JPS5945467B2 - Single electrode oscillating submerged mark welding method - Google Patents

Single electrode oscillating submerged mark welding method

Info

Publication number
JPS5945467B2
JPS5945467B2 JP12184978A JP12184978A JPS5945467B2 JP S5945467 B2 JPS5945467 B2 JP S5945467B2 JP 12184978 A JP12184978 A JP 12184978A JP 12184978 A JP12184978 A JP 12184978A JP S5945467 B2 JPS5945467 B2 JP S5945467B2
Authority
JP
Japan
Prior art keywords
welding
electrode
heat
weld
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12184978A
Other languages
Japanese (ja)
Other versions
JPS5548480A (en
Inventor
正昭 徳久
公造 赤秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12184978A priority Critical patent/JPS5945467B2/en
Publication of JPS5548480A publication Critical patent/JPS5548480A/en
Publication of JPS5945467B2 publication Critical patent/JPS5945467B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 この発明は、単電極揺動サブマージアーク溶接法に関し
、とくに、単電極サブマージアーク溶接を大入熱量で高
能率に適用する場合に不可避な溶接熱影響部の結晶粗大
化と、該熱影響部領域の肥厚化とをあわせ解決しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single electrode oscillating submerged arc welding method, and in particular, to prevent coarsening of crystals in the weld heat affected zone that is inevitable when applying single electrode submerged arc welding with a large heat input and high efficiency. This is an attempt to solve the problem of thickening of the heat-affected zone region.

この発明の適用は軟鋼、高張力鋼、耐熱鋼および低温用
鋼などの如何を問わず、何れも大入熱量で溶接した際に
生じる溶接熱影響部の結晶粒粗大化を抑制するとともに
、熱影響を受ける領域を著しく狭小化し、かくして高じ
ん性の溶接熱影響部を得る高能率な単電極揺動サブマー
ジアーク溶接方法を提供しようとするものである。近年
、溶接工数を削減し、溶接コストを低下させるために高
能率な大入熱自動浴接とくにサブマージアーク溶接方法
が広く採用されつつある。
This invention can be applied to mild steel, high-strength steel, heat-resistant steel, and low-temperature steel, to suppress grain coarsening in the weld heat affected zone that occurs when welding with a large heat input, and to The present invention aims to provide a highly efficient single-electrode oscillating submerged arc welding method that significantly narrows the affected area and thus obtains a highly tough weld heat-affected zone. In recent years, highly efficient high heat input automatic bath welding, particularly submerged arc welding, has been widely adopted in order to reduce welding man-hours and welding costs.

しかし、従来のこの種溶接方法では溶接入熱量の増大に
ともなつて溶接熱影響部、とくにボンド近傍は結晶粒和
犬化組織を呈し、さらにその領域が拡大するために、じ
ん性が著しく劣化してぜい性破壊を生じる危険性が大と
なり、重大な問題点となる。そこでこ減まではじん性劣
化を防止するために、溶接能率、溶接コストを儀性にし
て各種鋼材に適応した制限人熱量内で施工されていた。
However, in conventional welding methods of this type, as the welding heat input increases, the weld heat affected zone, especially near the bond, exhibits a grain-hardened structure, and as the area expands, the toughness deteriorates significantly. This increases the risk of brittle destruction, which poses a serious problem. Up until this point, in order to prevent deterioration of toughness, welding efficiency and welding costs had been taken into account and work was carried out within limits on the amount of human heat that was applied to each type of steel.

最近になりこれら問題点の解決策として鋼材の成分組成
、あるいは溶接方法についていくつか提案されている。
Recently, several proposals have been made regarding the composition of steel materials or welding methods as solutions to these problems.

たとえば鋼材の成分組成で改善するために溶接熱影響部
のオーステナイト粒柑大化を防止し、かっ微細フェライ
トの析出の核となりうるような特殊元素を微量添加する
とともに、鋼中の炭素、窒素含有量を低下させることで
ある。
For example, in order to improve the composition of steel materials, we prevent the austenite grain size in the weld heat-affected zone, add small amounts of special elements that can become the nucleus for the precipitation of fine ferrite, and improve the carbon and nitrogen content in the steel. The goal is to reduce the amount.

この方法によると溶接入熱量5O、00OJ0Ule/
/CTIL以上でも熱影響部は微細化組織を呈し、高じ
ん性が得られることが示されているがしかし、鋼材中の
微量元素の分布および形態をル1]御するために高度の
製造技術を必要とすること、さらに鋼材価格が上昇する
などの欠点を残す。いつぼう、溶接方法についてもたと
えば、電極が通過したのち溶接部の裏面側から低温液体
あるいは気体を溶接部に噴射して強制冷却し、微細組織
にしてじん性改善を行う方法がある。
According to this method, the welding heat input is 5O, 00OJ0Ule/
It has been shown that the heat-affected zone exhibits a refined structure and high toughness can be obtained even above CTIL. However, advanced manufacturing technology is required to control the distribution and morphology of trace elements in the steel material. However, there are still drawbacks such as the need for steel materials and the rise in steel prices. Regarding welding methods, for example, after the electrode has passed, there is a method in which low-temperature liquid or gas is injected into the welded part from the back side of the welded part to forcefully cool it and create a fine structure to improve the toughness.

しかし、この方法では母板板厚が比較的小さく、両側一
層で溶接する場合にはかなり効果的であるが、板厚が大
きくなり、多層盛の溶接を要するような場合には冷却効
果が低下して十分なじん性が得られないし、さらに、冷
却用液体あるいは気体を噴射する装置が必要となり、か
つ溶液速度と同期しなければならないので、装置が複雑
、大型になり、その操作上の制約から挟小部の溶接個所
には適用しがたい。そこで発明者らは多くの実験、検討
を行つた結果溶融池形状制御の有効性を明らかにする新
たな知見を得、これにもとづき、単電極サブマージアー
ク溶接法において電極を適切に揺動させると、溶接熱影
響部の品質劣化防止に対し、顕著な効果をもたらし得る
ことを見い出し、上述した従来技術の問題点を有利に克
服したものである。
However, this method is quite effective when the base plate thickness is relatively small and welding in a single layer on both sides, but the cooling effect decreases when the plate thickness becomes large and multi-layer welding is required. In addition, a device for injecting cooling liquid or gas is required and must be synchronized with the solution velocity, making the device complex and large, and its operational constraints It is difficult to apply this method to welded parts with narrow parts. As a result of many experiments and studies, the inventors obtained new knowledge that clarified the effectiveness of molten pool shape control.Based on this, the inventors found that it is possible to appropriately swing the electrode in single-electrode submerged arc welding. The present invention has been found to have a remarkable effect on preventing quality deterioration of the weld heat affected zone, and has advantageously overcome the problems of the prior art described above.

ところで電極を揺動して溶接する方法自体は、サブマー
ジアーク溶接法やガスシールドアーク溶接法に適用され
てはいるにしても、溶接熱影響部の高じん性および浴接
能率をもとに満足させることの要請についての解決のた
めに試みられた例はない。
By the way, although the method of welding by swinging the electrode is applied to submerged arc welding and gas shielded arc welding, it is not satisfactory based on the high toughness of the weld heat affected zone and the bath welding efficiency. There have been no attempts to resolve the requirement to do so.

すなわち特開昭50−45754号公報には、二つの電
極を揺動せしめて行う比較的低電流の二電極サブマージ
アーク片面溶接方法に関して、細径電極の揺動下に二電
極で個別に溶融池を生じさせ、2プール型式で接合する
方法が提案され、ここに開先幅変動に対しても確実な裏
波の形成が可能となり、良好なビード形成と先行の溶接
金属に後行電極による焼ならし効果を与えることができ
、高じん性の溶接金属が得られる旨開示されている。
That is, Japanese Patent Application Laid-Open No. 50-45754 describes a comparatively low current two-electrode submerged arc single-sided welding method performed by swinging two electrodes, in which the two electrodes individually weld the molten pool while the small-diameter electrode swings. A two-pool type welding method has been proposed, which enables reliable formation of under-waves even with variations in groove width, good bead formation, and burn-out of the preceding weld metal by the trailing electrode. It is disclosed that a leveling effect can be imparted and a highly tough weld metal can be obtained.

