JPS5944773B2 - Method for manufacturing high-density polycrystalline material - Google Patents

Method for manufacturing high-density polycrystalline material

Info

Publication number
JPS5944773B2
JPS5944773B2 JP54038998A JP3899879A JPS5944773B2 JP S5944773 B2 JPS5944773 B2 JP S5944773B2 JP 54038998 A JP54038998 A JP 54038998A JP 3899879 A JP3899879 A JP 3899879A JP S5944773 B2 JPS5944773 B2 JP S5944773B2
Authority
JP
Japan
Prior art keywords
purity
hip
strength
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54038998A
Other languages
Japanese (ja)
Other versions
JPS55132046A (en
Inventor
昭夫 原
昌宏 粂
廉 五十嵐
憲一郎 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP54038998A priority Critical patent/JPS5944773B2/en
Publication of JPS55132046A publication Critical patent/JPS55132046A/en
Publication of JPS5944773B2 publication Critical patent/JPS5944773B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 0)技術分野 本発明は赤外線機器の光学材料、蛍光体および光伝導体
などとして多く用いられているZnS、ZnSe、Zn
Te、CdS、CdSe、およびCdTeなどのいわゆ
る■−■族化合物半導体材料の高密度多結晶体の製造方
法に関するものである。
Detailed Description of the Invention 0) Technical Field The present invention relates to ZnS, ZnSe, and Zn, which are widely used as optical materials, phosphors, photoconductors, etc. of infrared equipment.
The present invention relates to a method for producing a high-density polycrystalline material of a so-called ■-■ group compound semiconductor material such as Te, CdS, CdSe, and CdTe.

(ロ)技術背景 ■族と■族元素化合物の単結晶の製造方法としては溶融
法、昇華法、化学輸送反応法などがあるが、溶融法では
融点が高いうえに昇華し易い場合が多く、高圧用オート
クレープが必要となり、ルツボからの不純物混入も避け
難く、単結晶では高純度で大型のものを作製するのは困
難である。
(b) Technical background Methods for producing single crystals of compounds of group ■ and group ■ elements include the melting method, sublimation method, and chemical transport reaction method, but the melting method often has a high melting point and is easily sublimed. A high-pressure autoclave is required, and it is difficult to avoid contamination with impurities from the crucible, making it difficult to produce large, highly pure single crystals.

また昇華法、化学輸送反応法で生成する結晶は数mm程
度の寸法の針状、柱状、板状もしくは薄膜状の単結晶し
か得られず、赤外線機器用の数儂四方程度以上の大型用
途の高密度多結晶体は作製されていない。従来、このよ
うな大型の高密度多結晶体の製造法としては化学蒸着法
ChemicalVapor■posit一ionMe
thod(以下CVD法と略称する、、)とホットプレ
ス法の2種類の方法が実用化されている。
In addition, the crystals produced by the sublimation method and chemical transport reaction method can only be obtained as single crystals in the form of needles, columns, plates, or thin films with dimensions of several millimeters. High-density polycrystalline bodies have not been produced. Conventionally, the chemical vapor deposition method has been used as a manufacturing method for such large-scale, high-density polycrystalline materials.
Two types of methods have been put into practical use: thod (hereinafter abbreviated as CVD method) and hot press method.

以下これをZnSeを例にとつて説明する。まず上記2
法で作つた標準的な高密度多結晶体の諸特性を比較する
と第1表A−1、Bの通りである。また第1表にある赤
外光透過率のデータをグラフに示したものが第1図であ
る。表 5.255.275.27 350〜400520〜525520〜5256516
5〜70172□−]0.0400.031OD−43
−」77×10−6177×10−6」−7−75×1
0」第1表および第1図かられかるように標準的なCV
D法により作製したA−1のZnSeは見掛け上の密度
はホツトプレス法のものと同じであるが、強度がやや低
い方にバラついており、逆に炭酸ガスレーザーおよび赤
外線機器等に有用な波長8〜13μの光の透過率はホツ
トブレス法よりよく、熱伝導度および熱膨張係数もホツ
トプレス法のものより良い傾向にある。
This will be explained below using ZnSe as an example. First, above 2
A comparison of various properties of standard high-density polycrystalline materials made by this method is shown in Tables A-1 and B. Further, FIG. 1 is a graph showing the infrared light transmittance data in Table 1. Table 5.255.275.27 350-400520-525520-5256516
5~70172□-]0.0400.031OD-43
-”77×10-6177×10-6”-7-75×1
0” Standard CV as seen from Table 1 and Figure 1
The apparent density of A-1 ZnSe produced by the D method is the same as that of the hot press method, but the strength varies toward the lower side, and on the contrary, it has a wavelength of 8, which is useful for carbon dioxide lasers and infrared equipment, etc. The light transmittance of ~13μ is better than that of the hot pressing method, and the thermal conductivity and coefficient of thermal expansion also tend to be better than those of the hot pressing method.

