JPS5946339A - Air-fuel ratio controlling apparatus for internal- combustion engine - Google Patents

Air-fuel ratio controlling apparatus for internal- combustion engine

Info

Publication number
JPS5946339A
JPS5946339A JP15673482A JP15673482A JPS5946339A JP S5946339 A JPS5946339 A JP S5946339A JP 15673482 A JP15673482 A JP 15673482A JP 15673482 A JP15673482 A JP 15673482A JP S5946339 A JPS5946339 A JP S5946339A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel ratio
hydrocarbon
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15673482A
Other languages
Japanese (ja)
Inventor
Isamu Iezuka
家塚 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15673482A priority Critical patent/JPS5946339A/en
Publication of JPS5946339A publication Critical patent/JPS5946339A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To keep the air-fuel ratio substantially equal to the theoretical air-fuel ratio, by detecting the density of hydrocarbon at the position of an intake passage located on the downstream side of a purge port and on the upstream side of fuel injection valves, and controlling the injection quantity of fuel on the density of hydrocarbon by way of open-loop control such that the air-fuel ratio of mixture in combustion chambers is substantially equal to the theoretical air-fuel ratio. CONSTITUTION:At a step 44, the injection quantity of fuel by fuel injection valves 11 is calculated from the input signal supplied from a means 20 for detecting the density of hydrocarbon as a function of the density of hydrocarbon. Further, according as the density of hydrocarbon is increased in the relationship between the actual density of hydrocarbon and a standardized air-fuel ratio lambda, the value of lambda is increased, that is, the injection quantity of fuel is decreased. Thus, the actual air-fuel ratio of mixture can be controlled to be substantially equal to the theoretical air-fuel ratio on the basis of the sum of the quantity of vaporized gas fuel and the quantity of fuel injected from the fuel injection valves 11.

Description

【発明の詳細な説明】 本発明は、燃料蒸発ガス抑制装置としての吸着剤容器を
備える内燃機関の空燃比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an internal combustion engine that includes an adsorbent container as a fuel evaporative emission control device.

吸着剤容器を備える内燃機関では燃料タンク内の燃料温
度が高くなると、燃料タン久の燃料蒸発ガスが、吸着剤
容器を経てパージボートへ導かれ、パージボートから吸
気通路へ流入している。この場合、吸気系への燃料供給
量は燃料噴射弁から噴射される燃料の量+パージポート
からの燃料蒸発ガスの放出量となり、このだめ空燃比の
フィードバック制御が困難となり、排気ガス中の有害成
分量が増大するとともに燃費率が悪化している。
In an internal combustion engine equipped with an adsorbent container, when the temperature of the fuel in the fuel tank increases, evaporated fuel gas in the fuel tank is guided through the adsorbent container to a purge boat, and from the purge boat flows into the intake passage. In this case, the amount of fuel supplied to the intake system is the amount of fuel injected from the fuel injection valve + the amount of fuel evaporative gas released from the purge port, which makes feedback control of the air-fuel ratio difficult, and harmful As the amount of components increases, the fuel efficiency rate worsens.

本発明の目的は、燃料タンクの燃料蒸発ガスの吸気系放
出にもかかわらす空燃比を適切に制御することができる
空燃比制御装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air-fuel ratio control device that can appropriately control the air-fuel ratio despite the intake system release of fuel vapor from a fuel tank.

この目的を達成するために本発明によれば、燃料タンク
の蒸気空間が、吸着剤容器を介して吸気系のパージボー
トへ接続され、燃料噴射弁における燃料噴射量の制御に
より空燃比を制御する内燃機関の空燃比制御装置におい
て、パージボートより下流で燃料噴射弁より上流の吸気
通路部分の炭化水素濃度を検出し、燃焼室の混合気の空
燃比がほぼ理論空燃比となるように燃料噴射弁からの燃
料噴射量を炭化水素濃度の検出値に基づいて開ループ制
御する。
To achieve this objective, according to the invention, the vapor space of the fuel tank is connected to the purge boat of the intake system via an adsorbent container, and the air-fuel ratio is controlled by controlling the amount of fuel injected in the fuel injection valve. In the air-fuel ratio control device of an internal combustion engine, the hydrocarbon concentration in the intake passage downstream of the purge boat and upstream of the fuel injection valve is detected, and fuel is injected so that the air-fuel ratio of the mixture in the combustion chamber is approximately the stoichiometric air-fuel ratio. The amount of fuel injected from the valve is controlled in an open loop based on the detected value of the hydrocarbon concentration.

図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.