しかしこの方法は、溶接熱影響部も後行電極の焼ならし
効果により一部改善されるが、その他の部分は焼ならし
を受けない状態で残存し、高じん性は望めない上とくに
比較的極間距離が短かいために、先行電極の溶接熱によ
り、後行電極位置では約500〜1000℃程度に加熱
された状態にあり、後行電極による溶接部の冷却速度は
著しく遅くなつて結晶粒粗大化を生じ、さらに最終層の
後行電極による溶接部は次層による焼ならし作用がない
ために、この部分のじん性は極めて悪くなる。すなわち
、この方法での強じん性化法は次層溶接による焼ならし
効果を利用したもので、焼ならしを受けない溶接部につ
いての強じん化は何んら配慮されていない。なおガスシ
ールドアーク溶接法でも、電極揺動はすでに適用されて
いるが、この方法は一般に電極の線径が比較的小さく、
かつ溶接電流も小さいために、第1図に揺動軌跡A,b
,c,d,e,f,・・・・・・をあわせ示すごとく、
溶融池Mは溶接ビードBの幅全体にわたつては形成され
ず、電極Pの現在位置たとえばe点の反対方向の部分d
点近傍はすでに凝固しているので、電極Pが揺動軌跡に
沿つてe点からf点に移動すると、比較的低温度になつ
た凝固部d点近傍は再び溶融される一方、e点は電極P
によるアーク加熱がなくなるために凝固が進行する。
However, with this method, although the welding heat affected zone is partially improved due to the normalizing effect of the trailing electrode, other parts remain unnormalized, and high toughness cannot be expected, especially when compared. Due to the short distance between the welding electrodes, the trailing electrode is heated to approximately 500 to 1000°C due to the welding heat of the leading electrode, and the cooling rate of the weld by the trailing electrode is extremely slow. This causes coarsening of the crystal grains, and furthermore, since there is no normalizing effect of the next layer on the welded part by the trailing electrode of the final layer, the toughness of this part becomes extremely poor. In other words, this toughening method utilizes the normalizing effect of next-layer welding, and no consideration is given to strengthening the welded parts that are not subjected to normalizing. Electrode oscillation has already been applied to gas-shielded arc welding, but this method generally requires a relatively small electrode wire diameter.
In addition, since the welding current is small, the oscillation loci A and b are shown in Fig. 1.
, c, d, e, f,...
The molten pool M is not formed over the entire width of the weld bead B, but is formed at a portion d in the opposite direction of the current position of the electrode P, for example, point e.
The area near point d has already solidified, so when the electrode P moves from point e to point f along the swing trajectory, the area near point d in the solidified area, which has become relatively low, will melt again, while the point e will melt again. Electrode P
Solidification progresses because the arc heating due to is eliminated.

このような現象が繰返されるために、たとえば電極揺動
軌跡のa点近くの溶接熱影響部1(7)冷却曲線は第2
図のごとく凹凸を生じる。すなわち、溶接熱影響部1は
電極Pがa点に接近した際に、最高温度を記録し、b点
に移行するとアークによる加熱がなくなり、母板への放
熱により冷却する。
Because such a phenomenon is repeated, for example, the cooling curve of the welding heat affected zone 1 (7) near point a of the electrode swing trajectory becomes second.
As shown in the figure, unevenness occurs. That is, the welding heat affected zone 1 records the highest temperature when the electrode P approaches point a, and when it moves to point b, heating by the arc ceases and the welding heat affected zone 1 is cooled by heat radiation to the base plate.

さらにc点に近づくと溶接熱影響部1は再び加熱されて
焼ならし効果を生じ、d点に移動すると再び冷却過程に
入る。このような現象が繰返される結果、熱影響部1は
焼ならしを受けて微細組織となり、じん性は改善される
わけであるがしかし、じん性改善法が焼ならし作用に専
ら依存するために、焼ならし条件たとえば温度、時間お
よび冷却速度が溶接条件によつて変化し、このため溶接
条件の設定をあやまると焼ならし条件が変動し、必ずし
も微細組織にはならず、高じん性の熱影響部が得られな
い場合もある。さらに鋼種によつては再加熱により炭化
物、窒化物の析出を生じ、低じん性になる場合もあるの
で、焼ならしを付加することが必ずしも最上の方法とは
いえない。
When the welding heat affected zone 1 further approaches point c, it is heated again to produce a normalizing effect, and when it moves to point d, it starts the cooling process again. As a result of this phenomenon being repeated, the heat-affected zone 1 undergoes normalization and becomes a fine structure, and the toughness is improved. However, since the toughness improvement method depends exclusively on the normalization effect, In addition, the normalizing conditions, such as temperature, time, and cooling rate, change depending on the welding conditions. Therefore, if the settings of the welding conditions are incorrect, the normalizing conditions will change, and the fine structure will not necessarily be formed, resulting in high toughness. In some cases, the heat-affected zone cannot be obtained. Furthermore, depending on the type of steel, reheating may cause precipitation of carbides and nitrides, resulting in low toughness, so adding normalization is not necessarily the best method.

また、この方法に採用されている溶接電流は一般に10
0〜400Ampと小さく、溶接能率は低い。なおかよ
うな点を改善するために高電流を採用した場合は、溶融
池Mが大きくなつて焼ならし条件が変動するばかりか、
ガスシールド性が不良となり、溶融金属が大気中の酸素
、窒素と反応し、溶接金属のじん性劣化および気孔を生
じやすくなる。
Additionally, the welding current used in this method is generally 10
The welding efficiency is low at 0 to 400 Amps. In addition, if a high current is adopted to improve the above points, the molten pool M will not only become larger and the normalizing conditions will fluctuate, but also
Gas shielding properties become poor, and the molten metal reacts with oxygen and nitrogen in the atmosphere, making it easy for the weld metal to deteriorate in toughness and form pores.

さらにアークカが強くなり、かつ電極揺動により溶融池
内の溶鋼流をみだして溶接ビード形状が悪化し、アンダ
ーカツトを生じやすくするとともに、スパツタ一が多発
生し、作業性も悪化する。また浴融スラグは電極中の脱
酸性元素が酸化物となつて先成されるために、このスラ
グ量は非常に少なく、ビード形状を整えるだけの量およ
び物性を調整することも困難となる。このように高電流
にした場合には多くの問題点があり、実用性がないため
低電流で溶接せざるを得ないのである。なお上記、溶接
方法にサブマージアークの適用を仮想すると、電極揺動
によつて溶接金属の溶融および凝固を繰返すような、少
ない熱量では、多量のスラグが存在し、かつ溶接スラグ
の温度がこれに追随して変化するため、アークの安定性
がそこなわれて、スラグ巻込みや、融合不良を生じやす
く、欠陥の多い溶接部になるおそれがある。要するに従
米のガスシールドアーク浴接法では電極揺動を付加して
も一般的にスラグ量が少ないために、溶接金属の溶融、
凝固の繰返しが可能なので、焼ならし効果による微細化
組織を不安定ながらも遅成し得るが、サブマージアーク
溶接法では多量の溶接スラグが生成し、これが溶接金属
の溶融、凝固の繰返しを阻害して浴接欠陥を生じる原因
となつて健全な溶接部は得られ難く、従つて電極揺動の
付加は単電極サブマージアーク溶接に適用されなかつた
のである。次に一般に溶接部の継手性能を確保するため
に、溶接後熱処理を必要とする場合が多いが、とくに8
0k9/!Lm2高張力鋼や耐熱鋼は、この熱処理過程
中に熱影響部の粗粒域に粒界われが発生することが多々
ある。
Further, the arc force becomes stronger, and the molten steel flow in the molten pool is pushed out due to the electrode rocking, which deteriorates the shape of the weld bead, making undercuts more likely to occur, as well as causing many spatters and worsening workability. In addition, since the bath melt slag is first formed by deoxidizing elements in the electrodes becoming oxides, the amount of this slag is very small, and it is difficult to adjust the amount and physical properties enough to shape the bead. When using such a high current, there are many problems and it is not practical, so welding must be performed at a low current. Assuming that submerged arc is applied to the welding method mentioned above, if the weld metal is repeatedly melted and solidified by electrode swinging, and the amount of heat is small, a large amount of slag will be present, and the temperature of the welding slag will be lower than this. Since the arc changes accordingly, the stability of the arc is impaired, and slag entrainment and fusion failure are likely to occur, resulting in a welded part with many defects. In short, in Jubei's gas-shielded arc bath welding method, the amount of slag is generally small even when electrode oscillation is applied, so the melting of the weld metal
Since solidification can be repeated repeatedly, the finer structure due to the normalizing effect can be unstable but delayed, but submerged arc welding generates a large amount of welding slag, which inhibits the repeated melting and solidification of the weld metal. This causes bath welding defects and makes it difficult to obtain a sound weld. Therefore, the addition of electrode oscillation has not been applied to single-electrode submerged arc welding. Next, in general, post-weld heat treatment is often required to ensure the joint performance of the welded part, but in particular
0k9/! In Lm2 high tensile strength steel and heat resistant steel, grain boundary cracking often occurs in the coarse grain region of the heat affected zone during this heat treatment process.

この原因は浴接後熱処理による内部応力の緩和過程で、
微細析出物により、結晶粒内と粒界の相対的強度差を生
じることに起因すると考えられている。われ防止策とし
ては和粒化を抑制する方法が有効で、従来はテンパビー
ドによる細粒化あるいは溶接人熱量の低減が行れている
。しかし、これら方法はいずれも溶接能率の低下、溶接
コストの上昇をまねき、効果的な方法ではなく、従つて
いまだ大入熱量で溶接を行い得る力法は提案されるに至
つていないのである。さてこの発明は上記したような従
来法の欠点および問題点を解決するために、開発研究を
重ねた結果創案されたもので、その目的とするところは
軟鋼、高張力鋼、耐熱餉および低温用鋼などを大入熱量
で溶接した際に生じる溶接熱影響部の結晶粒和大化を抑
制するとともに、熱影響を受けた領域をも狭小化するこ
とによつて、高じん性でかつ溶接後熱処理によるわれ感
受性を改善した溶接熱影響部をうる高能率な単電極サブ
マージアーク揺動溶接方法を提供するものである。
The cause of this is the internal stress relaxation process due to post-bath welding heat treatment.
It is thought that this is caused by a relative strength difference between the inside of the grain and the grain boundary due to fine precipitates. An effective way to prevent cracking is to suppress grain size. Conventionally, tempering beads have been used to refine the grains or reduce the amount of heat required by the welder. However, all of these methods lead to a decrease in welding efficiency and an increase in welding costs, and are not effective methods.Therefore, a force method that can perform welding with a large amount of heat input has not yet been proposed. be. This invention was created as a result of repeated research and development in order to solve the drawbacks and problems of the conventional methods as described above, and its purpose is to apply mild steel, high tensile steel, heat-resistant steel, and low-temperature steel. By suppressing the enlargement of crystal grains in the weld heat-affected zone that occurs when welding steel etc. with a large heat input, and by narrowing the heat-affected area, we have achieved high toughness and welding properties. The present invention provides a highly efficient single-electrode submerged arc oscillation welding method that produces a weld heat-affected zone with improved sensitivity to cracking due to heat treatment.

