JPS5946573A - Self-checkable semiconductor radiation detector - Google Patents

Self-checkable semiconductor radiation detector

Info

Publication number
JPS5946573A
JPS5946573A JP57157292A JP15729282A JPS5946573A JP S5946573 A JPS5946573 A JP S5946573A JP 57157292 A JP57157292 A JP 57157292A JP 15729282 A JP15729282 A JP 15729282A JP S5946573 A JPS5946573 A JP S5946573A
Authority
JP
Japan
Prior art keywords
radiation
semiconductor radiation
light
radiation detector
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57157292A
Other languages
Japanese (ja)
Inventor
Toshiaki Takechi
武智 俊明
Noritada Sato
則忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57157292A priority Critical patent/JPS5946573A/en
Publication of JPS5946573A publication Critical patent/JPS5946573A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/40Stabilisation of spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a self-checkable semiconductor radiation detector which enables easy and accurate confirmation of operation by sealing a light emitting element into a sealed case of a radiation detection element. CONSTITUTION:An LED7 and the like are sealed into a light shielding sealed case 22 together with a semiconductor radiation detection element 1. When the LED7 or the like is lighted through an external power source, it can be checked with infrared ray or the like whether the element 1 works normally or not. This provides a self-checkable semiconductor radiation detector which enables easy and accurate confirmation of operation.

Description

【発明の詳細な説明】 本発明はシリコンダイオード方式などの半導体を用いる
放射線検出器であって、該検出動作が正常に機能しつる
か否かを随時確認しうるようにした半導体放射線検出器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation detector using a semiconductor such as a silicon diode type, which allows checking at any time whether or not the detection operation is functioning normally. .

高抵抗シリコンウェハ内にpn接合を形成しておき、放
射線検出ないしその線量測定の際にはあらかじめ該pn
接合に逆バイアスをかけてウエノ\内に空乏層を広がら
せておき、該ウェハに放射線が侵入したとき該放射線に
基づく荷電対の発生を検出することにより放射線を検出
ないし測定することは公知である。かかる半導体放射線
検出器は元来寿命が長く動作も確実なものではあるが、
たとえば放射線機基を取扱う作業員などの安全のための
モニタとして使用する場合に常時検出器であるシリコン
ダイオードに低電圧とはいえ逆バイアスを掛けておく必
要があり、なんらかの原因たとえば外部からの高圧パル
スの侵入によりダイオードがバンクしてしまいシリコン
ウェハ中の空乏層が消滅していて放射線検出動作が不可
能になるおそれがある。このためこの種放射線検出器の
正常動作を随時確認できるような手段が必要であり、従
来はこの正常動作を確認するため時折あるいは測定に先
だって例えば137Cs、60Coなどの標準放射線源
を測定器の検出部に近づけて動作を確認していた。第1
図は従来の半導体放射線検出器とその動作確認手段とを
示すもので、シリコンからなる放射線検出素子1を密封
ケース2のベース21上にマウントしキャップ22で該
密封ケース2内に封入した半導体放射線検出器にリード
22および23を通じて直流電源3により抵抗4を介し
て逆バイアスを掛けておき、図で模式的に示された放射
線源RIを近づけて放射線Rをキャップ22を透過して
検出素子1に侵入させる。放射線検出器が正常な場合は
、この侵入放射線が発生する荷電対により検出素子1に
電流が流れこの電流変化を抵抗4を負荷抵抗としてコン
デンサ5により電圧パルスの形でとらえ測定装置6によ
り動作を確認する。なお図中61は模式的に示されたパ
ルス増幅器、62は計器であり、通常は測定装置6は線
量率計などの形をとる。
A pn junction is formed in a high-resistance silicon wafer, and the pn junction is formed in advance when detecting radiation or measuring its dose.
It is known that radiation can be detected or measured by applying a reverse bias to the junction to spread a depletion layer within the wafer and detecting the generation of charged pairs based on the radiation when radiation enters the wafer. be. Although such semiconductor radiation detectors have a long lifespan and reliable operation,
For example, when used as a safety monitor for workers handling radiation equipment, it is necessary to always apply a reverse bias to the silicon diode, which is the detector, even though it is a low voltage. There is a risk that the diode will become banked due to the intrusion of the pulse, and the depletion layer in the silicon wafer will disappear, making radiation detection impossible. For this reason, a means is needed to confirm the normal operation of this type of radiation detector at any time. Conventionally, in order to confirm this normal operation, a standard radiation source such as 137Cs or 60Co was detected by the measuring instrument from time to time or prior to measurement. I was checking the operation by bringing it close to the unit. 1st
The figure shows a conventional semiconductor radiation detector and its operation confirmation means, in which a radiation detection element 1 made of silicon is mounted on a base 21 of a sealed case 2, and the semiconductor radiation is sealed in the sealed case 2 with a cap 22. A reverse bias is applied to the detector through the resistor 4 by the DC power supply 3 through the leads 22 and 23, and the radiation source RI schematically shown in the figure is brought close to the detector so that the radiation R is transmitted through the cap 22 and detected by the detection element 1. to invade. When the radiation detector is normal, a current flows through the detection element 1 due to the charged pair generated by this penetrating radiation, and this current change is captured in the form of a voltage pulse by a capacitor 5 with a resistor 4 as a load resistance, and is activated by a measuring device 6. confirm. In the figure, 61 is a schematically shown pulse amplifier, 62 is a meter, and the measuring device 6 usually takes the form of a dose rate meter or the like.

