JPS5944878B2 - Control device for commutatorless motor - Google Patents

Control device for commutatorless motor

Info

Publication number
JPS5944878B2
JPS5944878B2 JP52050485A JP5048577A JPS5944878B2 JP S5944878 B2 JPS5944878 B2 JP S5944878B2 JP 52050485 A JP52050485 A JP 52050485A JP 5048577 A JP5048577 A JP 5048577A JP S5944878 B2 JPS5944878 B2 JP S5944878B2
Authority
JP
Japan
Prior art keywords
synchronous motor
induced voltage
phase
armature
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52050485A
Other languages
Japanese (ja)
Other versions
JPS53136613A (en
Inventor
尚 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52050485A priority Critical patent/JPS5944878B2/en
Publication of JPS53136613A publication Critical patent/JPS53136613A/en
Publication of JPS5944878B2 publication Critical patent/JPS5944878B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 本発明は、周波数変換装置で駆動される無整流子同期電
動機の制御装置に係り、特に転流進み角を任意に調整す
ることを可能とした無整流子電動機の制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a non-commutated synchronous motor driven by a frequency conversion device, and particularly to a control device for a non-commutated motor that allows commutation lead angle to be adjusted arbitrarily. Regarding equipment.

第1図は、例えば静止形周波数変換装置として、交流電
源母線R、S、Tから供給される交流を直流に変換する
サイリスタからなる静止形順変換装置(以下、順変換装
置と称す)10と、この順変換装置10の直流を直流リ
アクトル11を介して印加され直流を交流に変換するサ
イリスタからなる静止形逆変換装置(以下、逆変換装置
と称す)12を用いた例を示す。
FIG. 1 shows, for example, a static forward converter (hereinafter referred to as a forward converter) 10, which is a static frequency converter, and includes a thyristor that converts alternating current supplied from AC power supply buses R, S, and T into direct current. An example will be shown in which a static inverse converter (hereinafter referred to as an inverse converter) 12 is used, which is made of a thyristor that converts the direct current into alternating current to which the direct current of the forward converter 10 is applied via a DC reactor 11.

[3は同期電動機で、その電機子巻線13Aは逆変換装
置12を通流状態にすることにより給電される。
[3 is a synchronous motor, and its armature winding 13A is supplied with power by making the inverter 12 conductive.

同期電動機[3の回転子13Fには位置検出装置14が
連結され電機子巻線13Aと回転子13Fの相対位置に
応じた信号を発生する。15は位置検出装置14の出力
信号を所望の論理演算し、逆変換装置12を構成するサ
イリスタUP、VP、WP及びUN3VN、WNの点弧
信号を導出する論理回路で、16は4象限切替信号を示
す。
A position detection device 14 is connected to the rotor 13F of the synchronous motor [3, and generates a signal according to the relative position of the armature winding 13A and the rotor 13F. 15 is a logic circuit that performs a desired logical operation on the output signal of the position detection device 14 and derives firing signals for the thyristors UP, VP, WP and UN3VN, WN that constitute the inverse conversion device 12; 16 is a four-quadrant switching signal; shows.

ITは位置検出装置14の出力信号をその周波数に比例
したアナログ信号に変換するアナログ変換回路で、この
回路計Tの出力信号が速度帰還信号となる。
IT is an analog conversion circuit that converts the output signal of the position detection device 14 into an analog signal proportional to its frequency, and the output signal of this circuit T becomes the speed feedback signal.

18は同期電動機[□の速度を設定する速度設定器で、
この出力とアナログ変換回路計Tの出力が速度制御回路
19に加わる。
18 is a speed setting device for setting the speed of the synchronous motor [□;
This output and the output of the analog conversion circuit T are applied to the speed control circuit 19.

速度制御回路19は速度基準信号と速度帰還信号との偏
差信号に応じて位相制御回路20を制御し、順変換装置
10の出力を調整し、同期電動機Uの速度が常に速度基
準に等しくなるように制御する。
The speed control circuit 19 controls the phase control circuit 20 according to the deviation signal between the speed reference signal and the speed feedback signal, and adjusts the output of the forward converter 10 so that the speed of the synchronous motor U is always equal to the speed reference. to control.

