JPS5945610B2 - How to draw optical fiber - Google Patents

How to draw optical fiber

Info

Publication number
JPS5945610B2
JPS5945610B2 JP14479276A JP14479276A JPS5945610B2 JP S5945610 B2 JPS5945610 B2 JP S5945610B2 JP 14479276 A JP14479276 A JP 14479276A JP 14479276 A JP14479276 A JP 14479276A JP S5945610 B2 JPS5945610 B2 JP S5945610B2
Authority
JP
Japan
Prior art keywords
optical fiber
preform
gas
gas flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14479276A
Other languages
Japanese (ja)
Other versions
JPS5369643A (en
Inventor
克之 井本
聰 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14479276A priority Critical patent/JPS5945610B2/en
Publication of JPS5369643A publication Critical patent/JPS5369643A/en
Publication of JPS5945610B2 publication Critical patent/JPS5945610B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • C03B2205/83Means for sealing the fibre exit or lower end of the furnace using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/91Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles by controlling the furnace gas flow rate into or out of the furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/98Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using annular gas inlet distributors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 (1)発明の利用分野 本発明は、光通信用伝送路として用いられる光ファイバ
の線引き方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Application of the Invention The present invention relates to a method of drawing an optical fiber used as a transmission line for optical communication.

(2)従来技術本発明者は先に光ファイバの線引き時に
おける外部のじよう乱による線引き中のプリフオーム溶
融温度のゆらぎによる線径変動を抑制する方法(特願昭
50−142055−特開昭52−65458)として
第1図a、bを提案した。
(2) Prior Art The present inventor previously proposed a method for suppressing wire diameter fluctuations due to fluctuations in preform melting temperature during drawing due to external disturbances during drawing of optical fibers (Japanese Patent Application No. 142055/1989). 52-65458) and proposed Figure 1 a and b.