第1図において吸気通路1には上流から顔量にエアクリ
ーナ2、吸気温センサ3、エアフローメータ4、スロッ
トル弁5、および吸気分岐管6が設けられる。アイドル
スイッチ9は、スロットル弁5がアイドリング開度にあ
る場合にはオンであり、アイドリンク開度より大きく開
かれている場合にはオフである。パージポー1・10は
、スロットル弁5の近傍の吸気通路壁に設けられ、スロ
ットル弁5が所定開度以上になるとスロットル弁5より
下流の位置となる。燃′)1′1噴射弁11は、吸気分
岐管6の枝部分に取付けられ、燃料を吸気ボートへ向け
て噴射する。機関本体14の燃焼室で燃焼した混合気は
排気分岐管15、排気管16、および三元触媒を収容ず
仝触媒コンバータ17を経て放出される。水温センサ1
8は機関本体14に取付けられて冷却水温度を検出し、
空燃比センサとしての酸素センサ19は排気中の酸素濃
度を検出する。炭化水素濃度検出器20は、吸気分岐管
6の集合部分に、すなわち燃料噴射弁11が設けられて
いる枝部分より上流でパージポート10よp下流の個所
に設けられ、該個所における炭化水素濃度を検出するこ
とによりパージポート10からの燃料蒸発ガスの放出量
を検出する。吸着剤としての活性炭を収容するチャコー
ルキャニスタ22は入口側を燃料タンク23の燃料25
より上方の燃料蒸発空間へ接続され、出口側をパージポ
ート10へ接続される。
In FIG. 1, an air cleaner 2, an intake air temperature sensor 3, an air flow meter 4, a throttle valve 5, and an intake branch pipe 6 are provided in an intake passage 1 from upstream to above. The idle switch 9 is on when the throttle valve 5 is at the idling opening, and is off when the throttle valve 5 is opened more than the idling opening. The purge ports 1 and 10 are provided on the wall of the intake passage near the throttle valve 5, and are positioned downstream of the throttle valve 5 when the throttle valve 5 reaches a predetermined opening degree or more. The fuel injection valve 11 is attached to a branch of the intake branch pipe 6, and injects fuel toward the intake boat. The air-fuel mixture combusted in the combustion chamber of the engine body 14 is discharged through the catalytic converter 17 without containing the exhaust branch pipe 15, the exhaust pipe 16, and the three-way catalyst. Water temperature sensor 1
8 is attached to the engine body 14 to detect the cooling water temperature;
An oxygen sensor 19 serving as an air-fuel ratio sensor detects the oxygen concentration in exhaust gas. The hydrocarbon concentration detector 20 is installed at a gathering portion of the intake branch pipe 6, that is, at a location upstream from the branch portion where the fuel injection valve 11 is provided and downstream from the purge port 10, and detects the hydrocarbon concentration at the location. By detecting this, the amount of fuel evaporative gas released from the purge port 10 is detected. The charcoal canister 22 that accommodates activated carbon as an adsorbent has its inlet side connected to the fuel 25 of the fuel tank 23.
It is connected to the upper fuel evaporation space, and the outlet side is connected to the purge port 10.

点火コイル28の二次点火電流は配電器29を経て各点
火プラグへ送られる。電子制御装置32は、アナログ入
力信号をA/D (アナログ/デジタル)変換するA/
D 33、パルス入出力信号を送受す丙l10(入力/
出力インタフェース)34、CPU35、ROM 36
、RAM37を備え、各センサからの入力信号に基づい
て燃料噴射弁11への出力信号を割算する。
The secondary ignition current of the ignition coil 28 is sent to each spark plug via a power distributor 29. The electronic control unit 32 is an A/D (analog/digital) converter for converting analog input signals.
D33, C110 (input/receiver) that transmits and receives pulse input/output signals.
Output interface) 34, CPU 35, ROM 36
, RAM 37, and divides the output signal to the fuel injection valve 11 based on the input signal from each sensor.

第2図は本発明のアルゴリズムのフローチャートである
。ステップ40では水温センサ】8の検出信号に基づい
て暖機終了後か否かの判定を行ない、暖機終了後のみ以
下のステップへ進む。
FIG. 2 is a flowchart of the algorithm of the present invention. In step 40, it is determined whether or not the warm-up has been completed based on the detection signal of the water temperature sensor 8, and the process proceeds to the following steps only after the warm-up has been completed.

暖機中では機関運転の安定化のため燃焼室の混合気は過
濃にされるべきであるので、以下のステップは不要であ
る。ステップ伺ではアイドルスイッチ9がオンかオフか
を検出し、オフである場合のみ以下のステップへ進む。
During warm-up, the air-fuel mixture in the combustion chamber should be enriched to stabilize engine operation, so the following steps are not necessary. In the step, it is detected whether the idle switch 9 is on or off, and only when it is off, the process proceeds to the following step.