第2図は第1図の同期電動機UのU相電圧EuとU相電
流Iuと、逆変換装置12を構成するサイリスタの点弧
期間を示す図で、転流進み角がγ度の例である。
Figure 2 is a diagram showing the U-phase voltage Eu and U-phase current Iu of the synchronous motor U in Figure 1, and the firing period of the thyristor constituting the inverter 12, in an example where the commutation advance angle is γ degrees. be.

転流進み角γは同期電動機[3の特性を上げるためには
γ=0゜に近い方がよく、又同期電動機lの誘起電圧よ
り転流を行なわせるには転流進み角γは或る程度大きく
なければならない。
In order to improve the characteristics of the synchronous motor [3, it is better for the commutation lead angle γ to be close to 0°, and in order to make the commutation lower than the induced voltage of the synchronous motor l, the commutation lead angle γ must be a certain value. It must be of a large degree.

又、従来1組の位置検出器にて4象限運転するに当つて
は、転流進み角γを(1)γ=0゜,−180゜,(2
)γ=30゜,−2100,(3)γ=600,−24
00等の如く差が6『の倍数になるように論理回路15
に組合せて使用しているが、一般にはγ=60に,−2
4『の組合せにて運転を行う場合が多かつた。又、位置
検出装置14により転流タイミングを決定する場合、電
機子反作用により電動機誘起電圧と、位置検出装置14
の出力信号の相対関係がずれ、実際の転流進み角γが変
化して電動機の特性及びサイリスタUP−WNの転流動
作等が負荷電流に影響されるという欠点があつた。
In addition, when conventionally performing four-quadrant operation with one set of position detectors, the commutation advance angle γ is (1) γ = 0°, -180°, (2
) γ = 30°, -2100, (3) γ = 600, -24
Logic circuit 15 so that the difference is a multiple of 6', such as 00.
Although it is generally used in combination with γ = 60, -2
There were many cases where operations were performed using a combination of 4. In addition, when the commutation timing is determined by the position detection device 14, the motor induced voltage and the position detection device 14 are reduced due to armature reaction.
This has the drawback that the relative relationship between the output signals of is shifted, the actual commutation advance angle γ changes, and the characteristics of the motor and the commutation operation of the thyristor UP-WN are affected by the load current.

従つて、本発明の目的は、前述の欠点を除去するために
なされたものであつて、位置検出信号として、同期電動
機の誘起電圧を使用することにより、この誘起電圧に対
する負荷電流の実質転流進み角が変化しないようにし、
さらに転流進み角を任意に調整して同期電動機の特性と
サイリスタの転流動作の関係を最適にして4象限運転す
るようにした無整流子電動機の制御装置を提供すること
にある。
Therefore, an object of the present invention has been made to eliminate the above-mentioned drawbacks, and by using the induced voltage of a synchronous motor as a position detection signal, it is possible to effectively commutate the load current with respect to this induced voltage. Prevent the lead angle from changing,
Furthermore, it is an object of the present invention to provide a control device for a non-commutated motor in which the commutation advance angle is arbitrarily adjusted to optimize the relationship between the characteristics of the synchronous motor and the commutation operation of the thyristor, and the motor is operated in four quadrants.

以下、本発明の一実施例を第3図を参照して説明する。An embodiment of the present invention will be described below with reference to FIG.

第3図に於いて、10,11,12はそれぞれ第1図と
同様、例えばサイリスタからなる静止形順変換装置(以
下順変換装置と称す)、直流リアクトル、例えばサイリ
スタからなる静止形逆変換装置(以下逆変換装置と称す
)を示し、又V3は同期電動機(以下単に電動機と称す
)を示す。尚、第3図は順変換装置10及び逆変換装置
12を制御するための回路は省略している。21は電動
機[3の誘起電圧を検出する誘起電圧検出回路で、この
回路21は電動機13の各相印加電圧を検出する変圧器
22の出力信号及び分流器23,24,25で検出され
る電動機〔3の各相電流信号から電動機リの各相誘起電
圧を検出する。
In FIG. 3, 10, 11, and 12 are the same as in FIG. 1, for example, a static forward converter (hereinafter referred to as a forward converter) consisting of a thyristor, and a static inverse converter consisting of a DC reactor, for example, a thyristor. (hereinafter referred to as an inversion device), and V3 represents a synchronous motor (hereinafter simply referred to as an electric motor). Note that, in FIG. 3, circuits for controlling the forward transform device 10 and the inverse transform device 12 are omitted. Reference numeral 21 denotes an induced voltage detection circuit that detects the induced voltage of the motor [3; [Detect each phase induced voltage of the electric motor from each phase current signal of 3.