また上記溶融温度のゆらぎによる線径変動を抑制しなが
らプリフオームの構造の不完全性(外径変動、軸ずれ、
軸の傾きなど)による線径変動を低減させるように線径
を高精度に制御する方法(特願昭50−151825−
特開昭52−76044)として第2図a、bを提案し
た。第1図は炉芯管3内へガスを強制部に送り込んで炉
芯管3内の流量分布を層流分布状態に保ちながら線引き
することを特徴とする。第2図は炉芯管3内へガスを強
制的に送り込んで炉芯管3内の流量分布を層流分布状態
に保つて外乱による線径変動を抑制しつつ、プリフオー
ムの外径変動±ΔDに起因して生ずる光ファイバの線径
変動を炉芯管3内に供給するガスの流量を変えて制御す
る線径制御法である。第1図の装置を用いれば外乱によ
る光ファイバの線径変動をほぼ完全に抑制でき、光ファ
イバの線径変動をプリフオームの外径変動に起因したも
のだけに抑えることができた。そして第2図の装置を用
いれば光フアイバの線径変動を±0.5%程度に抑える
ことができた。しかし、第3図に示すように、ガス流量
をステツプ状に変化させた場合のそのガス流量変化量Δ
Fと、ガス流量をステツプ状に変化させた場合の光フア
イバ線径の最大変化量Δdとの間にはガス流量Fが51
/―と101/―の範囲でその制御条件が異なつていた
。またFが6〜71/Iwlの範囲では第3図のような
関係が成立しないという特性をもつていた。そのために
制御不可能なガス流量値が存在していた。これは炉芯管
3内の下方部から上方部に向かつて上昇気流が存在して
いるためである。しかもこの上昇気流は線引きの環境条
件(空気調和の状況、線引き中の作業者、物などの移動
による空気の密度ゆらぎ)によつて変動するため、線径
制御特性の劣化要因になつていた。また、ガス流量Fを
51/馴以下で使う場合には、前記上昇気流中に含まれ
ている遷移金属イオンが高温に加熱されたプリフオーム
溶融部に衝突してプリフオーム溶融部、すなわち光フア
イバ表面にキズを発生させ光フアイバの引張り破断強度
を劣化させていた。さらに、前記上昇気流中に含まれて
いる水分、アルカリ金属イオン、アルカリ土類金属イオ
ンなどが光フアイバ表面に付着し、光フアイバの引張り
破断強度を劣化させていた。本発明は上記問題点を改良
した光フアイバの線引き方法を提供することにある。
In addition, while suppressing wire diameter fluctuations caused by fluctuations in the melting temperature, imperfections in the preform structure (outside diameter fluctuations, axis misalignment,
A method for controlling the wire diameter with high precision so as to reduce wire diameter fluctuations caused by shaft inclination, etc.
JP-A-52-76044) proposed Figures 2a and 2b. FIG. 1 is characterized in that gas is fed into the furnace core tube 3 through a forcing section to draw a line while maintaining the flow rate distribution within the furnace core tube 3 in a laminar flow distribution state. Figure 2 shows that gas is forcibly fed into the furnace core tube 3 to maintain the flow rate distribution in the furnace core tube 3 in a laminar flow distribution state, suppressing wire diameter fluctuations due to disturbances, and reducing preform outer diameter fluctuations ±ΔD. This is a wire diameter control method in which variations in the diameter of the optical fiber caused by this are controlled by changing the flow rate of gas supplied into the furnace core tube 3. By using the apparatus shown in FIG. 1, it was possible to almost completely suppress the variation in the diameter of the optical fiber due to disturbances, and it was possible to suppress the variation in the diameter of the optical fiber to only that caused by the variation in the outer diameter of the preform. By using the apparatus shown in FIG. 2, it was possible to suppress the variation in the diameter of the optical fiber to approximately ±0.5%. However, as shown in Figure 3, when the gas flow rate is changed in a stepwise manner, the amount of change in the gas flow rate Δ
The gas flow rate F is 51% between F and the maximum change amount Δd in the optical fiber diameter when the gas flow rate is changed in a stepwise manner.
The control conditions were different in the range of /- and 101/-. Further, when F is in the range of 6 to 71/Iwl, the relationship shown in FIG. 3 does not hold. Therefore, uncontrollable gas flow values existed. This is because an upward air current exists from the lower part to the upper part in the furnace core tube 3. Moreover, this rising air current fluctuates depending on the environmental conditions of wire drawing (air conditioning conditions, fluctuations in air density due to the movement of workers, objects, etc. during wire drawing), and was a factor in the deterioration of wire diameter control characteristics. In addition, when using the gas flow rate F at 51/min or less, the transition metal ions contained in the upward air flow collide with the preform melting part heated to a high temperature, and the preform melting part, that is, the surface of the optical fiber. This caused scratches and deteriorated the tensile strength of the optical fiber. Furthermore, moisture, alkali metal ions, alkaline earth metal ions, etc. contained in the rising air flow adhere to the surface of the optical fiber, degrading the tensile strength at break of the optical fiber. The object of the present invention is to provide an optical fiber drawing method that improves the above-mentioned problems.

(3)発明の目的 本発明の目的はブリフオームを加熱源で加熱し、延伸し
て光フアイバにする線引き方法において、光フアイバ外
周表面からプリフオーム溶融部の外周表面に溢つてガス
を連続的に流しながら線引きする方法およびそのガス流
量を微小変化させて線径を制御しながら線引きする方法
を提供することにある。
(3) Object of the Invention The object of the present invention is to use a method of drawing a preform into an optical fiber by heating it with a heat source and drawing it, in which a gas continuously flows overflowing from the outer circumferential surface of the optical fiber to the outer circumferential surface of the molten part of the preform. The object of the present invention is to provide a method for drawing wire while controlling the wire diameter by minutely changing the gas flow rate.

