JPS5945234B2 - GaP light emitting diode - Google Patents

GaP light emitting diode

Info

Publication number
JPS5945234B2
JPS5945234B2 JP51122155A JP12215576A JPS5945234B2 JP S5945234 B2 JPS5945234 B2 JP S5945234B2 JP 51122155 A JP51122155 A JP 51122155A JP 12215576 A JP12215576 A JP 12215576A JP S5945234 B2 JPS5945234 B2 JP S5945234B2
Authority
JP
Japan
Prior art keywords
layer
type gap
type
impurity concentration
gap semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51122155A
Other languages
Japanese (ja)
Other versions
JPS5347284A (en
Inventor
康二 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP51122155A priority Critical patent/JPS5945234B2/en
Publication of JPS5347284A publication Critical patent/JPS5347284A/en
Publication of JPS5945234B2 publication Critical patent/JPS5945234B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は発光効率の高いp形GaP半導体層への少数キ
ャリア(電子)の注入効率を高めた構造の高発光効率G
aP発光ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a highly luminous efficient G
Regarding an aP light emitting diode.

従来のGaP発光ダイオードは一般に第1図に示す如く
構成されている。この第1図のaは3層半導体構造、b
は不純物濃度分析、cは順バイアス時のエネルギバンド
構造、dは順バイアス時の少数キャリア電流密度を夫々
模式的に示すものであり、ここに示されるGaP緑色発
光ダイオードは、LEC(LiquidEncapsu
latedCyochralski)法と呼ばれる液体
カプセルを用いた高圧溶融引上法で製造されたTeドー
プのn形GaP基板1と、基板1の上に液相エピタキシ
ャル成長(以下LPEと呼ぷ)法で形成したS及びNド
ープのn−形GaP層2と、n−形GaP層2の上にL
PE法で形成したZn及びNドープのp形GaP層3と
から成り、n−n−接合4とp−n即ちn−−p接合5
とを有する。ところで、LEC法による結晶成長技術の
進歩は著しく、最近ではかなり高品位のGaP基板が得
られるようになつたけれども、Siと比較するとまだ桁
違いに結晶欠陥が多いのが実状である。
A conventional GaP light emitting diode is generally constructed as shown in FIG. In this figure, a is a three-layer semiconductor structure, and b is a three-layer semiconductor structure.
is the impurity concentration analysis, c is the energy band structure at forward bias, and d is the minority carrier current density at forward bias.
A Te-doped n-type GaP substrate 1 manufactured by a high-pressure melt-pulling method using a liquid capsule called the latted Cyochralski method, and an S and N-doped n-type GaP layer 2 and L on top of n-type GaP layer 2.
It consists of a Zn- and N-doped p-type GaP layer 3 formed by PE method, and has an n-n junction 4 and a p-n or n--p junction 5.
and has. Incidentally, although the crystal growth technology using the LEC method has made remarkable progress and it has recently become possible to obtain GaP substrates of considerably high quality, the reality is that they still have an order of magnitude more crystal defects than Si.

そこで、上述の従来のGaP発光ダイオードにおいては
、GaP基板1の結晶欠陥に基づく結晶歪みを緩和する
ためにLPE法でn−形GaP層2を形成し、このn−
形GaP層2の不純物濃度を結晶性を良くするために基
板1の不純物濃度よりも低くし、且つこのn−形GaP
層2の厚さを結晶歪みの緩和効果を十分に得るために2
5〜50μmとしている。この結果、20〜30μmの
厚さに形成されるp形GaP層3の結晶性は比較的良く
なり、実用可能な発光ダイオードが得られる。第1図a
に示す発光ダイオードの各領域の不純物濃度(キヤリア
濃度と略等しいとみなしている)は第1図bに示す如く
基板1のドナ濃度NDが3×1017cm−3、n一形
GaP層2のドナ濃度NDが2×1017crfL−3
p形GaP層3のアクセプタ濃度NAが1×1018(
V7!−3であり、基板1の濃度がGaP層2の濃度よ
り高く、またp形GaP層3のアクセプタ濃度が基板1
及びn一形GaP層2のドナ濃度よりも高い。この発光
ダイオードを順バイアスしたときのエネルギバンド構造
は第1図cのようになつている。
Therefore, in the above-mentioned conventional GaP light emitting diode, an n-type GaP layer 2 is formed by the LPE method in order to alleviate the crystal strain caused by crystal defects in the GaP substrate 1, and this n-
The impurity concentration of the n-type GaP layer 2 is lower than that of the substrate 1 to improve crystallinity, and
The thickness of layer 2 is set to 2 to obtain a sufficient effect of alleviating crystal strain.
The thickness is set at 5 to 50 μm. As a result, the crystallinity of the p-type GaP layer 3 formed to a thickness of 20 to 30 μm becomes relatively good, and a practical light emitting diode can be obtained. Figure 1a
The impurity concentration (assumed to be approximately equal to the carrier concentration) in each region of the light emitting diode shown in FIG. Concentration ND is 2×1017crfL-3
The acceptor concentration NA of the p-type GaP layer 3 is 1×1018 (
V7! -3, the concentration of the substrate 1 is higher than the concentration of the GaP layer 2, and the acceptor concentration of the p-type GaP layer 3 is
and higher than the donor concentration of the n-type GaP layer 2. The energy band structure when this light emitting diode is forward biased is as shown in FIG. 1c.