アイドルスイッチ9がオンである場合、ずなわちスロッ
トル弁5がアイドリング開度にある場合にC、パージホ
ー)10には吸気管負圧が作用せず、パージポート10
から燃料蒸発ガスが放出されることはない。ステップ4
2では空燃比のフィードバック制御期間か否かを判定し
、開ループ制御43の場合のみ以下のステップへ進む。
When the idle switch 9 is on, that is, when the throttle valve 5 is at the idling opening position, the intake pipe negative pressure does not act on the purge port 10, and the purge port 10
No fuel evaporative gas is emitted. Step 4
In step 2, it is determined whether or not it is the air-fuel ratio feedback control period, and only in the case of open loop control 43, the process proceeds to the following steps.

空燃比か理論空燃比に対して±20チ以」二ずれるとフ
ィードバック制御が不可能となり開ループ制御へ切換え
られる。ステップ44では炭化水素濃度検出器2()か
らの入力信号から炭化水素濃度を検出し、この炭化水素
濃度の関数として燃料噴射弁11における燃料噴射量を
計算する。第3図は炭化水素濃度検出器20により検出
された炭化水素濃度と正規化空燃比λ(−空燃比/理論
空燃比)との関係を示している。λはパージポート】0
からの燃料蒸発ガスの放出による燃料量を除外して燃料
噴射弁11からの噴射燃料の量のみから割算される空燃
比と理論空燃比との比であり、第3図の特性線により表
わされるλになるようにステップ44で燃料噴射量が計
算される。炭化水素濃度が増大する程、λを増大させ、
したがって燃料噴射量を減少させ、これにより、パージ
ポート10かもの燃料蒸発ガスの放出による燃料の量と
燃料噴射弁11からの噴射燃料の量との和により燃焼室
の混合気の空燃比がほぼ理論空燃比となるように第3図
におけるλの特性が設定される。
If the air-fuel ratio deviates from the stoichiometric air-fuel ratio by more than ±20 degrees, feedback control becomes impossible and a switch is made to open-loop control. In step 44, the hydrocarbon concentration is detected from the input signal from the hydrocarbon concentration detector 2(), and the fuel injection amount at the fuel injection valve 11 is calculated as a function of this hydrocarbon concentration. FIG. 3 shows the relationship between the hydrocarbon concentration detected by the hydrocarbon concentration detector 20 and the normalized air-fuel ratio λ (-air-fuel ratio/stoichiometric air-fuel ratio). λ is purge port】0
It is the ratio between the air-fuel ratio and the stoichiometric air-fuel ratio, which is calculated by dividing only the amount of fuel injected from the fuel injection valve 11, excluding the amount of fuel due to the release of fuel evaporative gas from the fuel injection valve 11, and is expressed by the characteristic line in FIG. In step 44, the fuel injection amount is calculated so that the fuel injection amount becomes λ. As the hydrocarbon concentration increases, λ increases;
Therefore, the amount of fuel injection is reduced, and as a result, the air-fuel ratio of the mixture in the combustion chamber is approximately equal to the sum of the amount of fuel released from the purge port 10 and the amount of fuel injected from the fuel injection valve 11. The characteristic of λ in FIG. 3 is set so as to achieve the stoichiometric air-fuel ratio.

ステップ45ではステップ44で計算された燃料噴射量
を出力、すなわち燃料噴射弁月へ燃料噴射パルスを出力
する。
In step 45, the fuel injection amount calculated in step 44 is output, that is, a fuel injection pulse is output to the fuel injection valve.

このように本発明によれば、パージポートと燃料噴射弁
との間の吸気通路の炭化水素濃度に関係して燃料噴射弁
における燃料噴射量が開ル−プ制御されるので、燃料タ
ンクで発生した燃料蒸発ガスのバージポートからの放出
にもかかわらず、燃焼室の混合気の空燃比をほぼ理論空
燃比に維持して排気中の有害成分量の抑制および燃費率
の改善を図ることができる。
As described above, according to the present invention, the amount of fuel injected at the fuel injection valve is controlled in an open loop in relation to the hydrocarbon concentration in the intake passage between the purge port and the fuel injection valve, so that no hydrocarbons generated in the fuel tank can be controlled. Despite the release of evaporated fuel gas from the verge port, the air-fuel ratio of the air-fuel mixture in the combustion chamber can be maintained at approximately the stoichiometric air-fuel ratio, suppressing the amount of harmful components in the exhaust and improving fuel efficiency. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される電子制御機関の全体の概略
図、第2図は本発明のアルゴリズムのフローチャート、
第3図は炭化水素濃度と燃料噴射弁からの噴射撚・料に
より生成される混合気に因る正規化空燃比λとの関係を
示すグラフである。 1・・吸気通路、10・・パージボート、11・燃料噴
射弁、20:・・炭化水素濃度検出器、22・チャコー
ルキャニスタ、23・・燃料タンク、32・・電子制御
装置。 特許出願人 トヨタ自動車株式会社 −、、Fp 代 理 人 弁理士 中 千   治;z・、1″8j
第3図 炭化水素濃度
FIG. 1 is a schematic diagram of the entire electronic control engine to which the present invention is applied, and FIG. 2 is a flowchart of the algorithm of the present invention.
FIG. 3 is a graph showing the relationship between the hydrocarbon concentration and the normalized air-fuel ratio λ due to the air-fuel mixture generated by the injection twist and fuel from the fuel injection valve. 1. Intake passage, 10. Purge boat, 11. Fuel injection valve, 20: Hydrocarbon concentration detector, 22. Charcoal canister, 23. Fuel tank, 32. Electronic control device. Patent Applicant: Toyota Motor Corporation -, Fp Agent: Patent Attorney Chiharu Naka;z・,1″8j
Figure 3 Hydrocarbon concentration

