JPS5944903B2 - Oxidized ore processing method - Google Patents

Oxidized ore processing method

Info

Publication number
JPS5944903B2
JPS5944903B2 JP12226677A JP12226677A JPS5944903B2 JP S5944903 B2 JPS5944903 B2 JP S5944903B2 JP 12226677 A JP12226677 A JP 12226677A JP 12226677 A JP12226677 A JP 12226677A JP S5944903 B2 JPS5944903 B2 JP S5944903B2
Authority
JP
Japan
Prior art keywords
flotation
ore
sulfur
ores
minerals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12226677A
Other languages
Japanese (ja)
Other versions
JPS5456002A (en
Inventor
浩三 斎藤
正士 川崎
光男 山口
雄治 小谷
愛 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP12226677A priority Critical patent/JPS5944903B2/en
Publication of JPS5456002A publication Critical patent/JPS5456002A/en
Publication of JPS5944903B2 publication Critical patent/JPS5944903B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は浮選回収のきわめてむつかしい酸化鉱石の浮
選処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for flotation treatment of oxidized ores, which are extremely difficult to recover by flotation.

銅、亜鉛、鉛鉱石のうち、いわゆる硫化鉱は従来公知の
浮選法で回収でき、多くの工業例が知られている。
Among copper, zinc, and lead ores, so-called sulfide ores can be recovered by conventionally known flotation methods, and many industrial examples are known.

しかしながら、これらの酸化鉱物たとえばクリソコラC
u5i03・2H20、ヘミモルファイトZn4 s
1207 (0H)2−H2Oなどは浮選で回収するこ
とがきわめてむつかしく、小試験の段階でも未だ成功例
は知られていない。
However, these oxidized minerals such as Chrysocolla C
u5i03・2H20, hemimorphite Zn4 s
1207 (0H)2-H2O and the like are extremely difficult to recover by flotation, and even at the stage of small trials, there are still no known success stories.

またスミソナイ1’ZnCO3や白鉛鉱PbCO3など
は、表面がきれいで良質なものは浮選できるが、鉱石が
褐鉄鉱、赤鉄鉱、粘土鉱で汚染されている場合には、浮
選成績は極端に低くなる。
In addition, Smithsonai 1'ZnCO3 and leucite PbCO3 can be flotated if they have a clean surface and are of good quality, but if the ore is contaminated with limonite, hematite, or clay ore, the flotation results will be extremely poor. It gets lower.

この種の酸化鉱石については、酸で浸出する方法もある
が、炭酸質脈石を含む場合には酸を多量に消費するので
経済的に成り立たない。
For this type of oxidized ore, there is a method of leaching it with acid, but if it contains carbonate gangue, it is not economically viable because a large amount of acid is consumed.

銅、亜鉛、鉛の酸化鉱石は世界各地にわたって多量に埋
蔵されているが、これまでは適切な選鉱方法が知られて
いなかったために、多くのものは未開発のままとりのこ
されている。
There are large reserves of oxidized ores of copper, zinc, and lead all over the world, but many have remained unexploited because until now there was no known appropriate beneficiation method.

この発明は、このような酸化鉱石を簡単な工程でしかも
工業規模で効率よく浮選回収する方法を提供することを
目的とする。
The object of the present invention is to provide a method for efficiently flotating and recovering such oxidized ores in a simple process and on an industrial scale.

本発明者らは銅、亜鉛、鉛酸化鉱物を含む鉱石の処理法
について詳細な基礎研究を実施した結果、これらの鉱石
を適当な雰囲気中で加熱すれば、酸化鉱物の表面乃至は
全部が別の形の化合物に変化し、これは浮選法で容易に
回収できることを知った。
The present inventors conducted detailed basic research on the processing method for ores containing copper, zinc, and lead oxide minerals, and found that by heating these ores in an appropriate atmosphere, the surface or entire surface of the oxide minerals can be separated. It was discovered that this compound can be easily recovered by flotation.

この発明は上記の知見にもとづいて得られたものであっ
て、酸化銅鉱物、酸化亜鉛鉱物または酸化鉛鉱物を含む
酸化鉱石を、硫黄または硫黄と塩素を含む非酸化性雰囲
気中で500〜750℃に加熱したのち、通常の方法で
浮選回収する方法である。
This invention was obtained based on the above findings, and the present invention is based on the above-mentioned findings. After heating to ℃, the material is flotated and recovered using the usual method.