その結果、外部からの上昇気流を抑制し、ガス流量の増
減に対して線径の変化が連続的関係になる。また光フア
イバの引張り破断強度が改善され、その強度の大きなも
のが得られる。(4)発明の総括説明 本発明は、光フアイバ外周表面からプリフオーム溶融部
の外周表面、プリフオーム外周表面に治つて順次流れる
ようにガスを流しながら光フアイバを線引きする方法に
おいて、光フアイバ外周表面からプリフオーム溶融部の
外周表面、プリフオーム外周表面に沿つて順次流れるガ
スの吹出し口の近傍に逆方向のガス吹出し口を設け、前
記ガスとは逆方向のガス流を光フアイバ外周表面に治つ
て流すようにし、この逆方向のガス流れによつて、炉芯
管に入ろうとする上昇気流を抑制するようにしたもので
ある。
As a result, upward airflow from the outside is suppressed, and the wire diameter changes in a continuous relationship with increases and decreases in the gas flow rate. Furthermore, the tensile strength at break of the optical fiber is improved, and a high strength fiber can be obtained. (4) General description of the invention The present invention provides a method for drawing an optical fiber while flowing a gas sequentially from the outer peripheral surface of the optical fiber to the outer peripheral surface of the molten part of the preform and the outer peripheral surface of the preform. A gas outlet in the opposite direction is provided near the outer circumferential surface of the preform melting part and the outlet for gas that sequentially flows along the outer circumferential surface of the preform, so that a gas flow in the opposite direction to the gas flow is caused to flow on the outer circumferential surface of the optical fiber. This gas flow in the opposite direction suppresses the upward airflow that attempts to enter the furnace core tube.

(5)実施例 以下、本発明を実施例を参照して詳細に説明する。(5) Examples Hereinafter, the present invention will be explained in detail with reference to Examples.

第4図は本発明を実施する光フアイバ線径制御装置の一
実施例である。
FIG. 4 shows an embodiment of an optical fiber diameter control device implementing the present invention.

炉芯管3の下方部にガス導入管10を設け、矢印13か
ら送り込まれたガスがガス流量制御用バルブ開閉装置1
2、流量計11を通してこのガス導入管10に送り込ま
れる。そしてそのガスは矢印13′のように流れ出て行
くようになつている。1Cfのガス導入管は炉芯管3の
下方部から流入しようとする上昇気流を抑制するための
ものである。
A gas introduction pipe 10 is provided at the lower part of the furnace core tube 3, and the gas fed from the arrow 13 is supplied to the gas flow rate control valve opening/closing device 1.
2. The gas is fed into this gas introduction pipe 10 through the flow meter 11. The gas then flows out as indicated by arrow 13'. The 1Cf gas introduction pipe is for suppressing the upward airflow that attempts to flow in from the lower part of the furnace core tube 3.

また光フアイバ外周表面を冷却することと、光フアイバ
外周表面に不純物(遷移金属イオン、アルカリ金属イオ
ン、アルカリ土類金属イオン、水分など)が付着するの
を防ぐことを目的としてもいる。15は炉芯管3の上方
部から不純物が混入するのを防ぐためと、加熱源2の熱
放散を防ぐための蓋である。
The purpose is also to cool the outer circumferential surface of the optical fiber and to prevent impurities (transition metal ions, alkali metal ions, alkaline earth metal ions, moisture, etc.) from adhering to the outer circumferential surface of the optical fiber. Reference numeral 15 denotes a lid for preventing impurities from entering from the upper part of the furnace core tube 3 and for preventing heat dissipation from the heating source 2.

第5図は第4図の装置を用いて得た実験結果の一例であ
る。
FIG. 5 shows an example of experimental results obtained using the apparatus shown in FIG.