しかし、以上のような従来の動作確認方法では線源RI
を用いなければならないので、人体がこれから発する放
射線により被曝するおそれがあり、また上述のような標
準線源は法規により厳しく管理された特定な場所でしか
使用することができない。また、被曝モニタとして線量
計を各作業者に携帯させて放射線機器の作業に従事させ
る所では、かかる作業の開始に先立ってかかる携帯放射
線モニタの動作確認をする必要があり、とくに作業者が
多数にわたる場合には一々上述のような標準放射線源を
用いてモニタの動作確認をすることは手間もかかり、実
際上は不可能である場合も多い。
However, in the conventional operation confirmation method as described above, the radiation source RI
As a result, there is a risk that the human body may be exposed to the radiation emitted, and standard radiation sources such as those mentioned above can only be used in specific locations that are strictly regulated by law. In addition, in places where each worker is required to carry a dosimeter as a radiation exposure monitor and work on radiation equipment, it is necessary to check the operation of the portable radiation monitor before starting such work, especially when there are many workers. In such cases, it is time-consuming and often impractical to check the operation of the monitor using the standard radiation sources as described above.

本発明は従来のかかる問題点を解決して、任意の場所で
かつ随時に簡単に半導体放射線検出器の動作確認を行な
えるようにすることを目的とする。
It is an object of the present invention to solve these conventional problems and to make it possible to easily check the operation of a semiconductor radiation detector at any location and at any time.

本発明は半導体放射線検出素子を封入する密封ケース内
に発光素子をあらかじめ封入しておき、動作確認が必要
な時には該発光素子を密封ケース外の電源により点灯し
、半導体放射線検出素子がこれにより動作するか否かを
附属の測定装置により確認できるようにすることにより
簡単に達成される。なお半導体放射線検出素子を収納す
る密封ケース内に常時外部光が侵入しては本発明に基づ
く動作確認をすることができないので、エネルギの小な
放射線検出のため密封ケースをかかる放射線が透過しや
すいような肉厚ないし材料で構成する場合であっても、
密封ケースを完全に遮光性に構成しておく要がある。本
発明の構成が可能になったのは高抵抗性シリコン材料を
用いる高感度の半導体検出素子の場合においても、発光
素子例えば赤外光を発するLEDからの光に対して該検
出素子が付属の測定装置により検知しつる程度に十分な
出力信号を生じうるという知見に基づくものである。
In the present invention, a light-emitting element is sealed in advance in a sealed case that encloses a semiconductor radiation detection element, and when operation confirmation is required, the light-emitting element is turned on by a power source outside the sealed case, and the semiconductor radiation detection element is thereby activated. This can be easily achieved by making it possible to confirm whether or not this is the case using an attached measuring device. Note that if external light constantly enters the sealed case that houses the semiconductor radiation detection element, it will not be possible to confirm the operation according to the present invention, so such radiation is likely to pass through the sealed case due to the detection of low-energy radiation. Even if it is made of thick walls or materials such as
It is necessary to configure the sealed case to be completely light-blocking. The structure of the present invention has been made possible even in the case of a highly sensitive semiconductor detection element using a high-resistance silicon material. This is based on the knowledge that it is possible to generate an output signal sufficient to be detected by a measuring device.

つぎに本発明を図面に基づいて詳細に説明する。Next, the present invention will be explained in detail based on the drawings.