本発明者らは、酸化鉱石のうち、もつとも処理がむつか
しかった珪酸鉱物すなわちクリソコラおよびヘミモルフ
ァイトについて、種々の雰囲気中での加熱試験を実施し
た結果、硫黄または硫黄と塩素を含む非酸化性雰囲気中
で加熱すれば、これら酸化鉱物が別の形の化合物に変化
することを認めた。
The present inventors conducted heating tests in various atmospheres on silicate minerals, chrysocolla and hemimorphite, which were difficult to process among oxidized ores. They found that when heated inside, these oxidized minerals transform into other forms of compounds.

この新たな化合物の生成機構については未知の点が多い
が、加熱によって酸化鉱物の結晶構造に歪を生じ、不安
定な状態にあるところへ硫黄が存在するので、金属原子
と硫黄原子が結合して新たに硫化物を生成するのではな
いかと考えられる。
There are many unknowns about the formation mechanism of this new compound, but heating causes distortion in the crystal structure of the oxide mineral, and sulfur exists in an unstable state, so metal atoms and sulfur atoms combine. It is thought that this may generate new sulfides.

また、硫黄のほかに塩素が存在する場合には、塩素は金
属原子と硫黄原子の結合反応に橋わたしの役目をはたす
とともに、反応を促進する触媒市な働きをするものと考
えられる。
Furthermore, when chlorine is present in addition to sulfur, chlorine is thought to act as a bridge for the bonding reaction between metal atoms and sulfur atoms, and also act as a catalyst to promote the reaction.

本発明の方法において非酸化性雰囲気中に硫黄を存在さ
せるには、鉱石に硫黄または加熱によって硫黄を生成す
る酸化物たとえば黄鉄鉱、磁硫鉄鉱などを混合すればよ
く、工業的には硫黄粉末または黄鉄鉱粉末を混合する。
In order to make sulfur exist in a non-oxidizing atmosphere in the method of the present invention, it is sufficient to mix sulfur or an oxide that produces sulfur upon heating, such as pyrite or pyrrhotite, with the ore. Mix the powder.

これらの添加量は鉱石の品位や性状によって変るが、通
常の鉱石に対しては硫黄重量比で0.3%以上で、通例
0.5〜3.0%添加する。
The amount of these additives varies depending on the grade and properties of the ore, but for normal ores, the sulfur weight ratio is 0.3% or more, usually 0.5 to 3.0%.

また、塩素を存在させるには、鉱石に塩化ナトリウム、
塩化カリウム、塩化マグネシウム、塩化カルシウム、塩
化アンモンなどの塩化物を混合すればよく、工業的には
塩化ナトリウムが用いられる。
In addition, in order to have chlorine present, sodium chloride,
Chlorides such as potassium chloride, magnesium chloride, calcium chloride, and ammonium chloride may be mixed, and sodium chloride is used industrially.

これらの添加量は鉱石によって変るが、通常の鉱石に対
しては塩素重量比で0.3%以上で、通例0.5〜1,
5%添加する。
The amount of these additions varies depending on the ore, but for normal ores, the chlorine weight ratio is 0.3% or more, usually 0.5 to 1.
Add 5%.

本発明の実施方法をヘミモルファイトを例として以下に
詳細に述べる。
The method of implementing the present invention will be described in detail below using hemimorphite as an example.

酸化亜鉛鉱としてヘミモルファイトを含む酸化鉱石を6
5メツシユ以下に粉砕し、鉱石100grに粉末硫黄1
grを混合したものを石英ボートに入れて蓋をし、所定
温度に加熱した横型管状電気炉内に挿入し、管端は栓を
閉じて所定時間保持したのち、炉からボートをとり出し
てから浮選を行った。
Oxide ore containing hemimorphite as zinc oxide ore
Grind to 5 mesh or less, add 1 powdered sulfur to 100g of ore.
The mixture of gr is placed in a quartz boat, covered with a lid, and inserted into a horizontal tubular electric furnace heated to a predetermined temperature.The end of the tube is closed with a stopper and held for a predetermined period of time.Then, the boat is removed from the furnace. Flotation was carried out.