これはプリフオーム送り速度VPl光フアイバ巻取り速
度Vfを一定で、矢印13から一定流量Fのガスを流し
ている状態でそのガス流量Fをステツプ状に△Fだけ増
大、あるいは減小させた場合の線径の最大変化分△dと
の関係を示したものである。,このように、ガス流量を
ステツブ状に△Fだけ増すと、線径が過渡的に太くなる
のは、プリフオーム溶融部の表面温度がガス流量のステ
ツプ状増加に対して瞬間的に冷やされ、溶融部がかたく
なる。その結果、光フアィバにかかつていた張力が急激
に増すため、プリフオーム溶融部の太いかたまりが引張
りだされ線径が過渡的に太くなつたと解釈している。そ
してある時間経過すると、別の定常状態(温度T2)に
移行するためまたもとの線径に収束するものと推測され
る。逆にガス流量をステツプ状にΔFだけ減らすとプリ
フオーム溶融部の表面温度が瞬間的に高くなり、溶融部
がやわらかくなる。その結果、光フアイバにかかつてい
た張力が急激に減少するため、光フアイバの線径が過渡
的に細くなると解釈している。第3図の結果と比較して
わかるように、ガス流量の増、減に対して線径の変化が
連続的関係にあり、第3図のような線径制御不可能なガ
ス流量範囲が存在しなくなつた。そのためにガス流量を
微小変化させて行なう線径制御が従来よりも容易になつ
た。なおこのガス流量を変えて線径制御を行う方法は図
中のaで示したように制御回路7の出力をガス流量制御
用バルブ開閉装置にフイードバツクして行なう。また点
線bで示したように、制御回路7の出力信号を巻取り速
度制御用モータ駆動回路8にフイードバツクしてもよい
。この場合には矢印13から送り込むガス流量は=定で
ある。これらの光フアイバ線径制御法は前記特許出願に
記載済である.本発明の方法はガスを光フアイバ外周表
面からプリフオーム溶融部の外周表面に溢つて流すため
に光フアイバ外周表面にプリフオーム溶融部表面から蒸
発したガラスの微粉末、遷移金属イオンなどが衝突、付
着しにくい特徴をもつている。
This is the case when the preform feeding speed VPl and the optical fiber winding speed Vf are constant and a constant flow rate F of gas is flowing from the arrow 13, and the gas flow rate F is increased or decreased by ΔF in steps. It shows the relationship with the maximum change Δd in the wire diameter. , In this way, when the gas flow rate is increased stepwise by △F, the wire diameter becomes thicker transiently because the surface temperature of the preform melting part is instantaneously cooled in response to the stepwise increase in the gas flow rate. The melted part becomes hard. As a result, the tension in the optical fiber suddenly increased, which is interpreted to mean that the thick mass of the fused preform was pulled out, causing the wire diameter to become thicker transiently. Then, after a certain period of time has passed, it is assumed that the wire diameter will converge to the original wire diameter again because it will shift to another steady state (temperature T2). On the other hand, if the gas flow rate is reduced stepwise by ΔF, the surface temperature of the preform melting portion will instantaneously increase, and the melting portion will become soft. As a result, the tension in the optical fiber suddenly decreases, leading to a transient decrease in the diameter of the optical fiber. As can be seen by comparing the results in Figure 3, there is a continuous relationship between changes in the wire diameter as the gas flow rate increases and decreases, and there is a gas flow rate range where the wire diameter cannot be controlled as shown in Figure 3. I stopped doing it. For this reason, wire diameter control by minutely changing the gas flow rate has become easier than before. The method of controlling the wire diameter by changing the gas flow rate is performed by feeding back the output of the control circuit 7 to the gas flow rate control valve opening/closing device, as shown by a in the figure. Further, as shown by the dotted line b, the output signal of the control circuit 7 may be fed back to the motor drive circuit 8 for controlling the winding speed. In this case, the gas flow rate fed from the arrow 13 is constant. These optical fiber diameter control methods have been described in the aforementioned patent application. The method of the present invention allows gas to overflow from the outer circumferential surface of the optical fiber to the outer circumferential surface of the preform melting part, so that fine glass powder, transition metal ions, etc. evaporated from the preform melting part surface collide and adhere to the optical fiber outer circumferential surface. It has difficult characteristics.

矢印13および14から送り込むガスはあらかじめ液体
窒素などでトラツプしてガスの露点を下げてから送り込
んでもよい。ガスとしては02、N2、Ar、CO2、
空気、Heなどのガスが使用できる。加熱源2には抵抗
加熱型電気炉、高周波誘導加熱炉、CO2レーザなどが
適用できる。3は炉芯管であつたが、これに限定される
必要はない。
The gas sent in from arrows 13 and 14 may be trapped with liquid nitrogen or the like to lower the dew point of the gas before being sent. Gases include 02, N2, Ar, CO2,
Gases such as air and He can be used. As the heating source 2, a resistance heating electric furnace, a high frequency induction heating furnace, a CO2 laser, etc. can be applied. 3 is a furnace core tube, but there is no need to be limited to this.