このバンド構造図において、Ecは導電帯の下限エネル
ギ準位、Evは価電子帯の上限エネルギ準位、EFはフ
エルミ準位、6は電子、7は正孔を示し、電子6及び正
孔7は夫々p−n接合5を通過して少数キヤリアとして
注入されている。この少数キャリアの注入状態を少数キ
ヤリアの電流密度によつて説明したのが第1図dである
。但しこの図においては熱平衡状態において存在する少
数キヤリア、接合4,5で生じている空乏層は無視して
いる。また注入された少数キャリアはp−n接合5から
離れるにつれて指数関数的に減少するが、ここでは直線
で近似的に表わした。Jnはp形GaP層3に注入され
た電子の電子電流密度、J,はn一形GaP層2に注入
された正孔の正孔電流密度、Lnはp形GaP層3に注
入された電子の拡散長、L,はn一形GaP層2に注入
された正孔の拡散長を示す。この発光ダイオードのn一
形GaP層2は25μm以上の厚さ(幅)を有するのに
対して、Lゝ pは2〜3μm程度であつて、n一形
GaP層2の厚さ(幅)はL,よりも十分に大きい。
In this band structure diagram, Ec is the lower limit energy level of the conduction band, Ev is the upper limit energy level of the valence band, EF is the Fermi level, 6 is an electron, and 7 is a hole. are injected as minority carriers through the pn junction 5, respectively. This injection state of minority carriers is explained by the current density of minority carriers in FIG. 1d. However, in this figure, the minority carriers existing in the thermal equilibrium state and the depletion layer formed at the junctions 4 and 5 are ignored. Furthermore, the injected minority carriers decrease exponentially as they move away from the pn junction 5, but here they are approximately represented by a straight line. Jn is the electron current density of the electrons injected into the p-type GaP layer 3, J is the hole current density of the holes injected into the n-type GaP layer 2, and Ln is the electron current density of the holes injected into the p-type GaP layer 3. The diffusion length, L, represents the diffusion length of holes injected into the n-type GaP layer 2. The n-type GaP layer 2 of this light emitting diode has a thickness (width) of 25 μm or more, whereas Lp is about 2 to 3 μm, and the thickness (width) of the n-type GaP layer 2 is approximately 2 to 3 μm. is sufficiently larger than L.

このためn一形GaP層2に注入された正孔は、n一形
GaP層2内ですべて電子と再結合して消滅し、J,は
p−n接合5から数μm離れたところでは実質上零にな
つている。なお、Jnも同様にp一n接合5から数μm
離れたところでは実質上零になつている。ところで、N
をドープしたGaP結晶を光励起することにより、バル
ク(GaP結晶)の発光効率を求めることができる。
Therefore, all of the holes injected into the n-type GaP layer 2 recombine with electrons and disappear within the n-type GaP layer 2, and J, is substantially It's reaching zero. Note that Jn is also several μm away from the p-n junction 5.
In remote areas, it is virtually zero. By the way, N
By optically exciting a GaP crystal doped with , the luminous efficiency of the bulk (GaP crystal) can be determined.

例えばAmericanInstituteOfPll
ySiCS発行の雑誌「JOurnalOfAppli
edPhysicsVOl45腐11N0vember
1974」4920〜4930ページにP.D.Dap
lcusほか3名が発表した論文「KineticsO
frecOmbinatiOninnitrOgen−
DOpedGaP」によれば、励起強度が10A/Cr
Aの水準において発光効率が最高となるの頃 p形バル
クではNA=1X1018C77!−3のとぎ、n形バ
ルクではND=1×1017CTL−3のときである。
このときの発光効率は、p形バルクで0.3%、n形バ
ルクで0.052%である。しかしp−n接合素子であ
る発光ダイオードの発光効率は、p形バルクの発光効率
に電子の注入効率を乗じた値と、n形バルクの発光効率
に正孔の注入効率を乗じた値との和になる。このため上
記論文の実験データをもとに計算すると、発光ダイオー
ドの発光効率が最高となるのはNA=1×1018cm
−3、ND−2X1017?−3のときで、発光ダイオ
ードの発光効率は0.086%、p形バルクへの電子の
注入効率は18%である。事実、実際のGaP発光ダイ
オードの設計でも、第1図bのようにNA−1×101
8cm−3、ND−2×1017cm−3とするのが最
適設計であり、このとき0.08%程度の発光効率が得
られている。上述から明らかなように、従来のGaP発
光ダイオードでは、p形バルクが高い発光効率をもつて
いるにも拘らず、p−n接合素子とすることにより低い
発光効率になつてしまつていた。第1図に示す構造にお
いて、n一形GaP層2の不純物濃度を高めてn+層と
し、p−n接合5をn+−p接合としてp形GaP層3
への電子の注入効率を高めれば、発光ダイオードの発光
効率を高めることが出来るようにも考えられる。しかし
、実際には、GaP層2の不純物濃度を上げることによ
りGaP層2の結晶性が劣化し、更にp形GaP層3の
結晶性も劣化する。このため肝心のp形GaP層3のバ
ルクとしての発光効率が低下し且つp−n接合5におけ
る非発光再結合が増加して発光に寄与する少数キャリア
の注入が十分行なわれなくなり、発光ダイオードの発光
効率を高めることは出米ない。なお、直接遷移型発光す
るGaAs赤外発光ダイオードの発光効率は高いが、擬
直接遷移型発光するGaP緑色発光ダイオードの発光効
率は低い。
For example, American InstituteOfPll
Magazine “JournalOfAppli” published by ySiCS
edPhysicsVOl45ro11N0vember
1974,” pages 4920-4930, P. D. Dap
The paper “KineticsO
frecOmbinatiOninnitrOgen-
According to “DOpedGaP”, the excitation intensity is 10A/Cr
When the luminous efficiency reaches its maximum at level A, NA=1X1018C77 for p-type bulk! -3, when ND=1×1017CTL-3 for n-type bulk.
The luminous efficiency at this time is 0.3% for the p-type bulk and 0.052% for the n-type bulk. However, the luminous efficiency of a light emitting diode, which is a p-n junction element, is determined by multiplying the luminous efficiency of the p-type bulk by the electron injection efficiency and the luminous efficiency of the n-type bulk multiplied by the hole injection efficiency. Become peace. Therefore, calculations based on the experimental data in the above paper show that the light emitting diode has the highest luminous efficiency when NA = 1 x 1018 cm.
-3, ND-2X1017? -3, the light emitting efficiency of the light emitting diode is 0.086%, and the efficiency of electron injection into the p-type bulk is 18%. In fact, even in the design of an actual GaP light emitting diode, NA-1×101 is used as shown in Figure 1b.
The optimal design is 8 cm-3, ND-2×1017 cm-3, and a luminous efficiency of about 0.08% is obtained in this case. As is clear from the above, in the conventional GaP light emitting diode, although the p-type bulk has high luminous efficiency, the luminous efficiency is low due to the use of a pn junction element. In the structure shown in FIG. 1, the impurity concentration of the n-type GaP layer 2 is increased to make it an n+ layer, and the p-n junction 5 is made an n+-p junction.
It is also conceivable that the light emitting efficiency of the light emitting diode can be increased by increasing the injection efficiency of electrons into the light emitting diode. However, in reality, by increasing the impurity concentration of the GaP layer 2, the crystallinity of the GaP layer 2 deteriorates, and furthermore, the crystallinity of the p-type GaP layer 3 also deteriorates. As a result, the luminous efficiency of the essential p-type GaP layer 3 as a bulk decreases, non-radiative recombination at the p-n junction 5 increases, and minority carriers contributing to light emission are not sufficiently injected. It is impossible to improve luminous efficiency. Note that the luminous efficiency of the GaAs infrared light emitting diode that emits direct transition type light is high, but the luminous efficiency of the GaP green light emitting diode that emits pseudo direct transition type light is low.

