JPS59456B2 - Manufacturing method of optical glass fiber - Google Patents

Manufacturing method of optical glass fiber

Info

Publication number
JPS59456B2
JPS59456B2 JP787976A JP787976A JPS59456B2 JP S59456 B2 JPS59456 B2 JP S59456B2 JP 787976 A JP787976 A JP 787976A JP 787976 A JP787976 A JP 787976A JP S59456 B2 JPS59456 B2 JP S59456B2
Authority
JP
Japan
Prior art keywords
glass
optical
core
manufacturing
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP787976A
Other languages
Japanese (ja)
Other versions
JPS5292530A (en
Inventor
敏雄 河西
邦夫 枡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP787976A priority Critical patent/JPS59456B2/en
Publication of JPS5292530A publication Critical patent/JPS5292530A/en
Publication of JPS59456B2 publication Critical patent/JPS59456B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02736Means for supporting, rotating or feeding the tubes, rods, fibres or filaments to be drawn, e.g. fibre draw towers, preform alignment, butt-joining preforms or dummy parts during feeding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/30Means for continuous drawing from a preform

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は光ガラスファイバを寸法精度良く、連続的に製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously manufacturing optical glass fibers with high dimensional accuracy.

光ガラスファイバは光通信に用いられる伝送媒体として
有望視されている。
Optical glass fiber is seen as a promising transmission medium for optical communications.

光ガラスファイバは光が集中して伝搬する芯ガラスと、
これより屈折率の低いガラス被覆層からなり、現在、伝
送ラインとして使用されるうえで、解決しなければなら
ない重要な問題は、伝送ラインとして使用できる程度の
構造上の寸法精度をもち、比較的安価に光ガラスファイ
バを製造する技術を確立することである。1970年項
に光伝送媒体として光ガラスファイバがクローズアップ
された時は、光ガラスファイバの光損失の低減化が最大
の問題点であつた。
Optical glass fiber consists of a core glass in which light is concentrated and propagated,
The important problem that must be solved for glass coating layers that have a lower refractive index than this and is currently used as transmission lines is to have a relatively The goal is to establish a technology to manufacture optical glass fibers at low cost. When optical glass fibers came into focus as optical transmission media in 1970, the greatest problem was reducing optical loss in optical glass fibers.

しかし光損失の低減化は、たとえば特開昭48−735
23号光学的繊維の製造方法、特開昭50120352
号光学繊維の製法等で示されている石英管内に芯ガラス
を堆積させ、中実にしこれを適当な方法で線引きして光
ガラスファイバを得ることにより、ほぼ解決した。し力
走これらの方法は、石英管の寸法精度、中実工程で、通
信用媒体として使用し得る構造上の寸法精度が得られな
い欠点がある。また、これらの製造方法は1本ずつ製造
するので、均質な構造のラインを大量に必要とする通信
用媒体の製法としては適していないうえ、1本ずつ製造
するので、コスト高にもなる欠点がある。一方、寸法精
度の高いガラスファイバの製造方法として、ロッドイン
チューブ法が知られている。
However, reduction of optical loss has been achieved, for example, in Japanese Patent Application Laid-open No. 48-735.
No. 23 Method for manufacturing optical fiber, JP-A-50120352
This problem was almost solved by depositing core glass in a quartz tube, making it solid, and drawing it using an appropriate method to obtain an optical glass fiber, as shown in the method for manufacturing optical fibers. These methods have the drawback that the dimensional accuracy of the quartz tube cannot be obtained in the solid process, and the structural dimensional accuracy that can be used as a communication medium cannot be obtained. In addition, since these manufacturing methods produce one piece at a time, they are not suitable for manufacturing communication media, which requires a large number of lines with a homogeneous structure, and they also have the disadvantage of increasing costs because each piece is manufactured one at a time. There is. On the other hand, the rod-in-tube method is known as a method for manufacturing glass fibers with high dimensional accuracy.

第1図にその概略を示すが、芯ガラス1を外被管2に挿
着し、適当な加熱装置3で加熱して線引きする方法であ
る。従来のこの方法では芯ガラスの接する外被管の内周
面平滑精度が悪く、コアとクラッド界面に気泡または異
物が混入し、これが光散乱源となり、低損失光ファイバ
を得ることはできなかつた。
As shown schematically in FIG. 1, this is a method in which a core glass 1 is inserted into a jacket tube 2, heated with a suitable heating device 3, and drawn. In this conventional method, the inner circumferential surface of the jacket tube in contact with the core glass had poor smoothness, and air bubbles or foreign matter got mixed in at the interface between the core and cladding, which became a source of light scattering, making it impossible to obtain a low-loss optical fiber. .