第2図は本発明による自己チェック可能な半導体放射線
検出器の概要を模式的に示すもので、第1図に符号を付
した部分と均等な部分には同一の符号が付されている。
FIG. 2 schematically shows an outline of a self-checking semiconductor radiation detector according to the present invention, in which the same parts as those shown in FIG. 1 are given the same reference numerals.

図示のように、密封ケース2のペース21上にマウント
された半導体放射線検出素子1の側方に発光素子7が該
密封ケース2内に収納かつ封入されており、この発光素
子はり−ド24を通じて密封ケース外から電源8および
開閉スイッチ9により点滅可能に給電される。この電源
8は発光素子7例えばLEDを点灯するに適当な直流電
圧を有するが、なにもこれに限ることはなく抵抗または
コンデンサを介して交流電源に 5− より発光素子7を点灯するようにしてもよく、また逆バ
イアス用の直流電源3をこの点灯用に共用してもよい。
As shown in the figure, a light emitting element 7 is housed and enclosed in the sealed case 2 on the side of the semiconductor radiation detection element 1 mounted on the pace 21 of the sealed case 2, and the light emitting element 7 is inserted through the light emitting element beam 24. Power is supplied from outside the sealed case by a power source 8 and an open/close switch 9 to enable blinking. This power source 8 has a direct current voltage suitable for lighting the light emitting element 7, for example, an LED, but the light emitting element 7 may be illuminated by connecting it to an alternating current power source via a resistor or capacitor. Alternatively, the reverse bias DC power supply 3 may be shared for this lighting.

また発光素子7は白色光を発するいわゆる豆ランプであ
ってもよく、また検出素子1の感光特性によってはパル
ス状の強力光を発する小形のクセノンランプ等を用いて
もよい。
Further, the light emitting element 7 may be a so-called small lamp that emits white light, or depending on the photosensitivity characteristics of the detection element 1, a small xenon lamp or the like that emits pulsed intense light may be used.

第3図は本発明による半導体放射線検出器の詳細構造を
断面で示すもので、さらに第4図はその半導体放射線検
出素子1の構成の一例が示されている。まず、第4図に
おいて、たとえば104Ωα以上の高抵抗をもち僅かに
p形を呈するシリコン基板11の一方の面に着けられた
酸化膜12の中央開口12aを通してn形層13が拡散
され該n形層13とp形シリコン基板11との間にpn
接合が形成されている。シリコン基板11の他方の面か
らはp中層14が拡散される。n形層13およびp中層
14にはそれぞれアルミ蒸着などの手段で電極15およ
び16が付けられ、両電極15.16間に電源8からの
逆バイアス電圧が印加されたとき、主としてシリコン基
板11内において空乏層 6− 17が広がる。なお図の下部の電極16は公知の半田付
けなどの手段で密封ケース2のベース21に固着される
FIG. 3 shows the detailed structure of the semiconductor radiation detector according to the present invention in cross section, and FIG. 4 shows an example of the structure of the semiconductor radiation detection element 1. First, in FIG. 4, an n-type layer 13 is diffused through a central opening 12a of an oxide film 12 formed on one surface of a silicon substrate 11, which has a high resistance of, for example, 104 Ωα or more and exhibits a slightly p-type shape. A pn layer is formed between the layer 13 and the p-type silicon substrate 11.
A junction is formed. A p-type intermediate layer 14 is diffused from the other surface of the silicon substrate 11. Electrodes 15 and 16 are attached to the n-type layer 13 and the p-type intermediate layer 14, respectively, by means such as aluminum evaporation, and when a reverse bias voltage from the power supply 8 is applied between the electrodes 15 and 16, the internal The depletion layer 6-17 expands at. Note that the electrode 16 at the bottom of the figure is fixed to the base 21 of the sealed case 2 by known means such as soldering.

この半導体放射線検出素子1の前述の空乏層17内に放
射線Rが例えば図の上部の電極15を通じて侵入すると
、放射線Rの放射線電子のもつシリコンのバンドギャッ
プ幅をはるかに越えるエネルギのために二次電子が発生
し、該二次電子がシリコン原子等に衝突して消滅する際
に荷電対が発生し、該荷電対は空乏層内に存する電位傾
度により電極15.16に吸引されて微小電流を生じる
When radiation R enters into the depletion layer 17 of this semiconductor radiation detection element 1, for example through the electrode 15 in the upper part of the figure, secondary Electrons are generated, and when the secondary electrons collide with silicon atoms and disappear, charged pairs are generated, and the charged pairs are attracted to the electrodes 15 and 16 by the potential gradient existing in the depletion layer, generating a minute current. arise.