従つて、GaP緑色発光ダイオードの発光効率を高める
ために、従米十分に活用されていなかつたp形GaP層
を発光領域として十分に活用すること、GaPの結晶性
を良くすることが重要である。そこで、本発明の目的は
、発光効率の高いGaP緑色発光ダイオードを提供する
ことにある。
Therefore, in order to increase the luminous efficiency of GaP green light emitting diodes, it is important to fully utilize the underutilized p-type GaP layer as a light emitting region and to improve the crystallinity of GaP. Therefore, an object of the present invention is to provide a GaP green light emitting diode with high luminous efficiency.

上記目的を達成するための本発明は、高不純物濃度のn
形半導体層と、前記高不純物濃度のn形GaP半導体層
に隣接する低不純物濃度のn形GaP半導体エピタキシ
ャル成長層と、前記低不純物濃度のn形GaP半導体エ
ピタキシャル成長層に隣接するp形GaP半導体層とを
含んだGaP緑色発光ダイオードにおいて、前記低不純
物濃度のn形GaP半導体エピタキシャル成長層の厚さ
を、前記p形GaP半導体層から前記低不純物濃度のn
形GaP半導体エピタキシャル成長層に注入される少数
キャリア(正孔)の拡散長の以下且つ1μm以上にし、
且つ前記高不純物濃度のn形GaP半導体層の不純物濃
度を前記p形GaP半導体層の不純物濃度以上にしたこ
とを特徴とするGaP緑色発光ダイオードに係わるもの
である。上記発明によれば、GaP緑色発光ダイオード
に於いて、従来十分に活用されていなかつたp形GaP
半導体層に対する少数キャリア(電子)の注入効率を増
大させることが出来る。
In order to achieve the above object, the present invention provides high impurity concentration n
a n-type GaP semiconductor epitaxial growth layer with a low impurity concentration adjacent to the n-type GaP semiconductor layer with a high impurity concentration, and a p-type GaP semiconductor layer adjacent to the n-type GaP semiconductor epitaxial growth layer with a low impurity concentration. In the GaP green light emitting diode comprising:
The diffusion length of minority carriers (holes) injected into the GaP type semiconductor epitaxial growth layer is below the diffusion length and 1 μm or more,
The present invention also relates to a GaP green light emitting diode, characterized in that the impurity concentration of the high impurity concentration n-type GaP semiconductor layer is higher than the impurity concentration of the p-type GaP semiconductor layer. According to the above invention, p-type GaP, which has not been fully utilized in the past, can be used in GaP green light emitting diodes.
The injection efficiency of minority carriers (electrons) into the semiconductor layer can be increased.