本発明はこれらの欠点を除去するため、研磨加工技術に
より光ガラスファイバの寸法精度を向上させた新規な光
ガラヌフアイバの製造方法を提供し、この製造方法によ
り光伝送媒体として使用し得る低損失の光ガラスファイ
バを安価に提供しようとするものである。本発明に使用
する光損失の小さい石英ロツドは、たとえば特願昭50
−82679号(高純度透明石英ガラス体の製造方法)
等により得られるが、本発明は低損失ガラスロツドに表
面平滑さ0.01關以下の光学研磨をほどこせば、十分
光散乱損失の小さいフアイバに線引きできることを発見
したことにより考案された。
In order to eliminate these drawbacks, the present invention provides a new method for manufacturing an optical glass fiber in which the dimensional accuracy of the optical glass fiber is improved by polishing technology, and by this manufacturing method, a low-loss fiber that can be used as an optical transmission medium is provided. The aim is to provide optical glass fibers at low cost. The quartz rod with low optical loss used in the present invention is, for example,
No.-82679 (method for manufacturing high-purity transparent quartz glass body)
However, the present invention was devised based on the discovery that a fiber with sufficiently low light scattering loss can be drawn by optically polishing a low-loss glass rod to a surface smoothness of 0.01 degree or less.

光吸収損失の十分小さい高純度石英ガラスロツドから一
般の機械加工技術により芯ガラスを作り、外被管は十分
内周面研磨のできる位短く切断し、光散乱損失が十分小
さくなる程度(0.01μm以下)に内周面研磨された
外被管を作る。
The core glass is made from a high-purity quartz glass rod with sufficiently low light absorption loss using general machining techniques, and the outer tube is cut short enough to allow polishing of the inner peripheral surface, and cut to a length (0.01 μm) that minimizes light scattering loss. (below) to make an outer jacket tube with a polished inner surface.

この外被管に芯ガラスを挿着し、適当な方法で加熱して
線引きし、光ガラスフアイバを得る。芯ガラスを心棒に
し、これに対し十分内周面研磨された数個の外被管用ガ
ラスを軸方向に重ねて、加熱して線引するので、光損失
が十分小さく、フアイバ購造および寸法の十分制御され
た光フアイバが得られる。
A core glass is inserted into this envelope tube, heated and drawn by an appropriate method, and an optical glass fiber is obtained. The core glass is used as the mandrel, and several pieces of glass for the jacket tube with sufficiently polished inner surfaces are layered in the axial direction and drawn by heating, so the optical loss is sufficiently small and it is easy to purchase and size the fiber. A well-controlled optical fiber is obtained.

長尺のフアイバを得るためには芯ガラスも軸方向に複数
本積み重ね、その外側に多数の外被管用ガラスを重ねて
いけばよい。
In order to obtain a long fiber, a plurality of core glasses may be stacked in the axial direction, and a large number of jacket tube glasses may be stacked on the outside thereof.

以下図面を用いて詳細に説明する。This will be explained in detail below using the drawings.

実施例 1 市販の低損失石英ガラスロツドを第2図に示すような長
さ150mm1直径5mm1真直度1/100mm1真
円度5μmの芯石英ガラスの外周面4および端面5を0
.01μm以下の表面円滑さに研磨し、これに第3図に
示すような外径8mm1内径5m11長さ30m711
の低損失石英製円筒外被管(内周面6および端面7,7
′を0.01μm以下に、外周面8を0.1μm以下の
平滑さに研磨したもの)をかぶせ、第4図に示すように
外被管10を軸方向に複数個積み重ね、さらに心ガラス
9′を芯ガラス9の上に積み重ねて、18000C〜2
20『Cに加熱できる加熱装置11により加熱して線引
きした。
Example 1 A commercially available low-loss quartz glass rod was prepared with a core of quartz glass having a length of 150 mm, a diameter of 5 mm, a straightness of 1/100 mm, and a roundness of 5 μm as shown in FIG.
.. The surface was polished to a smoothness of 0.01 μm or less, and then the outer diameter was 8 mm, the inner diameter was 5 m, and the length was 30 m, as shown in Figure 3.
low-loss quartz cylindrical jacket tube (inner peripheral surface 6 and end surfaces 7, 7
' is polished to a smoothness of 0.01 μm or less and the outer peripheral surface 8 is polished to a smoothness of 0.1 μm or less), and as shown in FIG. ' stacked on top of the core glass 9 and heated to 18000C~2
The wire was drawn by heating with a heating device 11 capable of heating to 20°C.

これにより外径125μm1芯の径80μm1離心率0
.1%の購造精度を持つ光損失3dB/Km(測定波長
0.85μm)の低損失多モード光フアイバを得た。
As a result, the outer diameter is 125 μm, the diameter of 1 core is 80 μm, and the eccentricity is 0.
.. A low-loss multimode optical fiber with an optical loss of 3 dB/Km (measurement wavelength 0.85 μm) and a purchasing accuracy of 1% was obtained.