一方発光素子7からの光LAは透光性を有する酸化膜1
2を通じて空乏層17内に入り、そこで荷電対を発生し
放射線が侵入した場合と同じ(微小電流を生じる。なお
、金属からなる電極15を通じては光粒子は侵入しない
から、光に対する感度を上げたい場合には電極15に孔
15を穿設しておき図示のように光LBが当該孔15を
通じて空乏層17に侵入しうるようにしてもよい。
On the other hand, the light LA from the light emitting element 7 is transmitted through the oxide film 1 having translucency.
It is the same as when radiation enters the depletion layer 17 through the metal electrode 15 and generates charged pairs there (a minute current is generated.However, since light particles do not enter through the metal electrode 15, we want to increase the sensitivity to light. In this case, a hole 15 may be formed in the electrode 15 so that the light LB can enter the depletion layer 17 through the hole 15 as shown in the figure.

このような半導体放射線検出素子1は第3図に示すよう
に密封ケースの金属のベース21上にマウントされる。
Such a semiconductor radiation detection element 1 is mounted on a metal base 21 in a sealed case as shown in FIG.

前述の電極16は該ベース21を介してベースに植え込
まれたリード22に接続され、一方電極15はポンディ
ング線18を通ってベース21をシール25を介して貫
通するり−ド23の頂部に接続される。発光素子7は1
対のその日出ワイヤ7a、7aが前述のリード23およ
び該リード23の図の背後に位置された同様のリード2
4にそれぞれ接続されている。容易に諒解されるように
第4図の例では第2図における発光素子7の1対のリー
ド24の内の一方が半導体放射線検出素子1用のり−ド
23と共用された構成となっており、この場合は密封ケ
ース2からのリードは22〜24の3本ですませること
ができる。
The aforementioned electrode 16 is connected through said base 21 to a lead 22 implanted in the base, while the electrode 15 is connected to the top of a lead 23 through a bonding wire 18 passing through the base 21 through a seal 25. connected to. The light emitting element 7 is 1
A pair of its rising wires 7a, 7a are shown in the aforementioned lead 23 and a similar lead 2 located behind said lead 23 in the figure.
4 are connected to each other. As can be easily understood, in the example of FIG. 4, one of the pair of leads 24 of the light emitting element 7 in FIG. 2 is used in common with the lead 23 for the semiconductor radiation detection element 1. In this case, only three leads 22 to 24 are required from the sealed case 2.

発光素子7例えば赤外線を発光するLEDは、その透明
ケースの先端7bが第3図に示すように例えば回転楕円
体状のレンズ曲面になっており、該先端7bからは図の
し、とり、との間にほぼ平行に整列された光が図の上方
に向けて発射され、キャップ22の内面22aで反射さ
れて検出素子1のほぼ全面に入射するよう構成されてい
る。キャップ22の内面22aでの反射率を上げるため
には該内面を鏡面とすることができ、また薄い鏡を内面
に接着により内張りをしてもよい。また容易にわかるよ
うに発光素子7の先端7bを下方に向けて、光が検出素
子1の上側方から直接的に入射されるようにすることも
できる。さらには検出素子1が十分な感光性を有する場
合にはレンズ効果を有する発光素子を用いる必要はなく
、単に発光素子7から出た光が直接およびキャップ22
の内面で適宜反射して検出素子1に入射するようにする
だけで十分である。
The light emitting element 7, for example, an LED that emits infrared light, has a transparent case whose tip 7b has a curved lens surface in the shape of a spheroid, for example, as shown in FIG. The light beams arranged substantially parallel to each other are emitted upward in the figure, are reflected by the inner surface 22a of the cap 22, and are incident on substantially the entire surface of the detection element 1. In order to increase the reflectance on the inner surface 22a of the cap 22, the inner surface can be made into a mirror surface, or the inner surface may be lined with a thin mirror by adhesive. Further, as can be easily seen, the tip 7b of the light emitting element 7 can be directed downward so that the light is directly incident on the upper side of the detecting element 1. Furthermore, if the detection element 1 has sufficient photosensitivity, there is no need to use a light emitting element having a lens effect, and the light emitted from the light emitting element 7 is simply transmitted directly to the cap 22.
It is sufficient to reflect the light appropriately on the inner surface of the sensor and make it incident on the detection element 1.

