル系合金及びチタン−コバルト系合金
の中から選ばれた合金80〜20重量%との混合物から
成る水素吸収剤。
1 (A) Magnesium-nickel alloy 20-80
and (B) 80 to 20% by weight of an alloy selected from calcium-nickel alloys, Mitshu metal-nickel alloys, and titanium-cobalt alloys.
JP54057465A 1979-05-10 1979-05-10 Novel hydrogen absorbent Expired JPS5946881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54057465A JPS5946881B2 (en) 1979-05-10 1979-05-10 Novel hydrogen absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54057465A JPS5946881B2 (en) 1979-05-10 1979-05-10 Novel hydrogen absorbent

Publications (2)

Publication Number Publication Date
JPS55149101A JPS55149101A (en) 1980-11-20
JPS5946881B2 true JPS5946881B2 (en) 1984-11-15

Family

ID=13056422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54057465A Expired JPS5946881B2 (en) 1979-05-10 1979-05-10 Novel hydrogen absorbent

Country Status (1)

Country Link
JP (1) JPS5946881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149871U (en) * 1987-03-25 1988-10-03

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215710A (en) * 1986-04-22 1993-06-01 Studiengesellschaft Kohle M.B.H. Intermetallic compounds
DE3613532A1 (en) * 1986-04-22 1987-11-05 Studiengesellschaft Kohle Mbh INTERMETALLIC CONNECTIONS, THEIR HYDRIDS AND METHOD FOR THEIR PRODUCTION
JP3383692B2 (en) * 1993-02-22 2003-03-04 マツダ株式会社 Composite hydrogen storage metal member and method of manufacturing the same
US5506069A (en) * 1993-10-14 1996-04-09 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
US6193929B1 (en) * 1999-11-06 2001-02-27 Energy Conversion Devices, Inc. High storage capacity alloys enabling a hydrogen-based ecosystem
EP2474377A4 (en) * 2009-09-04 2013-08-28 Atsumitec Kk Hydrogen storage unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2324980A1 (en) * 1975-09-18 1977-04-15 Anvar Storing hydrogen in magnesium and other hydridable metal(s) - used as source for motive power; releasing hydrogen at near ambient temp.
JPS5390183A (en) * 1977-01-20 1978-08-08 Seijirou Suda Hydrogen absorbent
JPS5411095A (en) * 1977-06-27 1979-01-26 Matsushita Electric Ind Co Ltd Hydrogen occluding material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2324980A1 (en) * 1975-09-18 1977-04-15 Anvar Storing hydrogen in magnesium and other hydridable metal(s) - used as source for motive power; releasing hydrogen at near ambient temp.
JPS5390183A (en) * 1977-01-20 1978-08-08 Seijirou Suda Hydrogen absorbent
JPS5411095A (en) * 1977-06-27 1979-01-26 Matsushita Electric Ind Co Ltd Hydrogen occluding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149871U (en) * 1987-03-25 1988-10-03

Also Published As

Publication number Publication date
JPS55149101A (en) 1980-11-20

Similar Documents

Publication Publication Date Title
Huston et al. Engineering properties of metal hydrides
Wiswall Hydrogen storage in metals
Principi et al. The problem of solid state hydrogen storage
Shaltiel Hydride properties of AB2 laves phase compounds
Kumar et al. Effect of cycling on hydrogen storage properties of Ti2CrV alloy
US4200144A (en) Hydride heat pump
Osumi et al. Hydrogen absorption-desorption characteristics of mischmetal-nickel-aluminum alloys
Choudhari et al. Metal hydrides for thermochemical energy storage applications
Briki et al. Experimental study of the influences substitution from Ni by Co, Al and Mn on the hydrogen storage properties of LaNi3. 6Mn0. 3Al0. 4Co0. 7 alloy
Gambini et al. High temperature metal hydrides for energy systems Part B: comparison between high and low temperature metal hydride reservoirs
JPS5946881B2 (en) Novel hydrogen absorbent
US5460745A (en) Hydride compositions
Fujii et al. Effect of mechanical grinding under Ar and H2 atmospheres on structural and hydriding properties in LaNi5
Yartys et al. Thermodynamics and crystal chemistry of the RE2MgNi9H12-13 (RE= La and Nd) hydrides
Ivey et al. Metal hydrides for energy storage
Popeneciu et al. Investigation on a three-stage hydrogen thermal compressor based on metal hydrides
US4512965A (en) Hydrogen storage materials of hyperstoichiometric alloys
Li Hydrogen Storage
US4421718A (en) Alloy for occlusion of hydrogen
US4349527A (en) Iron-titanium-niobium alloy
Lundin et al. Solid state hydrogen storage materials for application to energy needs
JPS6187840A (en) Calcium-nickel-misch metal-aluminum type quaternary hydrogen storage alloy
JPH0577732B2 (en)
Akiba Solid Hydrogen Storage Materials: Interstitial Hydrides
Yu et al. Molecular Dynamics Investigation into the Hydrogen Adsorption Mechanism of the Magnesium-Based Material 2Mg–Fe Mixture