26は絶縁回路で、誘起電圧検出回路21と電動機[3
の主回路とを絶縁するためのものである。
26 is an insulating circuit that connects the induced voltage detection circuit 21 and the motor [3
This is to insulate the main circuit from the main circuit.

第4図は第3図の誘起電圧検出回路21の具体的一実施
例をU相についてのみ示した図で、同様な回路が、V相
及びW相について設けられる。
FIG. 4 is a diagram showing a specific embodiment of the induced voltage detection circuit 21 of FIG. 3 only for the U phase, and similar circuits are provided for the V and W phases.

第4図に於いて、端子27には絶縁回路26の出力であ
るU相電流1uが印加され、端子28には変圧器22の
出力であるU相電圧Vuが印加される〇抵抗器29,3
0,31と可変抵抗器32及び増幅器33から成る回路
は電動機[3の電機子巻線13Aにおける電機子電流と
抵抗の積による抵抗降下分に相当する信号を導出する回
路であり、コンデンサ35、抵抗器36,37,38、
可変抵抗器39及び増幅器40から成る回路は、電動機
[Kのインダクタンスと電機子電流との積によるインダ
クタンス降下分に相当する信号の導出回DIu路で、こ
の導出回路の出力L−は第5図に示Dtすように電流1
uがほぼ矩形波であるためその立上り及び立下り時点の
み出力を発生する。
In FIG. 4, a U-phase current 1u, which is the output of the insulation circuit 26, is applied to the terminal 27, and a U-phase voltage Vu, which is the output of the transformer 22, is applied to the terminal 28.Resistor 29, 3
0, 31, a variable resistor 32, and an amplifier 33 are circuits that derive a signal corresponding to a resistance drop due to the product of armature current and resistance in the armature winding 13A of the motor [3, and a capacitor 35, Resistors 36, 37, 38,
The circuit consisting of the variable resistor 39 and the amplifier 40 is a derivation circuit DIu path for a signal corresponding to the inductance drop due to the product of the inductance of the motor [K and the armature current, and the output L- of this derivation circuit is as shown in FIG. As shown in Dt, the current 1
Since u is a substantially rectangular wave, output is generated only at its rising and falling points.

また第4図における抵抗器41及び増幅器42かな成る
回路は、前述の抵抗降下分およびインダクタンス降下分
導出回路の出力信号及び抵抗器58を介して印加される
相電圧Vuから誘起電圧Euを導出する。
Further, the circuit consisting of the resistor 41 and the amplifier 42 in FIG. 4 derives the induced voltage Eu from the output signal of the aforementioned resistance drop and inductance drop deriving circuit and the phase voltage Vu applied via the resistor 58. .

即ち、電動機Iの印加相電圧u(相電圧)は誘起電圧E
uと巻線のインピーダンス降下分1uZuの和として表
わされるので、u=Eu+IuZuとなる。従つて各相
の誘起電圧EはE=V−1−Zの関係となる。又、各相
巻線のインピーダンス降下1−Zは巻線の抵抗降下分と
インダクタンスによる電流の変化分降下の和であるので
、電動機〔3のU相の誘起電圧Euは第4図において、
増幅器33の出力である抵抗降下分と増幅器40の出力
であるインダクタンス降DIu下分に相当する出力L−
を相電圧Vuから引Dtくことにより増幅器42の出力
に誘起電圧Euを得ることが出来る。
That is, the applied phase voltage u (phase voltage) of the motor I is the induced voltage E
Since it is expressed as the sum of u and the impedance drop of the winding 1uZu, u=Eu+IuZu. Therefore, the induced voltage E of each phase has the relationship E=V-1-Z. Also, since the impedance drop 1-Z of each phase winding is the sum of the resistance drop of the winding and the drop of the current change due to inductance, the induced voltage Eu of the U phase of the motor [3 is shown in Fig. 4 as follows:
An output L- corresponding to the resistance drop that is the output of the amplifier 33 and the inductance drop DIu that is the output of the amplifier 40.
By subtracting Dt from the phase voltage Vu, the induced voltage Eu can be obtained at the output of the amplifier 42.