Claims (1)

【特許請求の範囲】 燃料タンクの蒸気空間が、吸着剤容器を介して吸気系の
パージボートへ接続され、燃料噴射弁における燃料噴射
量の制御により空燃比を制御する内燃機関の空燃比制御
装置において、パン ージポートより下流で燃料噴射弁より上流の吸気通路部
分の炭化水素濃度を検出し、燃焼室の混合気の空燃比が
ほぼ理論空燃比となるように燃料噴射弁からの燃料噴射
量を炭化水素濃度の検出値に基づいて開ループ制御する
ことを特徴とする、内燃機関の空燃比制御装置。
[Claims] An air-fuel ratio control device for an internal combustion engine, in which the vapor space of a fuel tank is connected to a purge boat in an intake system via an adsorbent container, and the air-fuel ratio is controlled by controlling the amount of fuel injected in a fuel injection valve. , detects the hydrocarbon concentration in the intake passage downstream of the panji port and upstream of the fuel injection valve, and carbonizes the amount of fuel injected from the fuel injection valve so that the air-fuel ratio of the mixture in the combustion chamber is approximately the stoichiometric air-fuel ratio. An air-fuel ratio control device for an internal combustion engine, which performs open-loop control based on a detected value of hydrogen concentration.
JP15673482A 1982-09-10 1982-09-10 Air-fuel ratio controlling apparatus for internal- combustion engine Pending JPS5946339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15673482A JPS5946339A (en) 1982-09-10 1982-09-10 Air-fuel ratio controlling apparatus for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15673482A JPS5946339A (en) 1982-09-10 1982-09-10 Air-fuel ratio controlling apparatus for internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS5946339A true JPS5946339A (en) 1984-03-15

Family

ID=15634151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15673482A Pending JPS5946339A (en) 1982-09-10 1982-09-10 Air-fuel ratio controlling apparatus for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS5946339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211661A (en) * 1988-02-18 1989-08-24 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
JPH04105744U (en) * 1991-02-20 1992-09-11 岩崎通信機株式会社 Switch lever installation structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211661A (en) * 1988-02-18 1989-08-24 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
JPH04105744U (en) * 1991-02-20 1992-09-11 岩崎通信機株式会社 Switch lever installation structure

Similar Documents

Publication Publication Date Title
JP2666557B2 (en) Failure diagnosis device for evaporation purge system
US4646702A (en) Air pollution preventing device for internal combustion engine
US6283088B1 (en) Method and apparatus for processing vapor fuel of lean-burn internal combustion engine
JP3131743B2 (en) Evaporative fuel processing equipment
US5680756A (en) Fuel-vapor treatment method and apparatus for internal combustion engine
JPH0123649B2 (en)
JPS5946339A (en) Air-fuel ratio controlling apparatus for internal- combustion engine
JPS63186955A (en) Air-fuel ratio control device
JPH05180095A (en) Vaporized fuel control device for vehicle
JPS5946338A (en) Air-fuel ratio controlling apparatus for internal- combustion engine
JP3955142B2 (en) Evaporative purge control method for internal combustion engine
JPS62203039A (en) Self-diagnosing apparatus of air/fuel ratio control system
JP2590957B2 (en) Fuel vapor emission prevention device
JPS631753A (en) Failure diagnostic method for air-fuel ratio control system
JP2881258B2 (en) Evaporative fuel processing equipment
JPS5946333A (en) Air-fuel ratio controller for internal-combustion engine
JP2621032B2 (en) Fuel injection control device
JPH0213737Y2 (en)
JPS6030443Y2 (en) Exhaust gas purification device
JPH0313566Y2 (en)
JP4452380B2 (en) Engine control device
JPH0517408Y2 (en)
JPH0216051Y2 (en)
JPS62251415A (en) Exhaust gas purifying device for internal combustion engine
JP3919059B2 (en) Air-fuel ratio control device for internal combustion engine