すなわちこの発明はとくに単電極サブマージアーク溶接
方法において、溶接進行方向と交叉するように電極を揺
動させるに当り、ビード幅となるビード両端への母板溶
融エネルギーの付与が交互間欠的となり、かつビード幅
を決定するビード両端位置が揺動したアークの到達では
じめて溶融するように電極を揺動させ、溶接進行方向に
対し後半部の溶融池形状が溶接線に対して一山対称型と
なるように条件を制御した熱源を用いることにより、揺
動周期にともなう再加熱効果による熱影響部組織変化を
生じさせず、かつ高じん性微細組織の溶接熱影響部が得
られることの新しい知見に基くものである。
That is, the present invention is particularly advantageous in that, in a single electrode submerged arc welding method, when the electrode is oscillated so as to intersect with the direction of welding progress, the base plate melting energy is applied intermittently to both ends of the bead, which corresponds to the bead width, and The electrode is oscillated so that it melts only when the oscillating arc reaches both ends of the bead, which determines the bead width, and the molten pool shape in the latter half of the welding direction becomes symmetrical with respect to the weld line. This new finding shows that by using a heat source with controlled conditions, it is possible to obtain a weld heat-affected zone with a highly tough microstructure without causing any changes in the heat-affected zone structure due to the reheating effect associated with the oscillation period. It is based on

従つて大人熱溶接方法にもかかわらず、溶接熱影響部に
おけるオーステナイト粒成長温度域での冷却速度が著し
く速くなつて、オーステナイト粒の粗大化が防止され、
微細化組織を呈するとともに、熱影響部幅も狭くなつて
高じん性およびSRわれ感受性の改善が達成でき、しか
も高電流で溶接するために高能率で溶接工数および浴接
コストが削減できるのである。
Therefore, despite the adult heat welding method, the cooling rate in the austenite grain growth temperature range in the weld heat affected zone is significantly faster, preventing austenite grains from becoming coarser.
In addition to exhibiting a finer structure, the width of the heat-affected zone is narrower, achieving high toughness and improved susceptibility to SR cracking.Furthermore, since it is welded with a high current, it is highly efficient, reducing welding man-hours and bath welding costs. .

この発明の構成を具体的な実施態様について図面により
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be explained in detail with reference to the drawings regarding specific embodiments.

第3図はこの発明をつき合わせ溶接に適用した溶接要領
説明図であり、電極ワイヤ3を送給ロール4によつて溶
接トーチ5を通じ、母材1,1″の開先部2に送り込む
。開先部2にはあらかじめ焼結型あるいは溶融型の溶接
用フラツクス6を散布しておき、交流あるいは直流の浴
接用電源11により母板1,1″と電極ワイヤ3との間
に潜弧アーク9を発生させる。とくに潜弧アーク9を溶
接進行方向と交叉するように揺動させるために、溶接ト
ーチ5に揺動用電動機7の回転運動を第4図に示したよ
うな揺動軌跡10に変換する治具8を装備する。このよ
うにして潜弧アーク9を揺動しつつ母材1,1″を単電
極でサブマージアーク溶接するのである。
FIG. 3 is an explanatory diagram of a welding procedure in which the present invention is applied to butt welding, in which an electrode wire 3 is fed by a feed roll 4 through a welding torch 5 into a groove 2 of a base material 1, 1''. A sintered or molten welding flux 6 is sprinkled on the groove 2 in advance, and a latent arc is created between the mother plate 1, 1'' and the electrode wire 3 using an AC or DC bath contact power source 11. Generate arc 9. In particular, in order to swing the submerged arc 9 so as to intersect with the direction of welding progress, a jig 8 is installed on the welding torch 5 to convert the rotational motion of the swing motor 7 into a swing trajectory 10 as shown in FIG. be equipped with. In this way, the submerged arc welding of the base materials 1, 1'' is carried out using a single electrode while the submerged arc 9 is oscillated.

この場合の揺動軌跡10は第4図に例示するごとく、溶
接進行方向と交叉するように潜弧アーク9を揺動させる
ものであれば、すべてこの発明の方法に適用できる。
In this case, the swing locus 10 can be applied to the method of the present invention as long as it swings the submerged arc 9 so as to cross the direction of welding progress, as illustrated in FIG.

ところで電極数を複数にした多電極サブマージアーク溶
接法では、第2極目以降で接合される溶接部はその電極
よりも先行した電極による溶接熱の残存で、高温度に加
熱されているとともに、これら電極間距離が著しく短か
い場合には先行電極による溶融金属上にアークが発生す
るために、溶融金属が過剰に加熱される結果、溶融熱影
響部の冷却速度が著しく遅くなつて結晶粒の粗大化を生
じ、一方電極間距離が極度に長い場合には凝固したスラ
グが存在するため後行電極に安定したアークを維持でき
ず、溶接が困難となり従つてオーステナイト粒成長温度
域での冷却速度を大にするには、余剰加熱を排除した単
電極サブマージアーク溶接を不可欠とする。
By the way, in the multi-electrode submerged arc welding method, which uses a plurality of electrodes, the welded parts joined after the second electrode are heated to a high temperature due to the residual welding heat from the electrode that preceded the electrode. If the distance between the electrodes is extremely short, an arc is generated on the molten metal by the leading electrode, which causes the molten metal to be excessively heated. As a result, the cooling rate of the molten heat-affected zone becomes extremely slow and the crystal grains become coarse. On the other hand, if the distance between the electrodes is extremely long, a stable arc cannot be maintained at the trailing electrode due to the presence of solidified slag, making welding difficult and reducing the cooling rate in the austenite grain growth temperature range. To achieve this, single-electrode submerged arc welding, which eliminates excess heating, is essential.

さて同一溶接入熱量として、平板上を種々の条件で電極
3を揺動する単電極サブマージアーク溶接における潜弧
アーク9の発生状態と、溶接中に母板の一端を急速に落
下させ、浴融池内の溶鋼を瞬間的に排出することにより
示した溶接進行中不断の溶融池12の形状とを第5図に
そして溶接ビード13の横断面形状を第6図に、また溶
接熱影響部14のボンド近傍の冷却曲線を第7図にあら
れした。
Now, assuming the same welding heat input, the generation state of the latent arc 9 in single-electrode submerged arc welding in which the electrode 3 is oscillated on a flat plate under various conditions, and the generation state of the latent arc 9 in single-electrode submerged arc welding in which the electrode 3 is oscillated on a flat plate under various conditions. FIG. 5 shows the shape of the molten pool 12, which is shown by instantaneously discharging the molten steel in the pool, and shows the cross-sectional shape of the weld bead 13 in FIG. Figure 7 shows the cooling curve near the bond.

第5図aは電極3の揺動軌跡10の振り幅10aが狭い
場合の一例であり、潜弧アーク9は溶接線15の両側に
て溶接ビード13の幅には達しない点16−16′間に
またがるほぼ長円状領域に生じ、それに起因する溶融池
12は該領域に後続する部分にて次第に、溶接ビード1
3と同等の横幅に至るが、ここにいわゆる2次溶融を起
こして潜弧アーク9による溶込みが、溶融池12の両側
で浅くなる。
FIG. 5a shows an example where the swing width 10a of the swing locus 10 of the electrode 3 is narrow, and the latent arc 9 does not reach the width of the weld bead 13 on both sides of the weld line 15 at points 16-16'. The molten pool 12 formed in a substantially elliptical region extending between the weld beads 1
However, so-called secondary melting occurs and the penetration by the latent arc 9 becomes shallow on both sides of the molten pool 12.

この2次溶融は潜弧アーク9による加熱が溶融池12内
で常時に加わることによつて溶融金属が過熱されること
、その結果、溶融池内に強い対流を生じることによる。
この2次溶融、すなわち長円状の潜弧アーク9の発生領
域に後続した溶融池の浅い幅広がりは、溶接ビード13
の凝固開始位置を電極3に対し極めて後方側に伸張させ
、このとき溶融池12に対して固液界面に沿う溶接熱影
響部14は、高温度にさらされている時間が長くなり、
その冷却速度は、第7図aに示すように比較的緩徐とな
り、かくして第6図aのように溶接熱影響部14は、肥
大化した厚みhの領域にわたり和大化した組織を呈し、
ここに溶接熱影響部14のじん性の劣化を米すわけであ
る。
This secondary melting is caused by the fact that the molten metal is overheated by constant heating by the latent arc 9 in the molten pool 12, and as a result, strong convection is generated in the molten pool.
This secondary melting, that is, the shallow widening of the molten pool following the generation area of the oblong latent arc 9 is caused by the weld bead 13
The solidification start position of the weld is extended extremely rearward with respect to the electrode 3, and at this time, the welding heat affected zone 14 along the solid-liquid interface with respect to the molten pool 12 is exposed to high temperature for a long time,
The cooling rate becomes relatively slow as shown in FIG. 7a, and thus, as shown in FIG. 6a, the weld heat affected zone 14 exhibits an enlarged structure over an enlarged region of thickness h,
This is where the toughness of the weld heat affected zone 14 deteriorates.