たとえば、加熱源全体をおおうことのできる箱、円筒管
でもよい。(6)まとめ 以上説明したごとく本発明は、プリフオームの外周表面
の一部あるいは全面部を加熱源で加熱し、光フアイバ外
周表面からプリフオーム溶融部の外周表面、プリフオー
ム外周表面に溢つて順次にガスを流しながら、プリフオ
ーム溶融部をその一端から延伸して光フアイバに線引き
する方法において、前記ガスとは逆方向のガス流によつ
て、炉心管の下方から炉心管に入ろうとする上昇気流を
抑制した。
For example, it may be a box or a cylindrical tube that can cover the entire heating source. (6) Summary As explained above, the present invention heats a part or the entire surface of the outer circumferential surface of the preform with a heating source, and the gas sequentially overflows from the outer circumferential surface of the optical fiber to the outer circumferential surface of the preform melting part and the outer circumferential surface of the preform. In this method, the molten part of the preform is stretched from one end of the preform to form an optical fiber while flowing, and the gas flow in the opposite direction to the above gas suppresses the upward airflow that attempts to enter the reactor core tube from below the reactor core tube. did.

その結果、炉心管内には制御不可能なガス流量値は存在
しなくなり、任意のガス流量値においてガス流量制御に
よる線径制御が可能になつた。また、上昇気流の抑制は
、この上昇気流中に含まれていた遷移金属イオンが高温
に加熱されたプリフオーム溶融部に衝突してこの溶融部
すなわち光フアイバ表面に傷をつけることを防止し、こ
の理由のために光フアイバの引張り破断強度が増すとい
う効果をもたらした。
As a result, there is no uncontrollable gas flow rate in the reactor core tube, and it has become possible to control the wire diameter by controlling the gas flow rate at any gas flow rate. In addition, suppression of the updraft prevents the transition metal ions contained in this updraft from colliding with the molten part of the preform heated to a high temperature and damaging the molten part, that is, the surface of the optical fiber. This has the effect of increasing the tensile breaking strength of the optical fiber for this reason.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,bおよび第2図A,bは先に本発明者が提案
し、特許出願を行つた光フアイバ線引装置の概略図、第
3図は第2図aの装置を用いて得た実験結果の一例、第
4図は本発明を実施するフアイバ線径制御装置の一実施
例の概略図、第5図は第4図の装置を用いて得た実験結
果の一例である。
Figures 1A and b and Figures 2A and b are schematic diagrams of an optical fiber drawing device previously proposed by the present inventor and for which a patent application has been filed, and Figure 3 is a schematic diagram of an optical fiber drawing device using the device in Figure 2a. An example of the experimental results obtained, FIG. 4 is a schematic diagram of an embodiment of a fiber diameter control device implementing the present invention, and FIG. 5 is an example of experimental results obtained using the device shown in FIG. 4.

Claims (1)