又、ここで電機子巻線13Aの抵抗降下分が十分小さい
ものとすれば、増幅器33の出力を零にしても十分誘起
電圧Euを増幅器42の出力に近似して得られることは
いうまでもない。この関係を示したのが第5図である。
第3図の43は前述のように検出された電動機Iの誘起
電圧Eu,Ev,Ewを入力信号とする位置検出装置で
、それぞれU相用43u,相用43v,W相用43wか
ら成つている。又接点Xは正転力行時及び逆転回生時閉
路し、接点Yは正転回生時及び逆転力行時に閉路する。
44u,44v,44wはそれぞれEv,Ew,Euの
信号を適宜の値に設定する可変抵抗器である。
It goes without saying that if the resistance drop of the armature winding 13A is sufficiently small, the induced voltage Eu can be sufficiently approximated to the output of the amplifier 42 even if the output of the amplifier 33 is made zero. do not have. FIG. 5 shows this relationship.
Reference numeral 43 in FIG. 3 is a position detection device which receives as input signals the induced voltages Eu, Ev, and Ew of the motor I detected as described above, and consists of 43u for the U phase, 43v for the phase, and 43w for the W phase, respectively. There is. Further, the contact X is closed during normal rotation power running and reverse rotation regeneration, and the contact Y is closed during normal rotation regeneration and reverse rotation power running.
44u, 44v, and 44w are variable resistors that set the Ev, Ew, and Eu signals to appropriate values, respectively.

転流進み角γ度時の正転と逆転の運転状態における逆変
換器12の同一電流に対する位相差θxは第6図に示す
如くθx=(γ−30゜)+3600+(γ−300)
−1200=18『2γとなり、正転時に対し、逆転時
は18『+2γ遅れていることになる。
The phase difference θx for the same current of the inverter 12 in forward and reverse operating states when the commutation advance angle is γ degrees is as shown in FIG. 6: θx = (γ-30°) + 3600 + (γ-300)
-1200=18'2γ, which means that the reverse rotation is delayed by 18+2γ compared to the forward rotation.

従つて、第3図における誘起電圧検出回路21において
検出した各相誘記電圧Eu,Ev,Ewを後述する回転
子位置検出回路43u,43v,43wにおいて合成し
て得られるところの波形が各相のγ=0の位置に対して
、任意の+γと一(180゜+γ)位相がずれて合成さ
れれば、その合成波形の極性を検出し、位置検出信号と
することにより、誘起電圧に対し設定した任意の転流進
み角γ度で負荷電流に影響されず4象限運転を行なうこ
とが出来る。第7図は第3図のU相用回転子位置検出回
路43uの具体的一実施例を示す構成図で、43v,4
3wも同様に構成される。第7図において端子45,4
6,47はそれぞれ誘起電圧検出回路21からの誘起電
圧Eu,Ew,Evが印加される端子である。
Therefore, the waveform obtained by combining the induced voltages Eu, Ev, and Ew of each phase detected by the induced voltage detection circuit 21 in FIG. If it is synthesized with an arbitrary +γ and one (180° +γ) phase shift with respect to the position of γ = 0, the polarity of the synthesized waveform is detected and used as a position detection signal, so that the induced voltage can be adjusted. Four-quadrant operation can be performed at any set commutation advance angle γ degrees without being affected by the load current. FIG. 7 is a block diagram showing a specific embodiment of the U-phase rotor position detection circuit 43u of FIG.
3w is similarly configured. In Fig. 7, terminals 45, 4
6 and 47 are terminals to which the induced voltages Eu, Ew, and Ev from the induced voltage detection circuit 21 are applied, respectively.