即ち、低不純物濃度のn形GaP半導体層エピタキシヤ
ル成長層の厚さを、1μm以上にすると共にこの層の少
数キャリア(正孔)の拡散長の−以下にすることにより
、高不純物濃度のn形GaP半導体層と低不純物濃度の
n形GaP半導体エピタキシャル成長層との接合で生じ
る反射効果を有効に利用してp形GaP半導体層での発
光効率を高めることが出来、且つ低不純物濃度のn形G
aP半導体エピタキシヤル成長層でも高い発光効率を得
ることが出来る。よつて、従来、発光効率が極めて悪か
つたGaP緑色発光ダイオードの発光効率を大幅に向上
させることが出来る。以下、図面を参照して本発明の実
施例に付いて述べる。
That is, by setting the thickness of the epitaxially grown n-type GaP semiconductor layer with a low impurity concentration to 1 μm or more and making it less than or equal to the diffusion length of minority carriers (holes) in this layer, the n-type GaP semiconductor layer with a high impurity concentration can be grown. The light emitting efficiency in the p-type GaP semiconductor layer can be increased by effectively utilizing the reflection effect generated by the junction between the n-type GaP semiconductor layer and the n-type epitaxially grown layer with a low impurity concentration. G
High luminous efficiency can also be obtained with an aP semiconductor epitaxial growth layer. Therefore, the luminous efficiency of the GaP green light emitting diode, which has conventionally had extremely poor luminous efficiency, can be greatly improved. Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明を適用したGaP緑色発光ダイオードを
示すものであつて、第1図と同様に、aは3層半導体構
造、bは不純物濃度分布、cは順バイアス時のエネルギ
バンド構造、dは順バイアス時の少数キャリア電流密度
を夫々模式的に示し、この内第2図C,dにおいては第
1図C,dと共通するものに同一の符号が付されている
FIG. 2 shows a GaP green light emitting diode to which the present invention is applied, in which, similarly to FIG. 1, a indicates a three-layer semiconductor structure, b indicates an impurity concentration distribution, c indicates an energy band structure at forward bias, d schematically shows the minority carrier current density at the time of forward bias, and in FIGS. 2C and d, the same symbols as in FIGS. 1C and d are given the same reference numerals.

この発光ダイオードは、後述のSSD法で製造されたT
el−Lプのn+形Gap、結晶から成るn+形GaP
基板11と、LPE法で約3μmの厚さに基板11上に
形成されたS及びNドープの。一形GaP層12と、L
PE法で約30μmの厚さにn一形GaP層12上に形
成されたZn及びNドープのp形GaP層13とから成
り、n+−n一接合14とp−n(n−一p)接合15
とを有する。夫々の不純物濃度は第1図bから明らかな
ように基板11のドナ濃度NDが1X1018?−3、
n−形GaP層12のドナ濃度NDが1×1017C7
r1−3p形GaP層13のアクセプタ濃度NAが5x
1017cm−3である。SSD法は、例えば特公昭4
8−20106及び雑誌「電子材料」1973年1月号
第18〜23頁に開示された化合物半導体の結晶成長法
で、比較的低い蒸気圧を示す成分A(GaJnなど)と
、比較的高い蒸気圧を示す成分B(P.Asなど)とか
ら成る化合物半導体ABの結晶製造方法において、溶融
した成分Aを入れた容器を成分Bの蒸気を含む雰囲気内
に配し、溶融した成分Aの成分Bの蒸気と接触する部分
を、化合物半導体ABの融点より低い高温に保ち、他部
を該高温部分より低温度に保ち、成分Bの蒸気圧を化合
物半導体ABの分解圧より高く選び、前記高温部分にて
合成(Synthesis)された化合物半導体ABが
溶質(SOlute)として溶融した成分A中に拡散(
DlffUSlOn)して前記低温部より化合物半導体
ABの結晶として成長するようにしたことを特徴とする
化合物半導体の結晶製造方法である。
This light emitting diode is a T
n+ type GaP of el-L type, n+ type GaP consisting of crystal
A substrate 11 and an S- and N-doped layer formed on the substrate 11 to a thickness of about 3 μm by LPE. monomorphic GaP layer 12 and L
It consists of a Zn- and N-doped p-type GaP layer 13 formed on an n-type GaP layer 12 to a thickness of about 30 μm by PE method, and an n+-n-junction 14 and a p-n (n-1p) Junction 15
and has. As is clear from FIG. 1b, the respective impurity concentrations are such that the donor concentration ND of the substrate 11 is 1×1018? -3,
The donor concentration ND of the n-type GaP layer 12 is 1×1017C7
r1-3 The acceptor concentration NA of the p-type GaP layer 13 is 5x
It is 1017 cm-3. The SSD law is, for example,
8-20106 and the magazine "Electronic Materials" January 1973 issue, pages 18 to 23, the crystal growth method for compound semiconductors uses component A (such as GaJn) with a relatively low vapor pressure and a relatively high vapor pressure. In a method for producing a crystal of a compound semiconductor AB consisting of a component B (such as P.As) that exhibits pressure, a container containing molten component A is placed in an atmosphere containing vapor of component B, and the molten component A is The part that contacts the vapor of component B is kept at a high temperature lower than the melting point of compound semiconductor AB, the other part is kept at a lower temperature than the high temperature part, the vapor pressure of component B is selected to be higher than the decomposition pressure of compound semiconductor AB, and the high temperature The compound semiconductor AB synthesized in the part is diffused (Synthesis) into the melted component A as a solute (SOlute).
DlffUSlOn) to grow a compound semiconductor crystal from the low temperature part as a crystal of compound semiconductor AB.