加熱温度を種々変えて加熱したものについて浮選試験を
した結果、500℃に加熱したものから顕著な効果があ
られれはじめるが、温度がこれより低いと効果は急激に
低下する。
As a result of flotation tests conducted on products heated at various heating temperatures, a remarkable effect begins to appear when heated to 500°C, but the effect drops rapidly when the temperature is lower than this.

温度が750℃以上になると、鉱石中に含まれる鉄と亜
鉛が結合して亜鉛フェライトを生成して、その後の浮選
回収がむづかしくなる。
When the temperature exceeds 750°C, the iron and zinc contained in the ore combine to form zinc ferrite, making subsequent flotation recovery difficult.

加熱時間は低温では長く、高温では短く、→りをあげる
と粉末硫黄を用いた場合、500℃では15分、600
℃では5分でよい。
The heating time is long at low temperatures and short at high temperatures.
At ℃, 5 minutes is sufficient.

黄鉄鉱粉末を用いる場合は加熱時間は前記よりも5割程
度長くした方がよい。
When using pyrite powder, the heating time should be approximately 50% longer than the above.

加熱の際に非酸化性雰囲気に保つには、管状電気炉の管
端は閉栓しておき、発生する余剰の気体は栓に小孔をあ
けておいて、パイプを経て炉外の吸収瓶に導いて、炉内
に空気が流入することを防止した。
To maintain a non-oxidizing atmosphere during heating, the tube end of the tubular electric furnace is closed, and the excess gas generated is drained through a pipe into an absorption bottle outside the furnace by making a small hole in the stopper. to prevent air from entering the furnace.

加熱した鉱石は空気中で放冷してからスラリー化し、ま
たは水中に投入して急冷してからスラリー化して浮選を
行う。
The heated ore is left to cool in the air and then turned into a slurry, or it is put into water, rapidly cooled, and then turned into a slurry for flotation.

以上のように加熱した鉱石の表面乃至は全部がヘミモル
ファイトではなくなり、浮選可能な他の亜鉛化合物の形
に変化しているので、通例の浮選試薬を用いて容易に浮
上させることができる。
As mentioned above, the surface or the entire surface of the heated ore is no longer hemimorphite, but has changed into the form of other zinc compounds that can be floated, so it can be easily floated using a common flotation reagent. can.

一例をあげると、鉱石1トンあたり硫酸銅100gr、
ザンセート30gr、パイン油15gr、浮選時間は約
10分でよい。
For example, 100g of copper sulfate per ton of ore,
30g of xanthate, 15g of pine oil, and the flotation time may be about 10 minutes.

本発明の方法でいう酸化銅鉱物とは、主としてクリソコ
ラ、マラカイトなど、酸化亜鉛鉱物とは主としてヘミモ
ルファイト、スミツナイト、ハイドロジンサイトなど、
酸化鉛鉱物とは主として白鉛鉱、硫酸鉛鉱などである。
The copper oxide minerals used in the method of the present invention mainly include chrysocolla and malachite, and the zinc oxide minerals mainly include hemimorphite, smittenite, and hydrozinsite.
Lead oxide minerals mainly include marcasite ore, lead sulfate ore, etc.

酸化鉱石中には、酸化亜鉛鉱物と酸化鉛鉱物が共存した
り、さらに方鉛鉱、閃亜鉛郭、黄鉄鉱などの硫化物を含
む場合も多いが、このような鉱石に対しても本発明の方
法は支障なく適用できる。
Oxidized ores often contain zinc oxide minerals and lead oxide minerals, and also contain sulfides such as galena, sphalerite, and pyrite. The method can be applied without difficulty.

また褐鉄鉱などで表面が汚染されて浮選のきかない酸化
鉱石についても、本発明の方法は有効である。
The method of the present invention is also effective for oxidized ores whose surfaces are contaminated with limonite or the like and cannot be floated.