標準的なCVD法によるものがホツトプレス法によるも
のより透過率、熱伝導度および熱膨張係数において優れ
ている理由は本法によるZnSe材質が高純度即ち、高
純度ガスを原料とすることによる不純物の混入が少ない
ためであり、ホツトプレス法のものが上記の点で劣つて
いる理由は粉末を原料とするために該粉末の表面等に付
着した不純物が微量混入した材質であるためと考えられ
、CVD法の方が多くの点で勝つており、優れた材質で
あると言える。
The reason why the standard CVD method is superior to the hot press method in terms of transmittance, thermal conductivity, and thermal expansion coefficient is that the ZnSe material made by this method has high purity, that is, it is free from impurities because it uses high-purity gas as a raw material. The reason why the hot press method is inferior in the above points is thought to be that since powder is used as a raw material, the material contains a small amount of impurities that adhere to the surface of the powder, and CVD The material is superior in many respects and can be said to be a superior material.

しかしただ一つ強度の点でホツトプレス法のものよりや
や低いのはホツトプレス法のものは、粉末原料を高温高
圧で処理しているのに対し、CVD法のものは気相(ガ
ス)からの基板への蒸着による積重ね(堆積)であるた
め微細な結晶構造的欠陥がやや多く残留し、これが強度
に影響を与えているものと思われる。
However, the only thing that is slightly lower in strength than the hot press method is that the hot press method processes the powder raw material at high temperature and pressure, whereas the CVD method processes the substrate from the vapor phase (gas). Because it is stacked (deposited) by evaporation, a rather large number of fine crystal structure defects remain, which is thought to have an effect on the strength.

実際、CVD法において微細な結晶構造的欠陥の少ない
多結晶体を得ようとすれば、グラフアイト基板上への蒸
着膜の成長速度を50μ/H未満にする必要があること
が解つた。
In fact, it has been found that in order to obtain a polycrystalline material with few fine crystal structure defects using the CVD method, it is necessary to make the growth rate of the vapor deposited film on the graphite substrate less than 50 μ/H.

従つて10U1厚みの多結晶体を得るためには実11C
2OO時間以上もの連続運転が必要となり、このように
して製造したものは非常にコストの高いものになる。
Therefore, in order to obtain a polycrystal with a thickness of 10U1, real 11C
Continuous operation for more than 200 hours is required, and products manufactured in this way are extremely expensive.

ところが、成長速度を50μ/H以上例えば200μ/
Hにまで加速した場合、得られた多結晶体は、微細な結
晶構造的欠陥が多い上にピンホール的気孔欠陥の残留さ
え認められ、そのままでは使用に耐えないものになつて
しまう。
However, if the growth rate is 50μ/H or more, for example 200μ/H,
When accelerated to H, the obtained polycrystal has many fine crystal structure defects and even residual pinhole-like pore defects are observed, making it unusable as it is.

第1表および第1図のA−2に、この条件にて作成した
場合の諸特性を示す。
Table 1 and A-2 in FIG. 1 show various characteristics when produced under these conditions.

強度および透過率がA−1およびBよりも低いレベルに
なつている。(ハ)発明の開示本発明者等は安価でしか
も欠陥の少ない−族元素の化合物による多結晶体の製造
法を種々検討した結果、CVD法で成長速度を速くし、
経済的に作製した材料であつてもこれを昇温し、等方的
に圧縮加工(HIP)することにより、種々の微細欠陥
を消滅させ高強度、高透過率の材質が得られることを見
出した。
The intensity and transmittance are at a lower level than A-1 and B. (C) Disclosure of the Invention The present inventors have investigated various methods for manufacturing polycrystals using compounds of - group elements that are inexpensive and have few defects.
We have discovered that even if the material is economically produced, by heating it and subjecting it to isotropic compression processing (HIP), various fine defects can be eliminated and a material with high strength and high transmittance can be obtained. Ta.

即ち本発明者等は多くの点で優れているにも拘らず強度
的にやや問題の残るCVD法による材質の強度を改善し
、しかも経済的なZnSe材質の製造方法を提供しよう
とするものである。
That is, the inventors of the present invention have attempted to improve the strength of a material produced by the CVD method, which is superior in many respects but still has some problems in terms of strength, and to provide an economical method for manufacturing ZnSe material. be.