この場合における溶融池12内の、溶融物を急激排除し
たときのクレータ外観は、第5図aのようになつている
In this case, the appearance of the crater in the molten pool 12 when the molten material is rapidly removed is as shown in FIG. 5a.

第5図bでは、潜弧アーク9の発生領域が、つくろうと
する溶接ビード13の幅に合致する間隔の位置16−1
62に至つてそれぞれ独立するように拡大した電極3の
揺動にて、いわばその揺動工程端で交互間けつ的なアー
ク熱源の付与にて、溶接ビード幅に合致した横幅に相当
する溶融池の前縁を、電極揺動の向きに沿い斜めに更新
する母材1のアーク熱源による溶融を生じる。
In FIG. 5b, the generation area of the latent arc 9 is located at a position 16-1 at an interval that matches the width of the weld bead 13 to be created.
62, the electrodes 3 are oscillated to become independent, and by applying an arc heat source intermittently at the end of the oscillation process, a molten pool with a width corresponding to the weld bead width is formed. The front edge of the base material 1 is melted by the arc heat source, which renews the front edge obliquely along the direction of electrode swing.

すなわち位置16又は16ti1c遅した潜弧アーク9
は、それからかけ離れている位置165又は16には届
かないので、アーク熱源が揺動工程にわたり分散され、
その結果溶接池12の前縁側にて第6図bに示すように
急深の溶け込みとなる。
That is, the submerged arc 9 delayed by position 16 or 16ti1c
does not reach positions 165 or 16 that are far from it, so that the arc heat source is distributed over the oscillation process,
As a result, a sudden deep penetration occurs at the leading edge side of the weld pool 12 as shown in FIG. 6b.

アーク熱源の分散付与にて溶融池12内の溶融金属の過
熱度は、それに起因する対流とともに著しく低下し、そ
の結果として2次溶融は第5図aの場合に比し、極めて
少なく、殆ど皆無になる。それというのは、電極3の揺
動軌跡10の振り幅の上記拡大により、潜弧アーク9の
熱源付与が母材1の溶融に主として費やされて、溶融池
12に対する加熱効果が減じることによる。つまり、2
次溶融池12におけるあたかも遠浅状を呈する棚底の肥
厚化を生じないので、この部分を含めた溶接熱影響部1
4への余剰の加熱が防止されることとなる。
Due to the dispersion of the arc heat source, the degree of superheating of the molten metal in the molten pool 12 is significantly reduced along with the resulting convection, and as a result, secondary melting is extremely small and almost non-existent compared to the case shown in Figure 5a. become. This is because, due to the above-mentioned increase in the amplitude of the swing trajectory 10 of the electrode 3, the heat source provided by the latent arc 9 is mainly used to melt the base material 1, and the heating effect on the molten pool 12 is reduced. . In other words, 2
The welding heat affected zone 1 including this part does not cause thickening of the bottom of the shelf in the next molten pool 12, which appears to be shallow.
4 will be prevented from being excessively heated.

また溶接池12での受熱が軽減されて、溶接ビード13
の凝固開始位置は潜弧アーク9の発生領域側に接近し、
その結果溶融池12内に湛えられる溶鋼量も少なくなる
ので、第6図bに示した溶接熱影響部14の厚みhは2
〜3mm以下の薄層となり該部が高温にさらされている
時間が著しく短くなる。この結果、オーステナイト粒成
長温度域での冷却速度が著しく速くなるとともに、溶接
金属凝固層の再溶融量が極めて少ないために溶接熱影響
部14に与えられる再加熱度も小さく、冷却曲線には組
織変化を伴わないオーステナイト温度域でせいぜい数1
0℃以下の昇温しか認められず、焼ならしを受けること
もない。
In addition, heat reception in the weld pool 12 is reduced, and the weld bead 13
The solidification start position approaches the generation area of the latent arc 9,
As a result, the amount of molten steel stored in the molten pool 12 is reduced, so the thickness h of the weld heat affected zone 14 shown in FIG. 6b is 2.
It becomes a thin layer of ~3 mm or less, and the time that the part is exposed to high temperature is significantly shortened. As a result, the cooling rate in the austenite grain growth temperature range becomes significantly faster, and since the amount of remelting of the weld metal solidified layer is extremely small, the degree of reheating applied to the weld heat affected zone 14 is also small, and the cooling curve has no structure. At most a few 1 in the austenite temperature range with no change
It is only allowed to rise in temperature below 0°C, and is not subjected to normalizing.

このために溶接線方向15の熱影響部全域にわたつて均
一な微細化組織を呈し、高じん性化が達成できる。この
場合の溶融池12の形状は溶接ビード幅全体にわたつて
、溶接進行方向に対し後半部が溶接線15に関し対称な
先拡りV形をなす。このような溶融池12の形状を且脚
することによつて溶接金属13の再溶融は殆んど生ぜず
、溶接スラグも高温度の溶融状態にあるために、アーク
9は安定し、溶融金属および溶融スラグの対流が円渭に
行われる結果、スラグ巻込み、融合不良、アンダーカツ
トなどの溶接欠陥が皆無な溶接部13が得られる。この
場合溶接進行中不断の溶融池形状の外観は第5図bのよ
うになる。これに反して第5図cは溶接熱影響部14の
余剰加熱度をbの場合よりもさらに減少した場合の一例
で、溶接部に十分な熱量が与えられないために、溶融金
属の凝固が著しく進行し、溶融池の後半部形状は二つの
溶融池が左右に重なつたいびつのW形をなしこの両溶融
池12,12″の連結部となる溶接ビード幅中心線近傍
にはスラグ巻込み、融合不良を、またビード両端部16
,16″にはアンダーカツトを生じ健全な溶接部13は
得られない。
Therefore, a uniform fine structure is exhibited over the entire heat affected zone in the weld line direction 15, and high toughness can be achieved. In this case, the shape of the molten pool 12 is a V-shape that extends over the entire weld bead width and whose rear half is symmetrical with respect to the weld line 15 with respect to the welding progress direction. By having such a shape of the molten pool 12, remelting of the weld metal 13 hardly occurs, and since the welding slag is also in a high temperature molten state, the arc 9 is stable and the molten metal As a result of circular convection of the molten slag, a welded portion 13 is obtained that is free from welding defects such as slag entrainment, poor fusion, and undercuts. In this case, the appearance of the molten pool that continues during welding is as shown in FIG. 5b. On the other hand, Fig. 5c is an example in which the degree of excess heating of the weld heat affected zone 14 is further reduced than in case b, and since sufficient heat is not given to the welding area, solidification of the molten metal is prevented. The molten pool progresses significantly, and the shape of the latter half of the molten pool is a distorted W-shape in which two molten pools are overlapped on the left and right, and there is slag winding near the center line of the weld bead width, which is the connecting part of both molten pools 12, 12''. In order to prevent fusion and fusion defects, the bead ends 16
, 16'', an undercut occurs and a sound welded portion 13 cannot be obtained.

さらに第5図dのように揺動幅を広くして、かつ低電流
で電極3の平均移動速度を小にした場合には第1図につ
きのべたように、溶融池12は溶接ビード幅全体にわた
つて形成されずに、溶接線15に対し偏つた形になる。
Furthermore, when the oscillation width is widened and the average moving speed of the electrode 3 is made small with a low current as shown in FIG. The welding line 15 is not formed over the entire area, but is deviated from the welding line 15.

潜弧アーク9の反対側のビード端部165は冷却が進行
し、かなりの厚みの溶接金属凝固層が生じ潜弧アーク9
が揺動軌跡10に沿つてビード端部16″に接近すると
比較的低温度になつた凝固部は再び溶融され、他端部1
6はアーク加熱がなくなるために凝固が進行する。
The bead end 165 on the opposite side of the submerged arc 9 continues to cool, forming a considerably thick weld metal solidified layer, and the submerged arc 9
When it approaches the bead end 16'' along the rocking trajectory 10, the solidified portion, which has reached a relatively low temperature, is melted again, and the other end 16''
In No. 6, solidification progresses due to no arc heating.

この現象が繰返されるために、溶接熱影響部14の冷却
曲線は加熱、冷却を複数回繰返し、凹凸のある曲線とな
る。
Because this phenomenon is repeated, the cooling curve of the weld heat affected zone 14 repeats heating and cooling multiple times, resulting in an uneven curve.