例えば、底部が円錐上をなして尖つている円筒形るつぼ
にGa溶液を入れ、このるつぼを真空容器の中に封じる
。真空容器の底部に赤燐を置き、この赤燐を430℃に
加熱して、真空容器内に約1気圧のP蒸気圧を発生させ
る。またGa溶液の表面で1200℃、るつぼの底部で
1150℃となるようにGa溶液に温度勾配を与える。
このようにすると、Ga溶液の表面でGaPが合成され
、このGaPが溶質としてGa溶液中をるつぼの底部に
向つて拡散して行き、るつぼの底部で結晶成長が始まる
。このSSD法によるGaP結晶は、LEC法に比べて
低温・低圧で成長させられることなどから、非常に結晶
性がよく発光素子に適している。本実施例のn+形Ga
P基板11は上述のSSD法の結晶を利用しているので
、その結晶性が良く、従つて、基板11上に成長させた
n一形GaP層12の結晶性も非常によくなつている。
For example, a Ga solution is placed in a cylindrical crucible with a conically pointed bottom, and the crucible is sealed in a vacuum container. Red phosphorus is placed at the bottom of the vacuum vessel, and the red phosphorus is heated to 430°C to generate a P vapor pressure of approximately 1 atmosphere within the vacuum vessel. Further, a temperature gradient is applied to the Ga solution so that the temperature is 1200° C. at the surface of the Ga solution and 1150° C. at the bottom of the crucible.
In this way, GaP is synthesized on the surface of the Ga solution, this GaP diffuses as a solute in the Ga solution toward the bottom of the crucible, and crystal growth begins at the bottom of the crucible. GaP crystals produced by this SSD method have very good crystallinity and are suitable for light-emitting devices because they can be grown at lower temperatures and lower pressures than those produced by the LEC method. In this example, n+ type Ga
Since the P substrate 11 uses the crystal produced by the above-mentioned SSD method, its crystallinity is good, and therefore the crystallinity of the n-type GaP layer 12 grown on the substrate 11 is also very good.

このためn一形GaP層12は1X1017?−3とい
う低不純物濃度であることも手伝つて、約12μmとい
う非常に大きい正孔の拡散長L,をもつている。n+形
GaP基板11とn一形GaP層12の界面の結晶性も
従来に比べると非常によいので、接合部に生じる空乏層
でのキヤリアの再結合が少ない良好なn+−n一接合1
4が形成されている。この発光ダイオードのn一形Ga
P層12の厚さは正孔の拡散長L (約12μm)より
も十分pに小さい3μmに゛設計されているので、n一
形GaP層12に注入された正孔の多くはn一形GaP
層12中を拡散してn+−n一接合14に達する。
Therefore, the n-type GaP layer 12 is 1X1017? Thanks in part to the low impurity concentration of −3, it has a very large hole diffusion length L of about 12 μm. Since the crystallinity of the interface between the n+ type GaP substrate 11 and the n-type GaP layer 12 is also much better than that of the conventional one, a good n+-n-type junction 1 with less recombination of carriers in the depletion layer generated at the junction is achieved.
4 is formed. This light emitting diode's n-type Ga
Since the thickness of the P layer 12 is designed to be 3 μm, which is sufficiently p smaller than the hole diffusion length L (approximately 12 μm), most of the holes injected into the n-type GaP layer 12 are n-type. GaP
Diffuses through layer 12 to reach n+-n junction 14.

同一導電形の高不純物濃度層と低不純物濃度層とからな
るn+−n−あるいはp+−p一接合は少数キヤリアに
対して電位障壁として作用することが知られている。こ
の場合もn+−n一接合14は、良好な接合であるため
、電位障壁として有効に作用し、n+−n一接合14ま
で拡散してきた正孔をここでせき止める効果(n+−n
接合14が正孔を反射するように見えるので反射効果と
呼ぶ)を発揮する。このため、n+形GaP基板11へ
の正孔の注入が制限され、n形GaP層12では正孔濃
度が高くなる。一方、n一形GaP層12に定常的に注
入される正孔(正孔電流密度J。
It is known that an n+-n- or p+-p junction consisting of a high impurity concentration layer and a low impurity concentration layer of the same conductivity type acts as a potential barrier against minority carriers. In this case as well, since the n+-n junction 14 is a good junction, it effectively acts as a potential barrier, and has the effect of blocking the holes that have diffused up to the n+-n junction 14 (n+-n junction 14).
Since the junction 14 appears to reflect holes, it exhibits a reflection effect (referred to as a reflection effect). Therefore, the injection of holes into the n+ type GaP substrate 11 is restricted, and the hole concentration in the n type GaP layer 12 becomes high. On the other hand, holes (hole current density J) are steadily injected into the n-type GaP layer 12.

,)は、n一形GaP層12中で再結合して消滅する正
孔分J,lと、n+形GaP基板11へ注入される正孔
分J,2の2成分の和である(n+−n一接合14で再
結合して消滅する正孔分も若干あるはずだが、ここでは
これを無視している)。J,lはn一形GaP層12の
厚さ即ち幅とLの大小関係からあまり大きなp値にはな
らないし、J,2もn+−n一接合14の反射効果によ
つて第1図dにおけるJ。
, ) is the sum of two components: the hole J,l that recombines and disappears in the n-type GaP layer 12 and the hole J,2 injected into the n+-type GaP substrate 11 (n+ There must also be some holes that recombine and disappear at the -n junction 14, but this is ignored here). J,l does not have a very large p-value due to the size relationship between the thickness, that is, the width, of the n-type GaP layer 12 and L, and J,2 also has a p-value of 1d due to the reflection effect of the n+-n-type junction 14. J.