誘起電圧Euは接点Xが閉路したとき抵抗器48を介し
て増幅器49に加わり、信号Ewは接点Yが閉路した時
抵抗器50を介し増幅器49に加わり、信号Evは可変
抵抗器44uで適宜の値に設定され抵抗器51,52及
び増幅器53から成る増幅回路を介して常時増幅器49
に加わる。
The induced voltage Eu is applied to the amplifier 49 via the resistor 48 when the contact A constant amplifier 49 is set to a value of
join.

増幅器49の出力に矩形波を得るため定電圧ダイオード
54を設け、増幅器49の出力を接点Fが閉路している
時出力信号として端子55に導出し、接点Rが閉路して
いる時ノツト回路56を介して端子55に導出する。第
8図は第7図の動作説明用の波形図を示し、電動機誘起
電圧Eu,Ev,Ewとその振幅の演算されたEd,E
v′,Ew′J.り合成した(Eu−Evつと(Ew−
Evつの波形の位相は第8図に示す如く、Ev′の零点
に対し対称となるため、(18『+2γ)ずれており、
γは可変抵抗器44uにより可変できることが明らかで
ある。
In order to obtain a rectangular wave at the output of the amplifier 49, a constant voltage diode 54 is provided, and the output of the amplifier 49 is led out to a terminal 55 as an output signal when the contact F is closed, and to a not circuit 56 when the contact R is closed. It is led out to the terminal 55 via. FIG. 8 shows a waveform diagram for explaining the operation of FIG.
v′, Ew′J. (Eu-Ev and (Ew-
As shown in Figure 8, the phases of the Ev waveforms are symmetrical with respect to the zero point of Ev', so they are shifted by (18'+2γ),
It is clear that γ can be varied by the variable resistor 44u.

第7図の入力信号の組合せの場合、第8図から明らかな
如く、Ev′の振幅0の場合と1の場合におけるEv′
とEu,Ewとの交点よりγの可変範囲は30゜〜6『
となる。又逆転時にEu,Ev,Ewは正転時と回転子
の同位置においては極性が逆となるので、ノツト回路5
6を介すことにより(180゜−2γ)度位相のずれた
2つの信号を得ることができる。即ち、各接点X,Y,
F,Rを正転力行時、逆転回生時X,F,逆転力行時、
正転回生時Y,Rを閉路すれば端子55にその運転条件
に対応した信号PSl(第3図)を得ることが出来る。
この場合電動機V3の運転状態により、接点X,Y,F
,Rを閉路しても転流進み角の設定のために誘起電圧信
号を調整するのはEvだけであることはいうまでもない
。この信号を3相分PSl,PS2,PS3導出し、こ
れらを第3図では省略しているが、第1図の15に相当
する論理回路15に印加し逆変換装置12を構成するサ
イリスタUP−WNの点弧信号を作れば電動機[3を設
定した任意の転流進み角γで4象限運転することができ
る。
In the case of the combination of input signals shown in FIG. 7, as is clear from FIG.
The variable range of γ is from 30° to 6' from the intersection of Eu and Ew.
becomes. Also, during reverse rotation, the polarities of Eu, Ev, and Ew are reversed at the same position of the rotor as during forward rotation, so the knot circuit 5
6, two signals with a phase shift of (180°-2γ) degrees can be obtained. That is, each contact point X, Y,
When F and R are running in the forward rotation, when regenerating in the reverse direction,
If Y and R are closed during normal rotation and regeneration, a signal PSl (FIG. 3) corresponding to the operating conditions can be obtained at the terminal 55.
In this case, depending on the operating state of electric motor V3, contacts X, Y, F
, R are closed, it goes without saying that only Ev adjusts the induced voltage signal to set the commutation advance angle. This signal is derived for three phases PSl, PS2, PS3, and is applied to a logic circuit 15 corresponding to 15 in FIG. 1, although these are omitted in FIG. If a WN ignition signal is generated, the electric motor can be operated in four quadrants at any commutation advance angle γ set at [3].