この場合、溶接熱影響部14に組織変化を生じるような
再加熱、すなわち一度A1変態点以下の温度まで冷却さ
れたところに再加熱によりA3変態点以上まで再び昇温
すると組織は焼ならし効果により微細結晶粒を呈する。
しかし、溶接線方向15の熱影響部14全域が同一な微
細化組織となるのではなく、熱源の付与位置が揺動軌跡
10および溶接速度によつて随時変化し、さらにアーク
点弧範囲が狭小であるために、溶接線方向15の熱影響
部14全域にわたつて再加熱条件(温度、時間)を一定
にすることはできず、粗大化結晶と微細化結晶の混粒組
織となり、完全な組織改善法にはならない。さらに溶融
池12の形状が溶接線15に対し非対称となつていてこ
れは溶接ビード両端部16,16″のいずれか一方に相
当の凝固層が存在していることを意味し、電極揺動によ
つて溶接金属13の溶融および凝固を繰返すと温度低下
したスラグを介してアーク9を点弧せねばならないため
、アーク9の安定性がそこなわれ、スラグ巻込み、融合
不良を生じ、欠陥の多い溶接部となる。以上、何れも多
量のスラグを生成するサブマージアーク浴接法における
4種の溶接条件を比較したが、溶接熱影響部14に均一
な微細化組織を呈して高じん性が得られ、かつ健全な溶
接部13を形成するには第5図b1第6図bに示した場
合にのみに限定され、その特徴とするところは、溶接進
行方向と交叉するように電極を揺動する単電極サブマー
ジアーク法で溶接する際に、ビード幅となるビード両端
への熱源の付与が交4間欠的となるように電極揺動し、
かつビード幅を決定するビード両端位置が揺動したアー
クの到達ではじめて溶融し、溶接進行方向に対し後半部
の溶融池形状が溶接線に関して対称な先拡りをなすとこ
ろにあり、このため揺動周期にともなう再加熱効果によ
る熱影響部組織変化が生じないように熱源を与えること
にある。
In this case, if the weld heat-affected zone 14 is reheated to cause a structural change, that is, once cooled to a temperature below the A1 transformation point, the structure is normalized by reheating to raise the temperature to the A3 transformation point or above. It exhibits fine crystal grains.
However, the entire heat affected zone 14 in the welding line direction 15 does not have the same refined structure, but the heat source application position changes from time to time depending on the swing trajectory 10 and the welding speed, and furthermore, the arc ignition range is narrow. Therefore, it is not possible to keep the reheating conditions (temperature, time) constant throughout the heat affected zone 14 in the weld line direction 15, resulting in a mixed grain structure of coarse and fine crystals, resulting in a complete It is not a method for organizational improvement. Furthermore, the shape of the molten pool 12 is asymmetrical with respect to the weld line 15, which means that there is a considerable solidified layer at either end 16, 16'' of the weld bead, which is caused by electrode fluctuation. Therefore, when the weld metal 13 is repeatedly melted and solidified, the arc 9 must be ignited through the slag whose temperature has decreased, which impairs the stability of the arc 9, causing slag entrainment, poor fusion, and defects. Above, we have compared four types of welding conditions in the submerged arc bath welding method, which all generate a large amount of slag. In order to form a welded part 13 that is both obtained and sound, it is limited to the cases shown in FIGS. 5b and 6b. When welding using the moving single electrode submerged arc method, the electrode is oscillated so that the heat source is applied intermittently to both ends of the bead, which corresponds to the bead width.
In addition, the bead ends at both ends, which determine the bead width, are melted only when the oscillating arc reaches them, and the shape of the molten pool in the latter half of the welding direction widens symmetrically with respect to the weld line. The purpose is to provide a heat source so that changes in the structure of the heat-affected zone do not occur due to the reheating effect associated with the dynamic cycle.

この発明の具体的な溶接条件の設定は次のとおりである
The specific welding conditions of this invention are set as follows.

単電極サブマージアーク溶接法で電極ワイヤ3の揺動を
行うとき、溶接電流が500Ampよりも小さい場合に
は十分なアーク熱が与えられず、母材1,1″および溶
接用フラツクス6の溶融が不均衡になつて融合不良、ス
ラグ巻込みなどの溶接欠陥が発生し、健全な溶接部は得
られない。さらに溶融池12が溶接ビードの幅全体にわ
たつて形成されず、第5図、第6図および第7図のdに
つき上記したような問題点が生じる。いつぼう、500
Af11p以上では母材1,12および溶接用フラツク
ス6の溶融が十分に行い得て、均一組成の溶接金属13
が得られ、融合不良、スラグ巻込みなどの欠陥は皆無で
健全な溶接部が得られるとともに、高電流作用によつて
電極ワイヤ3の溶融量が増し、溶接能率の向上が達成さ
れる。揺勤行程端での許容最高入熱量については、溶融
池幅キビード幅を決定するように定めればよい。電極3
の移動単位長さ当りの平均人熱量H5は、第4図に示す
ごとく、電極揺動1サイクルに要するa−+b−+c間
の電極移動距離l(C7rL)とこの1サイクルに要す
る時間t(Sec)の比率(1!/t)を電極3の平均
移動速度v′Cル庸1n)として平均入熱量R(JOu
le/Cm)を求め、いつぽう溶接進行方向の単位長さ
当りの入熱量Hは溶接速度(QV冨1n)、すなわち溶
接合車の移動速度から入熱量H(JOUle/CT!L
)を求めるものである。したがつて、電極3の揺動を行
えば溶接速度vよりも電極移動速度v゛が大きくなり、
電極移動単位長さ当りの平均入熱量Rは溶接進行方向の
単位長さ当りの人熱量Hよりも小さくなる。この場合、
溶接熱影響部14のじん性を向上させるには電極移動単
位長さ当りの平均入熱量H5に上限値が存在する。電極
移動単位長さ当りの平均入熱量H′は溶接熱影響部14
のオーステナイト粒成長温度域での冷却速度に著しい影
響をおよぼす。
When the electrode wire 3 is oscillated in the single-electrode submerged arc welding method, if the welding current is smaller than 500 Amps, sufficient arc heat will not be applied and the base metal 1,1'' and welding flux 6 will not melt. This imbalance causes weld defects such as poor fusion and slag entrainment, making it impossible to obtain a sound weld.Furthermore, the molten pool 12 is not formed over the entire width of the weld bead, and as shown in FIGS. The above-mentioned problem arises regarding d in Figures 6 and 7.
At Af11p or more, base metals 1, 12 and welding flux 6 can be sufficiently melted, and weld metal 13 with a uniform composition can be obtained.
A sound weld is obtained with no defects such as poor fusion or slag entrainment, and the amount of melted electrode wire 3 is increased due to the high current action, resulting in an improvement in welding efficiency. The maximum allowable heat input amount at the end of the swinging stroke may be determined so as to determine the molten pool width and the kibido width. Electrode 3
As shown in Fig. 4, the average amount of human heat per unit length of movement H5 is determined by the electrode movement distance l (C7rL) between a-+b-+c required for one cycle of electrode rocking and the time t( The average heat input amount R (JOu
le/Cm), and the heat input H per unit length in the welding direction is determined by the welding speed (QV 1n), that is, the moving speed of the welding wheel, and the heat input H (JOUle/CT!L).
). Therefore, if the electrode 3 is oscillated, the electrode moving speed v' becomes larger than the welding speed v,
The average amount of heat input R per unit length of electrode movement is smaller than the amount of human heat H per unit length in the welding direction. in this case,
In order to improve the toughness of the welding heat affected zone 14, there is an upper limit to the average heat input amount H5 per unit length of electrode movement. The average heat input H' per unit length of electrode movement is the welding heat affected zone 14
This has a significant effect on the cooling rate in the austenite grain growth temperature range.

この平均入熱量H5が25,000J0u1e/Cmよ
りも大きい場合には溶接熱影響部14に与えられる熱量
が大となつて、この部分のオーステナイト粒成長温度域
での冷却速度が遅くなる結果、オーステナイト粒は著し
く粗大化する。しかし、25,000J0u1eノ?以
下では溶接熱影響部14を余剰に加熱する熱量が削減さ
れる結果、オーステナイト粒成長温度域での冷却速度が
著しく速くなつて、オーステナイトは細粒となる。いつ
ぼう、溶接進行方向の単位長さ当りの入熱量Hは溶接能
率の向上および溶接工数の削減を図るには大入熱量にす
るほど好ましく、また冶金的効果としてはこの入熱量H
を大にしてもH′が25,000J0U1eA:1!L
以下であれば、溶接影響部14のオーステナイト粒成長
温度域での冷却速度を遅らせる作用はほとんどなく、8
00℃から500℃までの冷却時間のみがその入熱量H
に応じて長くなる結果、粗大な旧オーステナイト粒界に
晶出する粗大初析フエライトはほとんどなく、微細化組
織が得られ、高じん性化が達成できる。
When this average heat input amount H5 is larger than 25,000 J0u1e/Cm, the amount of heat given to the weld heat affected zone 14 becomes large, and as a result, the cooling rate in this area in the austenite grain growth temperature range becomes slow, resulting in austenite The grains become significantly coarser. But 25,000J0u1e? Below, as a result of reducing the amount of heat that excessively heats the weld heat affected zone 14, the cooling rate in the austenite grain growth temperature range becomes significantly faster, and the austenite becomes finer grained. In order to improve welding efficiency and reduce welding man-hours, it is preferable to increase the heat input per unit length in the welding direction.
Even if you increase , H' is 25,000J0U1eA:1! L
If it is less than
Only the cooling time from 00℃ to 500℃ is the heat input H
As a result, there is almost no coarse pro-eutectoid ferrite crystallized at coarse prior austenite grain boundaries, a refined structure is obtained, and high toughness can be achieved.