,よりも小さい値に抑えられている。これらの和である
J。,も第1図dにおけるJOpよりも小さい値となる
(全電流密度が同じとき)。反射効果によつてn+形G
aP基板11への正孔の注入が制限されるため、定常的
にはn一形GaP層12への正孔の注入が制限される訳
である。この結果p形GaP層13への電子の注入効率
〔JOn/(JOn+JOp)〕が増大して、n一形G
aP層12がない場合のn+−p接合・において計算さ
れる注入効率に近い値となる。この例ではp形G&P層
13への電子の注入効率は約35%となり、従来の18
%の約2倍になつた。このように、バルクとしての発光
効率が高いp形GaP層13への電子の注入効率が増大
するため、この発光ダイオードの発光効率は電流密度1
0A/Cdにおいて0.11%となり、従来の0.08
%の約40%増と大幅に改善された。
, is suppressed to a value smaller than . The sum of these is J. , also has a smaller value than JOp in FIG. 1d (when the total current density is the same). n+ type G due to reflection effect
Since injection of holes into the aP substrate 11 is limited, injection of holes into the n-type GaP layer 12 is limited on a regular basis. As a result, the electron injection efficiency [JOn/(JOn+JOp)] into the p-type GaP layer 13 increases, and the n-type GaP layer 13 increases.
This value is close to the injection efficiency calculated for an n+-p junction without the aP layer 12. In this example, the electron injection efficiency into the p-type G&P layer 13 is approximately 35%, compared to the conventional 18%.
% was about twice as high. In this way, the efficiency of electron injection into the p-type GaP layer 13, which has a high luminous efficiency as a bulk, increases, so the luminous efficiency of this light emitting diode increases at a current density of 1.
At 0A/Cd, it is 0.11%, compared to the conventional 0.08%.
%, a significant improvement of approximately 40%.

なお、n+基板6としてLEC結晶を使用して、本発明
を実施しようとすると前述のように結晶性が劣化するた
めに発光ダイオードの発光効率は逆に悪くなつてしまう
。現在のLEC結晶は上記実施例には使用できない訳で
あるが、将来LEC結晶の結晶性が改善されたときはこ
の限りでない。但し次に述べる第3図の実施例によれば
現在のLEC結晶を本発明に使用することが可能になる
。第3図は本発明の第2の実施例に係わるGaP緑色発
光ダイオードを示すものである。この実施例の発光ダイ
オードは、LEC法で製造したTeドープn形GaP結
晶の基板21と、基板21上にLPE法で厚さ約30μ
mに形成したSドープのn+形GaP層22と、n+形
GaP層22上にLPE法で厚さ約3μmに形成したS
及びNドープのn一形GaP層23と、n一形GaP層
23上にLPE法で厚さ約30μmに形成したZn及び
Nドープのp形GaP層24とから成り、n+−n一接
合25及びp−n即ちn−一p接合26を有する。夫々
の層の不純物濃度は第3図bから明らかなように、基板
21のドナ濃度N。が4×1017?−3、n十形Ga
P層22のドナ濃度NDが2X1018c1n+3、n
一形GaP層23のドナ濃度NDが1Xh017C11
L−3p@GaP層24のアクセプタ維NAが5×10
17C!n−3である。この実施例では?射効果を得る
ための高不純物濃度のn+形GaP層22をLPE法で
形成し、n+形GaP層22の不純物濃度を高くしたた
めの結晶性の劣化をn一形GaP層23を設けることに
よつて緩和し、結晶性の比較的良いp形GaP層24を
形成している。
Note that if an LEC crystal is used as the n+ substrate 6 to carry out the present invention, the crystallinity deteriorates as described above, and the light emitting efficiency of the light emitting diode deteriorates. Although current LEC crystals cannot be used in the above embodiments, this will not apply in the future when the crystallinity of LEC crystals is improved. However, the embodiment of FIG. 3, which will be described below, allows current LEC crystals to be used in the present invention. FIG. 3 shows a GaP green light emitting diode according to a second embodiment of the present invention. The light emitting diode of this example includes a substrate 21 of Te-doped n-type GaP crystal manufactured by the LEC method, and a substrate 21 with a thickness of approximately 30 μm formed by the LPE method on the substrate 21.
an S-doped n+ type GaP layer 22 formed in a thickness of about 3 μm;
and an N-doped n-type GaP layer 23 and a Zn- and N-doped p-type GaP layer 24 formed to a thickness of about 30 μm on the n-type GaP layer 23 by the LPE method, and an n+-n-type junction 25. and a p-n or n-1p junction 26. As is clear from FIG. 3b, the impurity concentration of each layer is equal to the donor concentration N of the substrate 21. Is it 4×1017? -3, n-decade Ga
The donor concentration ND of the P layer 22 is 2X1018c1n+3,n
The donor concentration ND of the monomorphic GaP layer 23 is 1Xh017C11
Acceptor fiber NA of L-3p@GaP layer 24 is 5×10
17C! It is n-3. In this example? The n+ type GaP layer 22 with a high impurity concentration to obtain the radiation effect is formed by the LPE method, and the deterioration of crystallinity due to the high impurity concentration of the n+ type GaP layer 22 can be prevented by providing the n-type GaP layer 23. The p-type GaP layer 24 has relatively good crystallinity.