以上のようにこの発明は、従来浮選では回収がきわめて
むづかしかった酸化銅鉱物、酸化亜鉛鉱物または酸化鉛
鉱物を含む鉱石を、硫黄または硫黄と塩素を含む非酸化
性雰囲気中で500〜750℃に加熱することにより、
酸化鉱物を浮選可能な化合物の形に変えてから浮選回収
するものであって、これまで稼行できなかった酸化鉱石
が経済的に稼行できるようになり、未利用資源の開発を
大幅に前進させることができる。
As described above, the present invention allows ores containing copper oxide minerals, zinc oxide minerals, or lead oxide minerals, which have been extremely difficult to recover by conventional flotation, to be collected in sulfur or in a non-oxidizing atmosphere containing sulfur and chlorine. By heating to 750℃,
Oxide minerals are converted into flotation-capable compounds and then recovered by flotation. Oxide ores, which were previously impossible to operate, can now be economically operated, making significant progress in the development of unused resources. can be done.

次に実施例を示す。Next, examples will be shown.

実施例 1 亜鉛品位が4.7%でヘミモルファイトの形で含まれて
いる酸化亜鉛鉱石を、65メツシユ以下に粉砕した。
Example 1 A zinc oxide ore containing 4.7% zinc in the form of hemimorphite was ground to less than 65 mesh.

その100grに対して粉末硫黄1grと塩化ナトリウ
ムIgrとを混合したものを、石英ボートに入れ、横型
管状電気炉を用いて閉栓して、500℃で15分間加熱
後、空気中で冷却してから浮選試験をした。
A mixture of 1g of powdered sulfur and Igr of sodium chloride per 100g of the mixture was placed in a quartz boat, closed using a horizontal tubular electric furnace, heated at 500°C for 15 minutes, and then cooled in air. I did a flotation test.

鉱石1トンあたり硫酸銅100gr、アミルザンセート
30gr、パイン油15grを用いて10分間浮選した
結果、精鉱品位39,0%Zn、Zn採収率93%の成
績を得た。
As a result of flotation for 10 minutes using 100g of copper sulfate, 30g of amylzansate, and 15g of pine oil per ton of ore, the concentrate grade was 39.0% Zn and the Zn recovery rate was 93%.

粉末硫黄の代りに黄鉄鉱粉末2.5grを添加した場合
も、前記とほぼ同様の成績を得た。
When 2.5 gr of pyrite powder was added instead of powdered sulfur, almost the same results as above were obtained.

比較のために、同一の鉱石をそのままで前記と同一の浮
選条件で浮選した結果、精鉱品位5.3%Zn、Zn採
収率8.7%であった。
For comparison, the same ore was flotated as it was under the same flotation conditions as above, and as a result, the concentrate grade was 5.3% Zn and the Zn recovery rate was 8.7%.

実施例 2 鉛品位がl015%で白鉛鉱の形で含む酸化鉛鉱石を、
65メツシユ以下に粉砕した。
Example 2 Lead oxide ore containing lead in the form of marcasite with a lead grade of 1015% was
Grinded to 65 mesh or less.

その100grに対して粉末硫黄1grを混入し、塩化
ナトリウムは混入しないで、その他は実施例1と同様の
方法で処理した結果、精鉱品位46.6%Pb。
1g of powdered sulfur was mixed into 100g of the sulfur, but no sodium chloride was mixed, and the process was otherwise carried out in the same manner as in Example 1. As a result, the concentrate grade was 46.6% Pb.

Pb採収率88%の成績を得た。A Pb recovery rate of 88% was obtained.

比較のために、同一の鉱石をそのままで前記と同一の浮
選條件で浮選した結果、精鉱品位30.3%pb、pb
採収率11.4%であった。
For comparison, the same ore was flotated as it was under the same flotation conditions as above, and the concentrate grade was 30.3% pb, pb
The recovery rate was 11.4%.

また、硫化ソーダ1kg添加して表面を硫化してから前
記の條件で浮選したが、精鉱品位34.1%Pb、Pb
採収率22.5%であった。
In addition, 1 kg of soda sulfide was added to sulfurize the surface and then flotation was carried out under the above conditions, but the concentrate grade was 34.1% Pb, Pb
The recovery rate was 22.5%.

実施例 3 銅品位が6.3%でクリソコラの形で含まれている酸化
銅鉱石を、実施例1と同様の條件で処理した結果、精鉱
品位46.3%Cu、Cu採収率87.5%の成績を得
た。
Example 3 Oxidized copper ore containing 6.3% copper in the form of chrysocolla was treated under the same conditions as in Example 1, resulting in a concentrate grade of 46.3% Cu and a Cu recovery rate of 87. I got a score of .5%.