尚、本発明は前述の実施例のみに限定するものではなく
、例えば第8図のEv′信号を第7図の増幅器53の出
力にさらに極性反転用演算増幅器を1つ追加することに
、より極性まで可変出来るようにした信号に基づいて位
置信号を検出するようにすれば2つの誘起電圧信号Eu
,Ev′の交点つまり(Eu−Ev′)の極性といえる
本方式の位置検出信号は更に広範囲の設定を可転とする
ことが出来ることはいうまでもない。
It should be noted that the present invention is not limited to the above-mentioned embodiments; for example, by adding one operational amplifier for polarity inversion to the output of the amplifier 53 in FIG. 7, the Ev' signal in FIG. If the position signal is detected based on a signal whose polarity can be varied, two induced voltage signals Eu
, Ev', that is, the polarity of (Eu-Ev'), the position detection signal of this method can be set in a wider range.

更に、本発明は周波数変換装置としてサイクロコンバー
タを用いても同様に実施出来る。
Furthermore, the present invention can be similarly implemented using a cycloconverter as the frequency conversion device.

以上説明のように本発明は、電動機印加電圧に電機子電
流に起因するインピーダンス降下分を演算し、その出力
電圧から位置検出信号を導出し、且つその位置検出信号
の電動機誘起電圧に対する位相差を任意に設定すること
が出来るため、運転特性上最適な転流進み角に設定して
おけば、負荷電流に対して関係なく常に最適に設定した
実質転流進み角での運転が可能である。
As explained above, the present invention calculates the impedance drop caused by the armature current in the motor applied voltage, derives the position detection signal from the output voltage, and calculates the phase difference of the position detection signal with respect to the motor induced voltage. Since it can be set arbitrarily, if the commutation advance angle is set to the optimum commutation advance angle in terms of operating characteristics, operation can always be performed at the optimally set effective commutation advance angle regardless of the load current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の構成図、第2図は従来装置の転流動
作を説明するための図、第3図は本発明の一実施例を示
すプロツク図、第4図は第3図の誘起電圧検出回路の具
体的一実施例を示す構成図、第5図は第4図の動作を説
明するための図、第6図は同期電動機が正転運転と逆転
運転の場合の転流位相関係を示した図、第7図は第3図
の回転子位置検出回路の具体的一実施例を示す構成図、
第8図は第7図の動作を説明するための図である。 10・・・・・・順変換装置、11・・・・・・直流リ
アクトル、12・・・・・・逆変換装置、13・・・・
・・同期電動機、14・・・・・・位置検出装置、16
・・・・・・4象限切替信号、18・・・・・・速度測
定器、20・・・・・・位相制御回路、21・・・・・
・誘起電圧検出回路、22・・・・・・変圧器、23〜
25・・・・・・分流器、26・・・・・・絶縁回路、
33・・・・・・回転子位置検出回路、PSl,PS2
,PS3・・・・・・位置信号。
Fig. 1 is a block diagram of a conventional device, Fig. 2 is a diagram for explaining the commutation operation of the conventional device, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a diagram similar to that of Fig. 3. A configuration diagram showing a specific example of the induced voltage detection circuit, FIG. 5 is a diagram for explaining the operation of FIG. 4, and FIG. 6 shows the commutation phase when the synchronous motor is in forward rotation and reverse rotation. 7 is a diagram showing the relationship, and FIG. 7 is a configuration diagram showing a specific example of the rotor position detection circuit of FIG. 3.
FIG. 8 is a diagram for explaining the operation of FIG. 7. 10... Forward conversion device, 11... DC reactor, 12... Inverse conversion device, 13...
...Synchronous motor, 14...Position detection device, 16
...Four quadrant switching signal, 18... Speed measuring device, 20... Phase control circuit, 21...
・Induced voltage detection circuit, 22...Transformer, 23~
25... shunt, 26... insulation circuit,
33...Rotor position detection circuit, PSl, PS2
, PS3...Position signal.