この場合、電極移動単位長さ当りの平均入熱量H5を2
5,000J0u1e々よりも小さくするほど溶接熱影
響部14はより微細化組織を呈して、高じん性となるが
、この入熱量H′を極端に小さくすると溶接欠陥を発生
するようになる。すなわち、この入熱量H′を小さくす
るには電極3の平均移動速度v′を大きくすることが必
要となる。移動速度Vrを450CIn/Minよりも
速くするとアークの安定性、電極ワイヤ3からの溶滴移
行および溶融池内の溶融金属の対流などがみだされると
ともに、第5図cにおける溶融池12,12″のごとく
、2個の連なつた形状となり、両溶融池12,125の
連結部にはスラグ巻込み、融合不良を、またビード両端
部16,16′にはアンダーカツト、スラグ巻込みなど
を生じ、健全な溶接部は得られない。いつぼう、電極3
の平均移動速度V2を100C!!Vminよりも小さ
くすると、第5図dについて記載したように、溶融池1
2は溶接ビード13の幅全体にわたつて形成されず、潜
弧アーク9の反対側のビード端部16あるいは165の
いずれか一方の溶接金属はすでに凝固し、この部分に潜
弧アーク9が揺動軌跡10に沿つて接近すると再び溶融
され、溶接熱影響部14は焼ならしを受ける。
In this case, the average heat input per unit length of electrode movement H5 is 2
As the heat input amount H' becomes smaller than 5,000J0u1e, the weld heat affected zone 14 exhibits a finer structure and becomes more tough, but if the heat input amount H' is made extremely small, welding defects will occur. That is, in order to reduce this heat input amount H', it is necessary to increase the average moving speed v' of the electrode 3. When the moving speed Vr is higher than 450CIn/Min, stability of the arc, droplet transfer from the electrode wire 3, convection of molten metal in the molten pool, etc. are improved, and the molten pools 12, 12 in FIG. '', the shape is two continuous pieces, and there is slag entrainment and poor fusion at the joint between both molten pools 12 and 125, and undercuts and slag entrainment at both ends 16 and 16' of the bead. This occurs and a sound weld cannot be obtained.
The average moving speed V2 of 100C! ! If it is smaller than Vmin, the molten pool 1
2 is not formed over the entire width of the weld bead 13, and the weld metal at either the bead end 16 or 165 on the opposite side of the submerged arc 9 has already solidified, and the submerged arc 9 is shaken in this area. When it approaches along the moving trajectory 10, it is melted again and the weld heat affected zone 14 undergoes normalization.

しかし、熱影響部全域にわたつて焼ならし条件を一定に
することはできず、粗大化結晶と微細化結晶の混粒組織
となり、完全な組織改善法にはならない。さらに電極の
揺動により溶接金属13の溶融および凝固を繰返し、温
度低下したスラグを介してアーク9を点弧せねばならな
いためアークの安定性がそこなわれ、スラグ巻込み、融
合不良を生じ、欠陥の多い溶接部となる。したがつて、
溶接欠陥の防止および不均一な焼ならし効果の付与を避
けることから電極3の平均移動速度′は100C7y[
Ninから450c!Yminの範囲にする必要がある
。電極3の平均移動速度v′は電極揺動軌跡10の1サ
イクルに要する電極移動長さlとそれに要する時間tに
よつて定まり、jを大きくするほど、あるいはtを短か
くするほど電極平均移動速度″は大きくなる。すなわち
、電極揺動10の幅および揺動サイクル数によつて左右
されると考えてよい。揺動サイクル数は溶接ビードの蛇
行を防止する目的から、溶接ビード長さ1CI!L当り
に1.5サイクル以上の揺動を行うことが好ましい。電
極平均移動速度を一定として、揺動サイクル数と揺動幅
が溶融池形状におよぼす影響を実験で調べた結果、揺動
幅によつて溶融池形状が変化することが判明した。
However, it is not possible to make the normalizing conditions constant over the entire heat-affected zone, resulting in a mixed grain structure of coarse and fine crystals, which is not a perfect method for improving the structure. Furthermore, the weld metal 13 is repeatedly melted and solidified by the swinging of the electrode, and the arc 9 must be ignited through the slag whose temperature has decreased, which impairs the stability of the arc, causing slag entrainment and poor fusion. This results in welds with many defects. Therefore,
In order to prevent welding defects and to avoid imparting uneven normalizing effects, the average moving speed of the electrode 3' is 100C7y[
450c from Nin! It is necessary to set it within the range of Ymin. The average movement speed v' of the electrode 3 is determined by the electrode movement length l required for one cycle of the electrode swing trajectory 10 and the time t required for it, and the larger j or the shorter t, the faster the average electrode movement. In other words, it can be considered that it depends on the width of the electrode oscillation 10 and the number of oscillation cycles.The number of oscillation cycles is determined by the weld bead length 1CI for the purpose of preventing meandering of the weld bead. !It is preferable to perform oscillation for 1.5 cycles or more per L.As a result of an experiment to investigate the effect of the number of oscillation cycles and oscillation width on the molten pool shape, with the average electrode moving speed kept constant, it was found that oscillation It was found that the shape of the molten pool changes depending on the width.

電極揺動幅を大きくするほどビード幅Wも大きくなり、
電極揺動10した場合のビード幅WOと揺動しない場合
のビード幅Wsの比率(WO/Ws)に適正範囲が存在
する。WO/Wsが2.5よりも大きくなるように揺動
幅を与えると第5図、第6図のcあるいはdに記載した
ような溶融池12形状を形成し、スラグ巻込み、融合不
良、アンダーカツトを生じ、また溶接熱影響部14″は
焼ならし効果によつて細粒化されるために、熱影響部全
域を均一な微細化組織にすることは困難となる。また、
WO/Wsが1.3よりも小さくなるように揺動幅を与
えると第5図、第6図のaに記載したような溶融池12
を形成し、母板1,Pの二次溶融を生じ、溶接金属13
の凝固開始位置は電極3位置よりも極めて後方側となる
。このために、溶接熱影響部14は高温度にさらされて
いる時間が長くなる結果、熱影響部14の冷却速度は著
しく遅くなつて粗大化した組織を呈するとともに、熱影
響幅hも大となり、じん性は劣化する。したがつて、一
定溶接条件(溶接電流、電圧、溶接速度、溶接材粕)で
電極揺動した場合のビード幅WOと揺動しない場合のビ
ード幅Wsの比率(WO/Wc)を1.3〜2.5の範
囲にすることによつて、第5図、第6図のb法に記載し
たような溶接部が得られ、溶接欠陥は全くなく、かつ溶
接熱影響部14全域は均一な微細化組織を呈して高じん
性化が遅成できる。なお、電極揺勤行程両端での停止時
間は、アークがビード幅となるビード両端に点弧してい
る時間を短かくし、溶接熱影響部の過剰加熱を防止する
ことから1秒以下が好ましい。
The larger the electrode swing width, the larger the bead width W.
There is an appropriate range for the ratio (WO/Ws) of the bead width WO when the electrode is oscillated by 10 degrees and the bead width Ws when the electrode is not oscillated. If the oscillation width is set so that WO/Ws is larger than 2.5, the shape of the molten pool 12 as shown in c or d of FIGS. 5 and 6 will be formed, resulting in slag entrainment, poor fusion, and Undercuts occur, and the weld heat affected zone 14'' is grain-refined due to the normalizing effect, making it difficult to make the entire heat affected zone a uniformly refined structure.
If the oscillation width is given so that WO/Ws is smaller than 1.3, the molten pool 12 as shown in a of FIGS. 5 and 6 will be formed.
is formed, secondary melting of the base plate 1, P occurs, and weld metal 13
The coagulation start position is extremely rearward than the electrode 3 position. For this reason, the welding heat affected zone 14 is exposed to high temperatures for a longer time, and as a result, the cooling rate of the heat affected zone 14 becomes significantly slower, resulting in a coarser structure, and the heat affected width h becomes larger. , the toughness deteriorates. Therefore, the ratio (WO/Wc) of the bead width WO when the electrode is oscillated and the bead width Ws when the electrode is not oscillated under constant welding conditions (welding current, voltage, welding speed, welding material waste) is 1.3. By setting the temperature in the range of 2.5 to 2.5, a welded part as shown in method b in Figs. It exhibits a fine structure and the toughness can be delayed. The stopping time at both ends of the electrode swinging stroke is preferably 1 second or less in order to shorten the time during which the arc is ignited at both ends of the bead, which is the bead width, and to prevent excessive heating of the welding heat affected zone.

この発明の効果をさらに明瞭に示すため、つぎに実施例
により説明する。
In order to demonstrate the effects of this invention more clearly, examples will be described below.

まず、各実施例における溶液に供した材刺の化学組成を
第1表に、溶接条件を第2表にまとめて示す。実施例
1 第1表に示す板厚38m!の501<9/Ml2級高張
力鋼板Gを径4.0mmのソリツドワイヤAと溶融型フ
ラツクスDを使用して、第2表の条件で従来法・・およ
び本発明法のサブマージアーク溶接を行い、溶接部の機
械的特性と溶接能率を比較した。
First, Table 1 summarizes the chemical composition of the material used in the solution in each Example, and Table 2 summarizes the welding conditions. Example
1 The plate thickness shown in Table 1 is 38m! 501<9/Ml2 class high tensile strength steel plate G was subjected to submerged arc welding using the conventional method and the present invention method under the conditions shown in Table 2 using solid wire A with a diameter of 4.0 mm and fusion type flux D. The mechanical properties of welds and welding efficiency were compared.