要するに、CVD法により合成したZnSe材を更に熱
間静水圧プレス法(以下HIPと略称する。
In short, the ZnSe material synthesized by the CVD method is further subjected to the hot isostatic pressing method (hereinafter abbreviated as HIP).

)により昇温、加圧することにより微細欠陥の少ない安
定した強度の高密度多結晶体を得る方法を見出したもの
である。ここでCVD法、ホツトプレス法およびHIP
について簡単に説明する。
), we have discovered a method to obtain a stable, strong, high-density polycrystalline material with few micro defects by increasing the temperature and applying pressure. Here, CVD method, hot press method and HIP method are used.
I will briefly explain about.

CVD法とは原料を気相(ガス)で反応系に送り、ここ
で加熱し反応を生じさせ生成物を堆積させる方法である
The CVD method is a method in which raw materials are sent in a vapor phase (gas) to a reaction system, where they are heated to cause a reaction and deposit a product.

例えば第2図に示すように搬送ガスとしてアルゴンガス
を用い、セレン化水素および溶融亜鉛からの亜鉛蒸気を
反応系に送りこみ2n+H2Se−+ZnSe+H2 の反応により、高純度のZnSeを得るものである。
For example, as shown in FIG. 2, argon gas is used as a carrier gas, hydrogen selenide and zinc vapor from molten zinc are fed into the reaction system, and high purity ZnSe is obtained by the reaction of 2n+H2Se-+ZnSe+H2.

この反応系はガスを送りこむ前に反応炉1内を高真空に
まで脱気処理して空気の混入による不純物汚染を無くす
ることが可能な上、入手容易な高純度のセレン化水素お
よびZnを用いるだけで高純度のZnSeを生成するこ
とが可能である。また反応温度、サブストレート(基板
)温度、ガス圧力並びに1の反応炉、2のサブストレー
ト(基板)の形状などを調節することにより堆積速度を
制御することが可能である。CVD法は気相から直接結
晶成長により固相を堆積させるもので、通常の粉末冶金
的手法である成形、焼結のプロセスを全く経ないのが特
徴である。
This reaction system makes it possible to degas the inside of the reactor 1 to a high vacuum before feeding the gas to eliminate impurity contamination due to air contamination, and it also uses readily available high-purity hydrogen selenide and Zn. It is possible to produce highly pure ZnSe just by using it. Further, the deposition rate can be controlled by adjusting the reaction temperature, substrate temperature, gas pressure, and the shape of the reactor (1) and the substrate (2). The CVD method deposits a solid phase by direct crystal growth from a gas phase, and is characterized in that it does not undergo any molding or sintering processes, which are common powder metallurgy techniques.

ここにいうCVD法とはこの例に限らず例えばプラズマ
を用いたプラズマCVD法などを使つてもよい。
The CVD method referred to herein is not limited to this example, and for example, a plasma CVD method using plasma may be used.

ホツトブレス法とは第3図に示す通り、粉末4を5のコ
ンテナ内に装入し、ヒーター6で加熱しながら上部7お
よび下部ラム8にて上下方向からのみ圧縮することによ
り高密度化し、目的の多結晶体を得る方法である。
As shown in Figure 3, the hot press method is to charge powder 4 into a container 5, heat it with a heater 6, and compress it only from the top and bottom with an upper 7 and a lower ram 8 to make it denser. This is a method to obtain a polycrystalline body.

粉末の変質を防止するためにコンテナ5、ヒーター部6
近辺はすべてガスシールド容器9により不活性ガス(ア
ルゴン、ヘリウムなど)雰囲気または真空雰囲気とされ
ている。
A container 5 and a heater part 6 are installed to prevent powder deterioration.
All surrounding areas are kept in an inert gas (argon, helium, etc.) atmosphere or vacuum atmosphere by a gas shield container 9.

これに対し、HIPとは第4図に示す通り、目的の試料
10を11の封入容器中に密封し、あるいは試料内部に
ガス侵入の恐れがなく、変質の恐れもない場合はそのま
まヒータ一12で加熱しながら封入容器11全体を高圧
ガス14(主としてアルゴン、窒素などの不活性ガス)
にて等方的に加圧することにより高密度化し、目的の多
結晶体を得る方法である。
On the other hand, in HIP, as shown in FIG. The entire sealed container 11 is heated with high pressure gas 14 (mainly inert gas such as argon or nitrogen).
In this method, the desired polycrystalline material is obtained by increasing the density by applying pressure isotropically.