【特許請求の範囲】 1 光ファイバ外周表面からプリフオーム溶融部の外周
表面、プリフオーム外周表面に沿つて順次流れるように
ガスを流しながら光ファイバを線引きする方法において
、光ファイバ外周表面からプリフオーム溶融部の外周表
面、プリフオーム外周表面に沿つて順次流れるガスの吹
出し口の近傍に逆方向のガス吹出し口を設け、前記ガス
とは逆方向のガス流を光ファイバ外周表面に沿つて流す
ようにしたことを特徴とする光ファイバの線引き方法。 2 線引き中の光ファイバの外径を検出し、その外径が
所定値よりも太い場合には前記光ファイバ外周表面から
プリフオーム溶融部の外周表面、プリフォーム外周表面
に沿つて流しているガスの流量を減らすように、逆に外
径が所定値よりも細い場合には前記ガスの流量を増やす
ように前記ガス流量を制御することを特徴とする特許請
求の範囲第1項記載の光ファイバの線引き方法。 3 線引き中の光ファイバの外径を検出し、その検出信
号を光ファイバの巻取り速度制御部にフィードバックし
、光ファイバの外径が所定値よりも太い場合には巻取り
速度を速く、逆に前記外径が所定値よりも細い場合には
前記速度を遅くするように線引きされる光ファイバの巻
取り速度を制御することを特徴とする特許請求の範囲第
1項記載の光ファイバの線引き方法。
[Claims] 1. In a method of drawing an optical fiber while flowing a gas sequentially from the outer peripheral surface of the optical fiber to the outer peripheral surface of the preform molten part and along the preform outer peripheral surface, A gas outlet in the opposite direction is provided near the outlet for gas that sequentially flows along the outer peripheral surface and the outer peripheral surface of the preform, so that a gas flow in the opposite direction to the gas flow is caused to flow along the outer peripheral surface of the optical fiber. Characteristic optical fiber drawing method. 2 The outer diameter of the optical fiber being drawn is detected, and if the outer diameter is larger than a predetermined value, the gas flowing from the outer circumferential surface of the optical fiber to the outer circumferential surface of the preform melting part and the preform outer circumferential surface is detected. The optical fiber according to claim 1, wherein the gas flow rate is controlled to decrease the flow rate, and conversely to increase the gas flow rate when the outer diameter is smaller than a predetermined value. How to draw a line. 3. Detects the outer diameter of the optical fiber being drawn, feeds back the detection signal to the optical fiber winding speed controller, and if the outer diameter of the optical fiber is thicker than a predetermined value, the winding speed is increased or vice versa. The method of drawing an optical fiber according to claim 1, wherein the winding speed of the optical fiber being drawn is controlled so as to reduce the speed when the outer diameter is smaller than a predetermined value. Method.
JP14479276A 1976-12-03 1976-12-03 How to draw optical fiber Expired JPS5945610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14479276A JPS5945610B2 (en) 1976-12-03 1976-12-03 How to draw optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14479276A JPS5945610B2 (en) 1976-12-03 1976-12-03 How to draw optical fiber

Publications (2)

Publication Number Publication Date
JPS5369643A JPS5369643A (en) 1978-06-21
JPS5945610B2 true JPS5945610B2 (en) 1984-11-07

Family

ID=15370550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14479276A Expired JPS5945610B2 (en) 1976-12-03 1976-12-03 How to draw optical fiber

Country Status (1)

Country Link
JP (1) JPS5945610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030041628A1 (en) * 2001-09-05 2003-03-06 Bird Lindwood A. Furnaces having dual gas screens and methods for operating the same
JP2015071505A (en) * 2013-10-02 2015-04-16 住友電気工業株式会社 Manufacturing method and manufacturing apparatus for optical fiber

Also Published As

Publication number Publication date
JPS5369643A (en) 1978-06-21

Similar Documents

Publication Publication Date Title
US4101300A (en) Method and apparatus for drawing optical fiber
CN112281210B (en) Crystal growth apparatus and crystal growth method
EP1572595A1 (en) Method and apparatus for forming glass flakes and fibres
JPH0723229B2 (en) Optical fiber drawing equipment
JPS5945610B2 (en) How to draw optical fiber
US5381856A (en) Process for producing very thin amorphous alloy strip
JP2003095689A (en) Method for manufacturing optical fiber and device for manufacturing it
JPS5930660B2 (en) Optical fiber drawing method and device
JPH11116264A (en) Method for drawing optical fiber and device therefor
JP2801533B2 (en) Dieless wire drawing equipment
JP4169997B2 (en) Optical fiber drawing method
JPS62153137A (en) Wire drawing of optical fiber
CN107900297B (en) A kind of preparation method of Ni-Mn-Ga suitable shape memory alloy micrometer fibers
US4328017A (en) Method and apparatus for making optical fiber waveguides
JP2003146688A (en) Apparatus and method for manufacturing primary coated optical fiber, and primary coated optical fiber
JPS5850938B2 (en) Optical fiber manufacturing method and nozzle for optical fiber manufacturing
JPH10279326A (en) Drawing and heating furnace for optical fiber
US20010010162A1 (en) Method of making optical fiber
JPH07218130A (en) Heating roller and method of manufacturing the same
JPS6034721B2 (en) Method for reducing optical fiber diameter variation
JP4360850B2 (en) Optical fiber manufacturing equipment
JP3495395B2 (en) Optical fiber drawing method
JP2007217754A (en) Method and device for controlling temperature of molten zinc pot
SU254612A1 (en) PATENT TECHNICAL ^^ KIS Shpt-t-.OTSHL'-
JPH0656458A (en) Furnace for drawing optical fiber