この光損失のうち2dB/Kmは芯石英ガラヌの吸収損
失、1dB/Kmは購造等による散乱損失であつた。実
施例 2 実施例1と同じ工程で出発材を準備し、線引き時に一気
にフアイバとせず、1800〜2200℃の温度で外径
5mm1こなるまで引き延ばした。
Of this optical loss, 2 dB/Km was an absorption loss of the core quartz galanus, and 1 dB/Km was a scattering loss due to purchasing and the like. Example 2 A starting material was prepared in the same process as in Example 1, and instead of being drawn into a fiber all at once, it was drawn to an outer diameter of 5 mm at a temperature of 1800 to 2200°C.

この形成体を十分研磨された外径201tm1内径5m
11の石英ガラス管に入れ再び直径10m11tになる
まで引き延ばした。これを一般市販品の外径12詣、内
径10m1の石英管に挿着し、加熱炉で加熱して線引き
し、外径120μm1コア径5μm)真円度1%以内、
離心率0.1%の構造で、光損失は実施例1と同程度の
十分低損失な単一モードフアイバを得た。なおこの実施
例では、外被管を1層かぶせるごとに加熱して線引きし
たが、外被管を一度に2層以上つみ重ねて加熱して線引
きしてもよい。
This formed body is sufficiently polished with an outer diameter of 201 tm and an inner diameter of 5 m.
It was placed in a No. 11 quartz glass tube and stretched again to a diameter of 10 m and 11 tons. This was inserted into a commercially available quartz tube with an outer diameter of 12 mm and an inner diameter of 10 m1, heated in a heating furnace and drawn into a wire (outer diameter 120 μm, core diameter 5 μm), circularity within 1%
A single mode fiber having a structure with an eccentricity of 0.1% and a sufficiently low optical loss comparable to that of Example 1 was obtained. In this embodiment, the jacketed tube was heated and drawn each time it was covered with one layer, but the jacketed tube may be stacked in two or more layers at a time and then heated and drawn.

以上説明したように、本発明の光ガラスフアイバの製造
方法は十分内周面研磨のできる長さの外被管用円筒ガラ
スを作製し、これを心ガラスに対して積み重ねた後、線
引きすることにあり、伝送線路として十分使用に耐える
ような形伏、寸法精度をもち、低損失な光フアイバを長
尺にわたり作製することができる。外被管用円筒ガラス
および芯ガラスのつなぎ面は、重ね合わせておくのみで
も、順次融着されて連続の光フアイバとなる。
As explained above, the optical glass fiber manufacturing method of the present invention involves producing a cylindrical glass for an outer jacket tube with a length that allows for sufficient polishing of the inner peripheral surface, stacking this on a core glass, and then drawing it. This makes it possible to produce long length optical fibers with low loss and shape and dimensional accuracy that are sufficient to withstand use as transmission lines. Even if the connecting surfaces of the cylindrical glass for the jacket tube and the core glass are simply overlapped, they will be sequentially fused to form a continuous optical fiber.

それぞれのつなぎ面に高純度ガラスの微粉末を小量入れ
ておき、この部分を加熱してあらかじめ融着、一体化し
ておけば、線引き時の取り扱いは、さらに容易となる。
また実施例は石英ガラスについて示してあるが、多成分
を有する低融点ガラスについても、本発明が使用できる
ことはもち論である。なおこれらの実施例の中で屈折率
についてふれていないが、芯ガラスの屈折率を外被管の
屈折率より適当な値大きくとることは、当業者にとつて
常識である。
If a small amount of fine powder of high-purity glass is placed on each joining surface and these parts are heated to fuse and integrate in advance, handling during wire drawing will become easier.
Moreover, although the embodiments are shown using quartz glass, it goes without saying that the present invention can also be used for low-melting glass having multiple components. Although the refractive index is not mentioned in these embodiments, it is common knowledge for those skilled in the art to set the refractive index of the core glass to be an appropriate value larger than the refractive index of the jacket tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のロツドインチユーブ法の概略図、第2図
および第3図は本発明の製造方法に用いる購成物の概略
図、第4図は本発明の一実施例の概略図である。 1・・・・・・芯ガラス、2・・・・・・外被管、3・
・・−・・加熱装置、4・・・・・・芯ガラスの外周面
、5・・・・・・芯ガラスの端面、6・・・・・・外被
管の内周面、7,7″・・・・・・外被管の端面、8・
・・・・・外被管の外周面、9,9′・・・・・・芯ガ
ラス、10・・・・・・外被管、 11・・・・・・加熱装置。
Fig. 1 is a schematic diagram of the conventional rod incubation method, Figs. 2 and 3 are schematic diagrams of products used in the manufacturing method of the present invention, and Fig. 4 is a schematic diagram of an embodiment of the present invention. It is. 1... Core glass, 2... Outer tube, 3.
... Heating device, 4 ... Outer peripheral surface of core glass, 5 ... End surface of core glass, 6 ... Inner peripheral surface of jacket tube, 7. 7″...End face of jacket tube, 8.
...Outer circumferential surface of jacket tube, 9,9'...core glass, 10... jacket tube, 11...heating device.