その結果が第3表である。この発明によればこの発明の
溶接入熱量とほぼ等しい従来法Hは溶接能率はほとんど
変わらないが、溶接熱影響部のじん性の比較ではこの発
明によるものが極めてすぐれている。
The results are shown in Table 3. According to the present invention, the welding efficiency of the conventional method H, which is almost equal to the welding heat input of the present invention, is almost the same, but the method according to the present invention is extremely superior when compared with respect to the toughness of the weld heat affected zone.

また、従来法Hは電極揺動を行つているが、平均人熱量
H5が大きいため十分なじん性改善とはなつていない。
なお、この発明の溶接部にはアンダーカツト、スラグ巻
込み、融合不良などの欠陥は全く認められず健全な溶接
部が得られ、強度、延性ともに良好であつた。
★【:実施例 2第
1表に示す板厚25mTILの50kg/Mm2級低温
用鋼板Hを径2.4m1のソリツドワイヤBと焼結型フ
ラツクスEを使用して、第2表の条件で従来法および本
発明法のサブマージアーク溶接を行い、溶接部の機械的
特性を比較した。
Further, although conventional method H performs electrode rocking, the average human heat value H5 is large, so the toughness is not sufficiently improved.
In addition, no defects such as undercuts, slag entrainment, or poor fusion were observed in the welded joints of this invention, and a sound welded joint was obtained, with good strength and ductility.
★[: Example 2 A 50kg/Mm2 grade low-temperature steel plate H with a plate thickness of 25mTIL shown in Table 1 was processed using the conventional method under the conditions shown in Table 2 using solid wire B with a diameter of 2.4m1 and sintered flux E. Then, submerged arc welding using the method of the present invention was performed, and the mechanical properties of the welded parts were compared.

この結果が第4表で、溶接部の横断面形状が第8図であ
る。なお、従来法は二電極溶接法で先行電極は揺動せず
、後行電極のみ揺動し、極間距離は80mmで2つの溶
融池を形成させる方法である。この発明は従来法に比較
して、いずれの位置においてもすぐれたじん性を示して
いる。
The results are shown in Table 4, and the cross-sectional shape of the welded portion is shown in FIG. The conventional method is a two-electrode welding method in which the leading electrode does not oscillate, only the trailing electrode oscillates, and the distance between the electrodes is 80 mm to form two molten pools. This invention shows superior toughness at all positions compared to the conventional method.

従来法のじん性植に相当のバラツキがあり、これら試片
について熱影響部組織を観察した結果、高じん性の試片
は後行電極による焼ならし効果を受け、微細組織を呈し
ていたが、低じん性の試片は該電極による焼ならし効果
はほとんどなく、大部分が粗大化した組織が残存してい
た。すなわち、先行電極の溶接によつて生じた熱影響部
14と後行電極によつて生じた熱影響部14が合致した
個所14′は焼ならし効果によつて再粒化されるが、他
の部分14は焼ならしを受けないために粗大化組織を呈
する。また、後行電極はこの発明のごとき揺動を付加し
ているが、先行電極の溶接熱が残存し、予熱効果によつ
て後行電極による熱影響部の冷却速度を速める効果はほ
とんどなく、熱影響部幅hも広く、組大化組織(粗大初
析フエライト+上部ベーナイト)となつていることを確
認した。この発明での溶接熱影響部14の組織は粗大化
した初析フエラィトはほとんどなく、微細組織であつた
There was considerable variation in the toughness of the conventional method, and as a result of observing the heat-affected zone structure of these specimens, it was found that the highly tough specimens had a fine structure due to the normalizing effect of the trailing electrode. However, in the specimen with low toughness, there was almost no normalizing effect due to the electrode, and most of the specimens had a coarsened structure remaining. That is, the area 14' where the heat-affected zone 14 created by the welding of the leading electrode and the heat-affected zone 14 created by the trailing electrode coincide is regrained due to the normalizing effect; The portion 14 exhibits a coarsened structure because it is not normalized. In addition, although the trailing electrode is given oscillation as in the present invention, the welding heat of the leading electrode remains, and the preheating effect has almost no effect on speeding up the cooling rate of the heat affected zone by the trailing electrode. It was confirmed that the heat-affected zone width h was wide, and that it had a large-sized structure (coarse pro-eutectoid ferrite + upper bainite). The structure of the weld heat affected zone 14 in this invention was a fine structure with almost no coarse pro-eutectoid ferrite.

比較法は溶融池形状が第5図dのようになり、融合不良
、スラグ巻込みを生じ、性能拘?刑まできなかつた。ま
た、従来法に発生したスラグ巻込みは、後行電極の溶接
時に生じたもので、先行電極での溶接時に生じた低温度
のスラグを、比較的低電流の後行電極が十分に溶融しき
れずに残留したものである。実施例 3 第1表に示す板厚40m1の60kg/Ml2級高張力
鋼板1を径2.41&mのソリツドワイヤBと焼結型フ
ラツクスFを使用して、第2表の条件で従来法および本
発明法のサブマージアーク溶接を行い、溶接部の機械的
特性と溶接能率を比較した。
In the comparative method, the shape of the molten pool is as shown in Figure 5d, resulting in poor fusion, slag entrainment, and performance issues. I didn't even get to the punishment. In addition, the slag entrainment that occurred in the conventional method occurred during welding with the trailing electrode, and the trailing electrode with a relatively low current sufficiently melted the low-temperature slag generated during welding with the leading electrode. This is what remains. Example 3 A 60kg/Ml2 grade high-strength steel plate 1 with a thickness of 40m1 shown in Table 1 was prepared using the conventional method and the present invention under the conditions shown in Table 2 using solid wire B with a diameter of 2.41mm and sintered flux F. The mechanical properties and welding efficiency of the weld were compared using submerged arc welding using the method.

その結果が第5表である。この発明で溶接熱影響部のじ
ん性は従来法よりも著しくすぐれており、また溶接能率
は従来法よりも高入熱量で溶接したために高能率である
Table 5 shows the results. In this invention, the toughness of the weld heat affected zone is significantly superior to that of the conventional method, and the welding efficiency is high because welding is performed with a higher heat input than the conventional method.

なお、この発明の溶接部には溶接欠陥は全く認められず
、良好であつた。従来法とこの発明における溶接熱影響
部の顕微鏡組織を第9図A,bに比較して示したように
、この発明法は極めて微細な組織を呈している。市実施
例 4 第1表に示す板厚50E1の80kg/詣2級調質高張
力鋼Jを径3.2mmのソリツドワイヤCと焼結型フラ
ツクスFを使用して、第2表の条件で従来法および本発
明法のサブマージアーク溶接を行い、溶接部の機械的特
性と溶接能率を比較した。
In addition, no welding defects were observed in the welded parts of the present invention, and the welded parts were in good condition. As shown in FIGS. 9A and 9B, which compare the microstructures of the weld heat-affected zone in the conventional method and the present invention, the present method exhibits an extremely fine structure. City Example 4 80kg/Mai 2 grade heat-treated high tensile strength steel J with a plate thickness of 50E1 shown in Table 1 was made using a solid wire C with a diameter of 3.2 mm and a sintered flux F under the conditions shown in Table 2. Submerged arc welding was performed using the method and the method of the present invention, and the mechanical properties and welding efficiency of the weld were compared.

その結果が第6表である。この発明の溶接熱影響部じん
性は従来法よりも著しくすぐれており、かつ熱影響部の
軟化の程度が小さくなつているために引張強度も従来法
よりも高い値を示している。
The results are shown in Table 6. The weld heat-affected zone toughness of the present invention is significantly superior to that of the conventional method, and since the degree of softening of the heat-affected zone is reduced, the tensile strength also exhibits a higher value than that of the conventional method.

溶接能率は従来法よりも高人熱量で溶接したために高能
率であることがわかる。なお、本発明法の溶接部には切
陥は全く認められず、健全な溶接部が得られた。さらに
Backingsideの最終ビードの溶接熱影響部の
平均オーステナイト粒を測定した結果、第10図のよう
にこの発明では従来法よりも高人熱量で溶接したにもか
かわらず、極めて細粒なオーステナイト粒になつている
ことがわかる。溶接終了後、応力除去熱処理(加熱保持
時間65『CX4hr.)を行い、溶接熱影響部粗大化
域の粒界われについて調査した結果、従来法ではわれが
数ケ所認められたが、本発明法では全く認められず、健
全な溶接部が得られた。
It can be seen that the welding efficiency is higher because the welding requires a higher amount of human heat than the conventional method. It should be noted that no notches were observed in the welded area obtained by the method of the present invention, and a sound welded area was obtained. Furthermore, as a result of measuring the average austenite grains in the weld heat-affected zone of the final bead on the backing side, as shown in Figure 10, even though this invention welded with a higher human heat amount than the conventional method, extremely fine austenite grains were obtained. I can see that I am getting used to it. After the completion of welding, stress relief heat treatment (heating holding time 65 "CX4hr.") was carried out, and as a result of investigating grain boundary cracks in the weld heat affected zone coarsening region, several cracks were observed with the conventional method, but with the present method. No defects were observed at all, and a sound weld was obtained.

上述のように従来の溶接方法では溶接人熱量の増大にと
もなつて溶接熱影響部、とくにポンド近傍はじん性が著
しく劣化する傾向にある。
As mentioned above, in conventional welding methods, the toughness of the welding heat affected zone, particularly in the vicinity of the pound, tends to deteriorate significantly as the amount of heat exerted by the welder increases.