前述の第3図、第4図のように具体構成された放射線検
出器は、必要lこ応じて随時第2図の開閉スイッチ9を
閉じて電源8により発光素子7を点灯させ、その時の発
生電流の有無を例えば前述の増幅器61および読取り計
器62を内蔵した測定装置6により確認することにより
、正規の動作が可能な状態にあるが否かを容易に検査を
することができる。
The radiation detector specifically configured as shown in FIGS. 3 and 4 described above closes the open/close switch 9 shown in FIG. 2 whenever necessary and lights up the light emitting element 7 using the power source 8, thereby detecting the occurrence of the current. By checking the presence or absence of current, for example, using the measuring device 6 that incorporates the aforementioned amplifier 61 and reading instrument 62, it is possible to easily check whether or not normal operation is possible.

= 9一 本発明によれば従来のように被曝のおそれのある標準線
源を用いてかつ手間をかけて検出器の動作を確認する必
要がなくなり、希望の場所においてかつ必要な時には随
時スイッチを人切りするだけの手間で極めて容易に動作
確認の目的を達することができ、実用上多大の効果を奏
するものである。
= 91 According to the present invention, there is no need to use a standard radiation source that may expose you to radiation and to take time and effort to check the operation of the detector, unlike in the past. The purpose of operation confirmation can be achieved extremely easily with just a few cuts, and it has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体放射線検出器の動作確認方法を示
す説明図、第2図以降は本発明による自己チェック可能
な半導体放射線検出器の実施例を示し、内筒2図はその
動作確認方法を示す説明図、第3図は半導体放射線検出
器の具体構造を示す断面図、第4図は該検出器に内蔵さ
れる半導体放射線検出素子の断面図である。図において
、1は半導体放射線検出素子、2はその密封ケース、6
は測定装置、7は発光素子、を示す。 10− 第1図 73図
Fig. 1 is an explanatory diagram showing a method for confirming the operation of a conventional semiconductor radiation detector, Fig. 2 and subsequent figures show an embodiment of the self-checking semiconductor radiation detector according to the present invention, and Fig. 2 of the inner cylinder shows a method for confirming its operation. FIG. 3 is a sectional view showing the specific structure of a semiconductor radiation detector, and FIG. 4 is a sectional view of a semiconductor radiation detection element built into the detector. In the figure, 1 is a semiconductor radiation detection element, 2 is its sealed case, and 6
indicates a measuring device, and 7 indicates a light emitting element. 10- Figure 1 Figure 73

Claims (1)

【特許請求の範囲】[Claims] 1)放射線を検出する半導体検出素子を密封ケース内に
収納するものにおいて、該ケース外から点滅操作可能な
発光素子を該ケース内に封入するとともに該ケースを放
射線が透過可能でかつ遮光性の材料で構成し、前記発光
素子を点灯して前記半動体素子の作動を随時確認しうる
ようにしたことを特徴とする自己チェック可能な半導体
放射線検出器。
1) In a device in which a semiconductor detection element for detecting radiation is housed in a sealed case, a light-emitting element that can be blinked from outside the case is enclosed in the case, and the case is made of a material that allows radiation to pass through and has a light-shielding property. 1. A self-checkable semiconductor radiation detector, characterized in that the light emitting element is turned on to confirm the operation of the semi-moving body element at any time.
JP57157292A 1982-09-09 1982-09-09 Self-checkable semiconductor radiation detector Pending JPS5946573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57157292A JPS5946573A (en) 1982-09-09 1982-09-09 Self-checkable semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57157292A JPS5946573A (en) 1982-09-09 1982-09-09 Self-checkable semiconductor radiation detector

Publications (1)