比較のために、同一の鉱石をそのままで前記と同一の浮
選條件で浮選した結果、精鉱品位5.8%Cu、Cu採
収率6.3%であった。
For comparison, the same ore was flotated as it was under the same flotation conditions as above, resulting in a concentrate grade of 5.8% Cu and a Cu recovery rate of 6.3%.

また、硫化ソーダ1kg添加して表面を硫化してから前
記の條件で浮選したが、その成線は前記のそのままで浮
選したときと同程度であった。
In addition, 1 kg of sodium sulfide was added to sulfurize the surface and then flotation was carried out under the above conditions, but the resulting wires were of the same level as when flotation was carried out as described above.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化銅鉱物、酸化亜鉛鉱物または酸化鉛鉱物を含む
酸化鉱石を、硫黄または硫黄と塩素を含む非酸化性雰囲
気中で500〜750℃に加熱したのち、通常の方法で
浮選回収することを特徴とする酸化鉱石の処理法。
1 Oxide ores containing copper oxide minerals, zinc oxide minerals, or lead oxide minerals are heated to 500 to 750°C in a non-oxidizing atmosphere containing sulfur or sulfur and chlorine, and then recovered by flotation using a normal method. Characteristic oxidized ore processing method.
JP12226677A 1977-10-12 1977-10-12 Oxidized ore processing method Expired JPS5944903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12226677A JPS5944903B2 (en) 1977-10-12 1977-10-12 Oxidized ore processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12226677A JPS5944903B2 (en) 1977-10-12 1977-10-12 Oxidized ore processing method

Publications (2)

Publication Number Publication Date
JPS5456002A JPS5456002A (en) 1979-05-04
JPS5944903B2 true JPS5944903B2 (en) 1984-11-01

Family

ID=14831694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12226677A Expired JPS5944903B2 (en) 1977-10-12 1977-10-12 Oxidized ore processing method

Country Status (1)

Country Link
JP (1) JPS5944903B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391616C (en) * 2006-02-09 2008-06-04 陈铁 Beneficiation method for zinc oxide mine
JP4957358B2 (en) * 2007-04-27 2012-06-20 株式会社日立製作所 Steam turbine cylinder connection pipe

Also Published As

Publication number Publication date
JPS5456002A (en) 1979-05-04

Similar Documents

Publication Publication Date Title
EP0177295B1 (en) Recovery of gold from refractory auriferous iron-containing sulphidic material
US4571263A (en) Recovery of gold from refractory auriferous iron-containing sulphidic concentrates
IE43684L (en) Recovery of lead.
US4324582A (en) Process for the recovery of copper from its ores
JPH0237414B2 (en)
US6251163B1 (en) Method for recovering gold from refractory carbonaceous ores
EP0776378B1 (en) Hydrometallurgical conversion of zinc sulfide to sulfate from zinc sulfide containing ores and concentrates
CA2756433C (en) Method for leaching zinc from a zinc ore
US3403020A (en) Leaching of copper from ores with cyanide and recovery of copper from cyanide solutions
US2898196A (en) Method of treating pyrrhotitic mineral sulphides containing non-ferrous metal values for the recovery of said metal values and sulfur
US3728430A (en) Method for processing copper values
US3981962A (en) Decomposition leach of sulfide ores with chlorine and oxygen
US3544306A (en) Concentration of copper from copper ores,concentrates and solutions
CA1057506A (en) Method of producing metallic lead and silver from their sulfides
US4385038A (en) Flotation recovery of lead, silver and gold as sulfides from electrolytic zinc process residues
US3799764A (en) Roasting of copper sulfide concentrates combined with solid state segregation reduction to recover copper
US4246096A (en) Flotation process
O'Connor et al. The practice of pyrite flotation in South Africa and Australia
US2898197A (en) Method of treating pyrrhotitic mineral sulphides containing non-ferrous metal values
US2838391A (en) Method of treating sulfur bearing mineral values with molten sulfur to concentrate mineral sulfides
JPS5944903B2 (en) Oxidized ore processing method
US3232744A (en) Process for producing iron oxide with a low silica content
AU618241B2 (en) Process for the selective dissolution of lead from mixed minerals containing zinc
US3313601A (en) Recovery of metal values from oxygenated ores
US2989394A (en) Heat treatment and concentration of oxide ores