従つて、n+形GaP層22の結晶性があまり良くなく
とも、p形GaP層24の結晶性が良くなり、p形Ga
P層24のバルクの発光効率が高く保たれ、また反射効
果によつて注入効率が増加し、電流密度10A/Cdで
発光効率0.11%となつた。尚第2の実施例の変形と
して、第3図のLEC法によるn形GaP基板21の代
りにSSD法で製造したn形GaPの基板を使用したら
電流密度10A/Cdで0.14%という高い発光効率
を得ることが出米た。上述の2つの実施例において、n
一形GaP層12,23に注入された正孔の多くが、n
+n一接合14,25まで到達しなければ反射効果が現
われない。従つて、n一形GaP層12゛23の厚さは
当然このn一形GaP層12,23の正孔の拡散長以下
でなければならないが、反射効果によりp形GaP層1
3,24への電子の注入効率の実質的な増加を得るため
には、n一形GaP層12,23の正孔の拡散長の一以
下にする必要がある。上述の実施例ではn−形GaP層
12,23の厚さが約3μmであり、正孔の拡散長一以
下になつている。またn一形GaP層12,23は結晶
歪みの緩和効果が得られる厚さ以上であることが必要で
あり、この層を1μm以上にすることが望ましい。また
p−n(n−一p)接合における少数キャリアの注入効
率が、n一形GaP層12,23がないと仮定したとき
のn+一p接合で計算される値に近似する訳であるから
、n+−p接合におけるp形GaP層への電子の注入効
率が十分に大きくなければ意味がない。このためには、
p形GaP層13,24が通常用いられる5×1017
〜1×1018?−3程度の不純物濃度のとき、n+形
GaP層11y22の不純物濃度をp形GaP層13,
24の不純物濃度以上に選ぶ必要がある。以上本発明の
実施例に付いて述べたが、本発明は上述の実施例に限定
されるものではなく、更に変形可能なものである。
Therefore, even if the crystallinity of the n+ type GaP layer 22 is not very good, the crystallinity of the p-type GaP layer 24 is improved, and the p-type GaP layer 22 has good crystallinity.
The bulk luminous efficiency of the P layer 24 was kept high, and the injection efficiency increased due to the reflection effect, resulting in a luminous efficiency of 0.11% at a current density of 10 A/Cd. As a modification of the second embodiment, if an n-type GaP substrate manufactured by the SSD method is used instead of the n-type GaP substrate 21 manufactured by the LEC method shown in FIG. 3, the current density is as high as 0.14% at a current density of 10 A/Cd. It was possible to obtain luminous efficiency. In the above two examples, n
Most of the holes injected into the monomorphic GaP layers 12 and 23 are n
The reflection effect does not appear unless the +n junctions 14 and 25 are reached. Therefore, the thickness of the n-type GaP layers 12 and 23 must naturally be equal to or less than the hole diffusion length of the n-type GaP layers 12 and 23, but due to the reflection effect, the thickness of the p-type GaP layer 1
In order to obtain a substantial increase in the efficiency of electron injection into the n-type GaP layers 12 and 24, it is necessary to make the hole diffusion length of the n-type GaP layers 12 and 23 less than one. In the above embodiment, the thickness of the n-type GaP layers 12 and 23 is approximately 3 μm, which is less than the hole diffusion length. Further, it is necessary that the n-type GaP layers 12 and 23 have a thickness that is at least thick enough to obtain the effect of alleviating crystal strain, and it is desirable that this layer has a thickness of 1 μm or more. In addition, the minority carrier injection efficiency in a p-n (n-1p) junction approximates the value calculated for an n+1p junction assuming that there are no n-type GaP layers 12 and 23. , it is meaningless unless the electron injection efficiency into the p-type GaP layer at the n+-p junction is sufficiently high. For this purpose,
The p-type GaP layers 13 and 24 are usually used with 5×1017
~1×1018? When the impurity concentration is about -3, the impurity concentration of the n + type GaP layer 11y22 is changed to the p type GaP layer 13,
It is necessary to select an impurity concentration of 24 or higher. Although the embodiments of the present invention have been described above, the present invention is not limited to the above-mentioned embodiments, and can be further modified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発光ダイオードを示す説明図、第2図は
本発明の第1の実施例に係わる発光ダイオードを示す説
明図、第3図は本発明の第2の実施例に係わる発光ダイ
オードを示す説明図である。
FIG. 1 is an explanatory diagram showing a conventional light emitting diode, FIG. 2 is an explanatory diagram showing a light emitting diode according to a first embodiment of the present invention, and FIG. 3 is an explanatory diagram showing a light emitting diode according to a second embodiment of the present invention. FIG.

Claims (1)