Publication Number Publication Date
JPS5946573A true JPS5946573A (en) 1984-03-15

Family

ID=15646466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57157292A Pending JPS5946573A (en) 1982-09-09 1982-09-09 Self-checkable semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPS5946573A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155887A (en) * 1984-12-28 1986-07-15 Toshiba Corp Radiation measuring instrument
JPS63238579A (en) * 1987-03-27 1988-10-04 Toshiba Corp Radiation detector
JPS6460328A (en) * 1987-06-02 1989-03-07 Unilever Nv Method for recovery of aroma and flavor from plant material
JPH01161184A (en) * 1987-12-18 1989-06-23 Nec Corp Solid state image pickup element for radiation detection
JPH01272989A (en) * 1988-04-25 1989-10-31 Fuji Electric Co Ltd Radiation dosemeter
US5371376A (en) * 1993-07-20 1994-12-06 Xsirius, Inc. Mercuric iodide detector
US5567936A (en) * 1995-06-23 1996-10-22 The United States Of America As Represented By The Secretary Of The Army Light emitting diode reference locket
US7217930B2 (en) 2004-05-07 2007-05-15 Fuji Electric Systems Co., Ltd. Dose detector and dosimeter
CN102253403A (en) * 2010-04-19 2011-11-23 西门子公司 X-Ray detector comprising a directly converting semiconductor layer and calibration method for such an X-Ray detector
JP2021004789A (en) * 2019-06-26 2021-01-14 富士電機株式会社 Radiation detector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155887A (en) * 1984-12-28 1986-07-15 Toshiba Corp Radiation measuring instrument
JPH0562711B2 (en) * 1984-12-28 1993-09-09 Tokyo Shibaura Electric Co
JPS63238579A (en) * 1987-03-27 1988-10-04 Toshiba Corp Radiation detector
JPH0452745B2 (en) * 1987-06-02 1992-08-24 Unilever Nv
JPS6460328A (en) * 1987-06-02 1989-03-07 Unilever Nv Method for recovery of aroma and flavor from plant material
JPH01161184A (en) * 1987-12-18 1989-06-23 Nec Corp Solid state image pickup element for radiation detection
JPH01272989A (en) * 1988-04-25 1989-10-31 Fuji Electric Co Ltd Radiation dosemeter
JPH0658402B2 (en) * 1988-04-25 1994-08-03 富士電機株式会社 Radiation dosimeter
US5371376A (en) * 1993-07-20 1994-12-06 Xsirius, Inc. Mercuric iodide detector
US5567936A (en) * 1995-06-23 1996-10-22 The United States Of America As Represented By The Secretary Of The Army Light emitting diode reference locket
US7217930B2 (en) 2004-05-07 2007-05-15 Fuji Electric Systems Co., Ltd. Dose detector and dosimeter
CN102253403A (en) * 2010-04-19 2011-11-23 西门子公司 X-Ray detector comprising a directly converting semiconductor layer and calibration method for such an X-Ray detector
US8389928B2 (en) 2010-04-19 2013-03-05 Siemens Aktiengesellschaft X-ray detector comprising a directly converting semiconductor layer and calibration method for such an X-ray detector
DE102010015422B4 (en) * 2010-04-19 2013-04-18 Siemens Aktiengesellschaft X-ray detector with a directly converting semiconductor layer and calibration method for such an X-ray detector
JP2021004789A (en) * 2019-06-26 2021-01-14 富士電機株式会社 Radiation detector

Similar Documents

Publication Publication Date Title
US3742222A (en) Photoelectric sensing system
US20150083900A1 (en) Proximity sensor including reference detector for stray radiation detection
JP2670829B2 (en) Radiometer
JPS5946573A (en) Self-checkable semiconductor radiation detector
SE9403098L (en) Device for measuring the position of a bright spot with integrated function to eliminate the influence of light bulbs
AU2006251047B9 (en) A flame detector and a method
JPH0663973B2 (en) Fluorescence detector used for immunoreaction measurement
SE7604502L (en) OPTICAL FIRE DETECTOR
US2697824A (en) Test circuit for flame detector systems
US11774282B2 (en) Pyranometer dome soiling detection with light sensors
GB1593185A (en) Smoke detector
EP0099729A1 (en) Suspended particle detector
GB2267963A (en) Obscuration sensor
JPH06138240A (en) Camma ray measuring instrument
US3313945A (en) Apparatus for sensing variations in light reflectivity of a moving surface
JPH04131758U (en) Inspection equipment for detecting optical dirt
JP7195876B2 (en) Radiation monitor and radiation measurement method
JP7416298B2 (en) Radiation detection device
JPH02128184A (en) Bias abnormality detector of semiconductor radiation detector
JP2003057355A (en) Semiconductor radiation detector for alpha-ray dust monitor
RU209992U1 (en) Device for measuring background radiation
RU213333U1 (en) Radiation background measuring device RadiaCode-201
TWI479131B (en) Testing apparatus for light emitting diodes
JPS6154689A (en) Optical semiconductor device
JPH03197892A (en) Radiation sensing display device