Claims (1)

【特許請求の範囲】 1 外周面および端面を研磨した1本または軸方向に重
ねた複数本の心ガラスに対して、内周面、外周面および
端面を研磨した複数片の外被管用ガラスを軸方向に積層
し、これを加熱して線引きすることを特徴とする光ガラ
スファイバの製造方法。 2 1本または軸方向に重ねた複数本の芯ガラスに対し
て、内周面外周面および端面を研磨した外被管用円筒ガ
ラスを2層もしくは2層以上軸方向につみ重ねて加熱し
て線引きするか、または前記外被管用円筒ガラスを1層
かぶせるごとに加熱して線引きすることを特徴とする特
許請求の範囲第1項記載の光ガラスファイバの製造方法
[Scope of Claims] 1. A plurality of pieces of glass for an envelope tube whose inner circumferential surface, outer circumferential surface, and end surfaces have been polished for one core glass or a plurality of core glasses stacked in the axial direction whose outer circumferential surfaces and end surfaces have been polished. A method for producing an optical glass fiber, which is characterized by laminating the fibers in the axial direction, heating the fibers, and drawing the fibers. 2. Two or more layers of cylindrical glass for jacket tubes with polished inner circumferential surfaces, outer circumferential surfaces, and end surfaces are piled up in the axial direction for one core glass or a plurality of core glass stacked in the axial direction, and then heated and drawn. 2. The method of manufacturing an optical glass fiber according to claim 1, wherein the cylindrical glass fiber for the jacket tube is heated and drawn each time it is covered with one layer.
JP787976A 1976-01-29 1976-01-29 Manufacturing method of optical glass fiber Expired JPS59456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP787976A JPS59456B2 (en) 1976-01-29 1976-01-29 Manufacturing method of optical glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP787976A JPS59456B2 (en) 1976-01-29 1976-01-29 Manufacturing method of optical glass fiber

Publications (2)

Publication Number Publication Date
JPS5292530A JPS5292530A (en) 1977-08-04
JPS59456B2 true JPS59456B2 (en) 1984-01-06

Family

ID=11677884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP787976A Expired JPS59456B2 (en) 1976-01-29 1976-01-29 Manufacturing method of optical glass fiber

Country Status (1)

Country Link
JP (1) JPS59456B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332916Y2 (en) * 1980-09-29 1988-09-02
DE69319999T2 (en) * 1992-11-19 1999-03-18 Heraeus Quarzglas Process for the production of a large quartz glass tube, as well as a preform and an optical fiber
KR0165211B1 (en) * 1995-09-29 1998-12-15 김광호 Apparatus for drawing optical fiber
JP4896189B2 (en) * 2009-09-01 2012-03-14 株式会社赤澤総合研究所 Hydroponics equipment

Also Published As

Publication number Publication date
JPS5292530A (en) 1977-08-04

Similar Documents

Publication Publication Date Title
KR890000331B1 (en) Optical waveguide fiber and methods of forming an optical waveguide fiber and an optical waveguide preform
US9796618B2 (en) Multi-core optical fiber ribbons and methods for making the same
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
JPS54101334A (en) Optical fiber coupling element and production of the same
JPH06235841A (en) Manufacture of 1xn achromatic coupler, fiber optic coupler and 1xn fiber optic coupler
JPH0514242B2 (en)
JPS59456B2 (en) Manufacturing method of optical glass fiber
JPS5992929A (en) Preparation of optical fiber maintaining polarization
JP4005845B2 (en) Base material for photonic crystal optical fiber and manufacturing method thereof
JPH0236535B2 (en)
JPH0548445B2 (en)
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPH06235838A (en) Production of polarization maintaining optical fiber
JPH0431333A (en) Production of fluoride optical fiber
JPS6243932B2 (en)
JPH02212328A (en) Production of optical fiber
JPS58135141A (en) Preparation of single polarized optical fiber
JPS5840521A (en) Production of photocoupler
JPH0210093B2 (en)
JPS58115403A (en) Multicore constant polarization optical fiber and its manufacture
JPH0378713A (en) Fusion stretched type polarization plane maintaining optical fiber coupler
JPS5918127A (en) Manufacture of polarization maintaining optical fiber
JPH0221563B2 (en)
JPS5951502B2 (en) Optical fiber manufacturing method
JPS59192225A (en) Optical circuit