したがつて、これを防止するために溶接能率、溶接コス
トを儀性にして谷種鋼材に適応した制限入熱量内で施工
されていた。しかし、この発明は従来法ごとき、人熱量
の制限は不要で、軟鋼、高張力鋼、耐熱鋼および低温用
鋼などを高能率な大人熱量で溶接しても、オーステナイ
ト粒成長温度域での冷却速度が著しく速く、かつ800
℃から500℃までは溶接人熱量に相当した冷却速度に
なるため、溶接熱影響部のオーステナイト粒は細粒で微
細組織を呈して高じん性で、かつぜい化がほとんど認め
られない溶接部が得られる。
Therefore, in order to prevent this, welding efficiency and welding costs have been taken into account and work has been carried out within a heat input limit adapted to the grade steel material. However, unlike conventional methods, this invention does not require the restriction of human heat, and even when welding mild steel, high-strength steel, heat-resistant steel, low-temperature steel, etc. with a highly efficient adult heat, cooling in the austenite grain growth temperature range is not required. The speed is extremely fast and 800
From ℃ to 500℃, the cooling rate is equivalent to the amount of heat consumed by the welder, so the austenite grains in the weld heat-affected zone are fine and have a microstructure, resulting in high toughness and a welded part with almost no embrittlement. is obtained.

しかも揺動アークにもかかわらずスラグ巻込み、融合不
良、アンダーカツトは発生せず健全な溶接部が得られる
。さらにこの発明でZOは結晶微細化作用が焼もどし効
果によるものではないので、溶接部のいかなる個所を検
査しても良好な機械的特性が得られるとともに、溶接熱
影響部の炭化物、あるいは窒化物の析出を最小限に抑制
できるので、特殊鋼の継手溶接にも適用できる。
Furthermore, despite the oscillating arc, no slag entrainment, poor fusion, or undercut occurs, and a sound weld can be obtained. Furthermore, in this invention, the crystal refinement effect of ZO is not due to the tempering effect, so good mechanical properties can be obtained even when inspecting any part of the weld, and carbides or nitrides in the weld heat affected zone can be inspected. Since precipitation of can be minimized, it can also be applied to special steel joint welding.

また、この発明は80Kg/Mm2級高張力鋼や耐熱鋼
の溶接部の継手性能を確保するために、溶接後熱処理を
行つても、微細組織を呈しているために粒界われは発生
せず、従来の溶接入熱量制限策は不要となり、従来不可
とされていた大入熱溶接が達成できる。この発明は多層
盛溶接法のみならず、片面溶接法、一層盛溶接法コール
ドワイヤ併用溶接法に応用でき、その個所は傾斜継手部
、狭開先継手部、隅肉継手部などに適用できる。
In addition, in order to ensure joint performance of welded parts of 80Kg/Mm2 class high tensile strength steel and heat-resistant steel, this invention has a microstructure that does not cause grain boundary cracking even if heat treatment is performed after welding. , conventional welding heat input limiting measures are no longer necessary, and high heat input welding, which was previously considered impossible, can be achieved. This invention can be applied not only to multi-layer welding, but also to single-sided welding, single-layer welding, and combined cold wire welding, and can be applied to inclined joints, narrow gap joints, fillet joints, etc.

また、電極ワイヤとしてフラツクスを内蔵した複合ワイ
ヤを用いることができるのは勿論であり、開先内にカツ
トワイヤや鉄分などを充填した方法にも適用できる。
Furthermore, it goes without saying that a composite wire containing flux can be used as the electrode wire, and it is also applicable to a method in which the groove is filled with cut wire, iron, or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法の溶融池形状の模式図、第2図は、第
1図1位置での溶接熱影響部の冷却曲線、第3図は、本
発明溶接方法の施工要領説明図、第4図は本発明法に適
用できる電極揺動軌跡の説明図、第5図は各執揺動法に
よる溶融池形状の模式図、第6図は各踵揺動法による溶
融池断面形伏、第7図は第5図での溶接熱影響部の冷却
曲線、第8図は実施例2での溶接部横断面比較図、第9
図A,bは従来法及び本発明法による溶接熱影響組織の
顕微鏡写真図、第10図は実施例4での溶接熱影響部平
均オーステナイト粒径グラフである。
FIG. 1 is a schematic diagram of the molten pool shape of the conventional method, FIG. 2 is a cooling curve of the weld heat-affected zone at position 1 in FIG. Figure 4 is an explanatory diagram of the electrode rocking locus that can be applied to the method of the present invention, Figure 5 is a schematic diagram of the molten pool shape by each rocking method, and Figure 6 is the cross-sectional shape of the molten pool by each heel rocking method. , FIG. 7 is a cooling curve of the weld heat affected zone in FIG. 5, FIG. 8 is a cross-sectional comparison diagram of the welded part in Example 2, and FIG.
Figures A and b are micrographs of weld heat-affected structures obtained by the conventional method and the method of the present invention, and FIG. 10 is a graph of the average austenite grain size of the weld heat-affected zone in Example 4.

Claims (1)

【特許請求の範囲】 1 溶接線に対し交差する向きに電極を揺動させつつ溶
接線に沿つて進行させる単電極サブマージアーク溶接に
際し、つくろうとするビード幅に合致した横幅において
急深をなす溶融池の前縁を逐次に更新するに足る工程長
さの揺動を強制し、該溶融池の追尾側に、溶接線に関し
これに沿う先拡りの対称形をなす凝固を導くこと、を特
徴とする単電極揺動サブマージアーク溶接法。 2 つくろうとするビード幅に合致する溶融池の横幅が
、溶接入熱条件を同じくして電極揺動を省略したときに
得られるビード幅に対して1.2〜2.5の倍率である
ものとする、1記載の方法。 3 溶接線に沿う電極の平均移動速度が100〜450
cm/minでかつ、電極移動径路上での平均入熱量が
、単位長さ1cm当り、25,000J以下である、1
又は2記載の方法。
[Scope of Claims] 1. During single-electrode submerged arc welding in which the electrode is oscillated in a direction crossing the weld line and progresses along the weld line, melting that suddenly deepens at a width that matches the bead width to be created is performed. It is characterized by forcing the oscillation of a process length sufficient to successively update the leading edge of the molten pool, and inducing solidification on the tracking side of the molten pool in a symmetrical shape with a widening tip along the weld line. Single electrode oscillating submerged arc welding method. 2 The width of the molten pool that matches the bead width to be created is a 1.2 to 2.5 multiplier of the bead width obtained when the welding heat input conditions are the same and electrode rocking is omitted. The method described in 1. 3 The average moving speed of the electrode along the welding line is 100 to 450
cm/min and the average heat input on the electrode moving path is 25,000 J or less per unit length 1 cm, 1
Or the method described in 2.
JP12184978A 1978-10-03 1978-10-03 Single electrode oscillating submerged mark welding method Expired JPS5945467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12184978A JPS5945467B2 (en) 1978-10-03 1978-10-03 Single electrode oscillating submerged mark welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12184978A JPS5945467B2 (en) 1978-10-03 1978-10-03 Single electrode oscillating submerged mark welding method

Publications (2)

Publication Number Publication Date
JPS5548480A JPS5548480A (en) 1980-04-07
JPS5945467B2 true JPS5945467B2 (en) 1984-11-06

Family

ID=14821443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12184978A Expired JPS5945467B2 (en) 1978-10-03 1978-10-03 Single electrode oscillating submerged mark welding method

Country Status (1)

Country Link
JP (1) JPS5945467B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149698U (en) * 1983-03-28 1984-10-06 正和産業株式会社 Taping device for electronic components with lead wires
CN112388123A (en) * 2020-11-06 2021-02-23 广州黄船海洋工程有限公司 Machine head swinging device of submerged arc welding machine and swinging submerged arc welding method thereof

Also Published As

Publication number Publication date
JPS5548480A (en) 1980-04-07

Similar Documents

Publication Publication Date Title
US2756311A (en) High-speed tandem arc working
CN101367157B (en) High-strength or ultra-high strong steel laser-electrical arc composite heat source welding method
CN103415369B (en) Dissimilar metal joint method
US3437787A (en) Dual arc welding process
US1554546A (en) Seam-welding process
CN103521887A (en) Welding technology of 45 steel and 35 CrMo cast steel
CN114406512A (en) Welding and electric pulse heat treatment process for dissimilar alloy
US4914268A (en) Beam welding process
US3619547A (en) Preheating and welding method for bearing races and other articles
JPH11138266A (en) Tandem submaerged arc welding method
US3984652A (en) Method of butt welding
JPS5945467B2 (en) Single electrode oscillating submerged mark welding method
JPH11123553A (en) Welded joint structure
John et al. Effect of employing metal cored filler wire for single V butt joint welding of Ti-Nb microalloyed 800MPa steels
KR101809442B1 (en) System for welding galvanized steel using multiple heat source
US3660629A (en) Method and device for welding high tensile strength steel of higher strength
JP4953172B2 (en) Method to refine ferrite structure by laser irradiation
JPH08309428A (en) Production of welded steel tube
Singaravelu et al. Modified short arc gas metal arc welding process for root pass welding applications
JPH01306075A (en) Welding method
US4506134A (en) Flash butt welding method
Dwivedi Fundamentals of Dissimilar Metal Joining by Arc and Resistance Welding Processes
US2281070A (en) Method of welding
JPH0238319B2 (en)
SU1031677A1 (en) Method of arc welding by non-consumable electrode