Claims (1)

【特許請求の範囲】[Claims] 1 静止形周波数変換装置の通流制御により給電される
無整流子3相同期電動機において、この同期電動機の電
機子の抵抗降下分に相当する信号と、前記電機子のイン
ダクタンスと電機子電流の微分値の積から電機子のイン
ダクタンス降下分に相当する信号からインピーダンス降
下分を導出し、このインピーダンス降下分および前記同
期電動機に印加される電圧を入力して同期電動機の3相
の誘起電圧を検出する誘起電圧検出回路と、この誘起電
圧検出回路の3相の誘起電圧の一つの振幅を変え、この
振幅を変えた誘起電圧と他の2つの誘起電圧のいずれか
を前記同期電動機の運転状態により選択して比較しかつ
矩形波を得、この矩形波から前記同期電動機の回転子位
置に応じた論理信号を導出する回転子位置検出回路とを
備え、この回転子位置検出回路の論理信号を基にして前
記静止形周波数変換装置の実質転流進み角を前記同期電
動機の電機子反作用に影響されず、任意の設定値に調整
可能としたことを特徴とする無整流子電動機の制御装置
1. In a non-commutated three-phase synchronous motor powered by current control of a static frequency converter, a signal corresponding to the resistance drop of the armature of this synchronous motor, the inductance of the armature, and the differential of the armature current. An impedance drop is derived from a signal corresponding to the inductance drop of the armature from the product of the values, and this impedance drop and the voltage applied to the synchronous motor are input to detect the three-phase induced voltage of the synchronous motor. The induced voltage detection circuit and the amplitude of one of the three-phase induced voltages of this induced voltage detection circuit are changed, and either the induced voltage with the changed amplitude or the other two induced voltages is selected depending on the operating state of the synchronous motor. and a rotor position detection circuit for comparing and obtaining a rectangular wave, and deriving a logic signal corresponding to the rotor position of the synchronous motor from the rectangular wave, and based on the logic signal of the rotor position detection circuit. A control device for a commutatorless motor, characterized in that the effective commutation advance angle of the static frequency converter can be adjusted to an arbitrary set value without being affected by armature reaction of the synchronous motor.
JP52050485A 1977-04-30 1977-04-30 Control device for commutatorless motor Expired JPS5944878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52050485A JPS5944878B2 (en) 1977-04-30 1977-04-30 Control device for commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52050485A JPS5944878B2 (en) 1977-04-30 1977-04-30 Control device for commutatorless motor

Publications (2)

Publication Number Publication Date
JPS53136613A JPS53136613A (en) 1978-11-29
JPS5944878B2 true JPS5944878B2 (en) 1984-11-01

Family

ID=12860208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52050485A Expired JPS5944878B2 (en) 1977-04-30 1977-04-30 Control device for commutatorless motor

Country Status (1)

Country Link
JP (1) JPS5944878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031597Y2 (en) * 1984-05-15 1991-01-17

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120678U (en) * 1990-03-26 1991-12-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031597Y2 (en) * 1984-05-15 1991-01-17

Also Published As

Publication number Publication date
JPS53136613A (en) 1978-11-29

Similar Documents

Publication Publication Date Title
US5969958A (en) Method for measuring phase currents in an inverter
EP0697763B1 (en) Multi-coupled power converter and its controlling method
EP0430044A2 (en) Method of controlling an inverter
EP0152796A1 (en) Control circuit for power converter apparatus
JPH0655030B2 (en) Instantaneous value control method for load current
JPH08256497A (en) Motor drive method
JPS588668B2 (en) power converter
JPS5944878B2 (en) Control device for commutatorless motor
US5490056A (en) Inverter apparatus having two control modes and apparatus using the same
JP2821181B2 (en) Inverter device
JPS6137865B2 (en)
JPH0744834B2 (en) Pulse width control power converter
US4247887A (en) AC--AC Converter device
JP3611075B2 (en) Single-phase input 3-phase output power conversion circuit
JPS6118439B2 (en)
JPS5821518B2 (en) Museiliyushidendoukinoseigiyosouchi
JPH09149658A (en) Series multiplex inverter
JPH0824426B2 (en) Pulse width modulation type inverter device
JPH0329992Y2 (en)
JP2641852B2 (en) Frequency converter
SU1365333A1 (en) Frequency-controlled electric drive of load-handling mechanism
SU1750001A1 (en) Device for controlling converter of frequency and number of phases
JPS6277895A (en) Pulse width modulation inverter
JPS5842718B2 (en) Control device for commutatorless motor
JPS5831828B2 (en) Power converter control device