【特許請求の範囲】 1 高不純物濃度のn形GaP半導体層と、前記高不純
物濃度のn形GaP半導体層に隣接する低不純物濃度の
n形GaP半導体エピタキシャル成長層と、前記低不純
物濃度のn形GaP半導体エピタキシャル成長層に隣接
するp形GaP半導体層とを含んだGaP緑色発光ダイ
オードにおいて、前記低不純物濃度のn形GaP半導体
エピタキシャル成長層の厚さを、前記p形GaP半導体
層から前記低不純物濃度のn形GaP半導体エピタキシ
ャル成長層に注入される少数キャリア(正孔)の拡散長
の2/3以下且つ1μm以上にし、且つ前記高不純物濃
度のn形GaP半導体層の不純物濃度を前記p形GaP
半導体層の不純物濃度以上にしたことを特徴とするGa
P緑色発光ダイオード。 2 前記高不純物濃度のn形GaP半導体層が、SSD
法で製造されたn形GaP半導体結晶の基板である特許
請求の範囲第1項記載のGaP緑色発光ダイオード。 3 前記p形GaP半導体層が、p形GaP半導体をエ
ピタキシャル成長させたp形GaP半導体エピタキシャ
ル成長層である特許請求の範囲第1項又は第2項記載の
GaP緑色発光ダイオード。 4 前記p形GaP半導体層が、前記低不純物濃度のn
形GaP半導体エピタキシャル成長層を形成するための
n形GaP半導体エピタキシャル成長層にp形不純物を
拡散して形成したp形拡散GaP半導体層である特許請
求の範囲第1項又は第2項記載のGaP緑色発光ダイオ
ード。
[Scope of Claims] 1. An n-type GaP semiconductor layer with a high impurity concentration, an n-type GaP semiconductor epitaxial growth layer with a low impurity concentration adjacent to the n-type GaP semiconductor layer with a high impurity concentration, and an n-type GaP semiconductor layer with a low impurity concentration. In a GaP green light emitting diode including a GaP semiconductor epitaxial growth layer and an adjacent p-type GaP semiconductor layer, the thickness of the low impurity concentration n-type GaP semiconductor epitaxial growth layer is changed from the p-type GaP semiconductor layer to the low impurity concentration layer. The impurity concentration of the high impurity concentration n-type GaP semiconductor layer is set to be 2/3 or less of the diffusion length of minority carriers (holes) injected into the n-type GaP semiconductor epitaxial growth layer and 1 μm or more, and the impurity concentration of the high impurity concentration n-type GaP semiconductor layer is
Ga characterized in that the impurity concentration is higher than that of the semiconductor layer.
P green light emitting diode. 2 The high impurity concentration n-type GaP semiconductor layer is an SSD
The GaP green light emitting diode according to claim 1, wherein the GaP green light emitting diode is a substrate of an n-type GaP semiconductor crystal manufactured by a method. 3. The GaP green light emitting diode according to claim 1 or 2, wherein the p-type GaP semiconductor layer is a p-type GaP semiconductor epitaxially grown layer obtained by epitaxially growing a p-type GaP semiconductor. 4 The p-type GaP semiconductor layer has the low impurity concentration n
The GaP green light emitting layer according to claim 1 or 2, which is a p-type diffused GaP semiconductor layer formed by diffusing p-type impurities into an n-type GaP semiconductor epitaxial growth layer for forming a GaP-type GaP semiconductor epitaxial growth layer. diode.
JP51122155A 1976-10-12 1976-10-12 GaP light emitting diode Expired JPS5945234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51122155A JPS5945234B2 (en) 1976-10-12 1976-10-12 GaP light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51122155A JPS5945234B2 (en) 1976-10-12 1976-10-12 GaP light emitting diode

Publications (2)

Publication Number Publication Date
JPS5347284A JPS5347284A (en) 1978-04-27
JPS5945234B2 true JPS5945234B2 (en) 1984-11-05

Family

ID=14828953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51122155A Expired JPS5945234B2 (en) 1976-10-12 1976-10-12 GaP light emitting diode

Country Status (1)

Country Link
JP (1) JPS5945234B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980981A (en) * 1982-11-01 1984-05-10 Sanyo Electric Co Ltd Gallium phosphorus green color emitting diode and manufacture thereof
US4864369A (en) * 1988-07-05 1989-09-05 Hewlett-Packard Company P-side up double heterojunction AlGaAs light-emitting diode
JP3026102B2 (en) * 1990-10-27 2000-03-27 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
JP2985292B2 (en) * 1990-11-30 1999-11-29 大豊工業株式会社 Copper bearing alloy

Also Published As

Publication number Publication date
JPS5347284A (en) 1978-04-27

Similar Documents

Publication Publication Date Title
JP3183296B2 (en) Inverted transparent substrate optoelectronic device and its manufacture
JP2650730B2 (en) Pn junction type light emitting diode using silicon carbide semiconductor
Münch et al. Silicon carbide light-emitting diodes with epitaxial junctions
USRE29845E (en) GaAs1-x Px electroluminescent device doped with isoelectronic impurities
TWI427824B (en) Infrared ray emitting element
JPH02224282A (en) Semiconductor light emitting device
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
US3667007A (en) Semiconductor electron emitter
US3634872A (en) Light-emitting diode with built-in drift field
Lanir et al. Backside‐illuminated HgCdTe/CdTe photodiodes
US3600240A (en) Epitaxial growth from solution with amphoteric dopant
JPS5945234B2 (en) GaP light emitting diode
US3998672A (en) Method of producing infrared luminescent diodes
US4606780A (en) Method for the manufacture of A3 B5 light-emitting diodes
US3773571A (en) Preparation of semiconductor ternary compounds of controlled composition by predetermined cooling rates
JPS5945235B2 (en) GaP light emitting diode
JP2817577B2 (en) GaP pure green light emitting element substrate
US3934260A (en) Red light-emitting gallium phosphide device
JPH0897466A (en) Light emitting device
Thomas Light-emitting diodes
JPH06120561A (en) Gap series light emitting device substrate and manufacture thereof
JPH02202085A (en) Manufacture of semiconductor laser device
US5776793A (en) Method of fabricating opto-electronic device
JPH0397275A (en) Blue light-emitting diode element consisting of silicon carbide
JPH1065211A (en) Light-emitting diode