高圧ガスを用いるため11の封入容器12のヒーター等
はすべて耐熱高圧容器13の中に収納されている。
Since high-pressure gas is used, the heaters and the like of the 11 sealed containers 12 are all housed in a heat-resistant high-pressure container 13.

上記の2法(ホツトプレス法およびHIP法)を比較し
、本発明では後者のHIP法を用いるのであるがその理
由は(1)ホツトプレス法では加圧方向が限定されてい
るため圧力が内部まで十分に伝わらず、微細欠陥をつぶ
すには高温、高圧、長時間を要し経済的に不利である。
Comparing the above two methods (hot press method and HIP method), the latter HIP method is used in the present invention because (1) the hot press method has a limited pressure direction, so the pressure is sufficient to reach the inside. This is economically disadvantageous because it requires high temperature, high pressure, and a long time to crush microscopic defects.

(2)ラムにより直接高温の試料を加圧するためラムの
耐熱性が問題である。
(2) The heat resistance of the ram is a problem because the ram directly pressurizes the high-temperature sample.

(3)上下方向加圧であるから平板上のものしか作製で
きず、複雑形状(例えばレンズ形状)のものの作製が困
難であり、削り出すにしても歩留りが非常に悪くなる。
(3) Since it is pressurized in the vertical direction, only flat plates can be produced, and it is difficult to produce complex shapes (for example, lens shapes), and even if it is machined, the yield will be very low.

などからHIPの優位性が明白であり、CVD法により
得られたZnSe材をHIPにて処理することによつて
はじめて安定した強度をもつ高密度多結晶体が確実にか
つ経済的に得られることを知見したものである。
The superiority of HIP is clear from the above, and a high-density polycrystalline material with stable strength can be obtained reliably and economically only by treating ZnSe material obtained by CVD with HIP. This is what we discovered.

即ち、標準的CVD法により得られたZnSe材(A−
1)をそのままHIPにより昇温、加圧処理したところ
処理前に420〜525Kg/Cdでバラついていた強
度が処理後は安定して520〜525kg/C7lのも
のを得ることができた。
That is, ZnSe material (A-
When 1) was directly subjected to heating and pressure treatment by HIP, the strength, which varied from 420 to 525 kg/Cd before the treatment, became stable after the treatment and was able to obtain a strength of 520 to 525 kg/C7l.

また、赤外光透過率も若干改善される傾向にあり、少な
くとも悪くなる傾向は認められないことを確認した。(
第1表および第1図のA−1およびC参照)これはCV
D時に材質内部に微量に含有された結晶構造的微細欠陥
がHIPによりほぼ完全に消滅されたためと思われる。
Furthermore, it was confirmed that the infrared light transmittance also tended to be slightly improved, and at least there was no tendency for it to worsen. (
(See Table 1 and A-1 and C in Figure 1) This is the CV
This is thought to be because the fine crystal structure defects contained in a trace amount inside the material at the time of D were almost completely eliminated by HIP.

更にはCVD法により成長速度を通常の2倍の200μ
/Hにまで加速して合成したZnSe材をHIP処理し
たところ処理前に350〜400kg/mlであつた強
度が、処理後には520〜525kg/dとなり赤外光
透過率の改善も認められた結果比較的大きなピンホール
的欠陥も十分消滅されることを確認した。
Furthermore, the growth rate was increased to 200μ, twice the normal rate, using the CVD method.
When a ZnSe material synthesized by accelerating to As a result, it was confirmed that even relatively large pinhole defects were sufficiently eliminated.

(第1表および第1図のA−2およびC参照)次に実施
例にて本発明を更に詳細に説明する。
(See Table 1 and A-2 and C in FIG. 1) Next, the present invention will be explained in more detail with reference to Examples.

実施例 1搬送ガスとして純度99.999%のアルゴ
ンガスを用い、純度99.99901)のセレン化水素
および純度99.99901)の溶融亜鉛からの亜鉛蒸
気を反応温度800℃、圧力100T0rrで反応させ
、黒鉛の基板上に40μ/Hの成長速度で200時間成
長させ8mm厚みの多結晶体を合成した。
Example 1 Using argon gas with a purity of 99.999% as a carrier gas, hydrogen selenide with a purity of 99.99901) and zinc vapor from molten zinc with a purity of 99.99901) were reacted at a reaction temperature of 800°C and a pressure of 100T0rr. The polycrystalline material was grown on a graphite substrate at a growth rate of 40 μ/H for 200 hours to synthesize a polycrystalline material with a thickness of 8 mm.

この多結晶体の諸特性は第1表および第1図のA−1に
相当した。これをHIPに入れ1000℃、1000気
圧で処理した。
The properties of this polycrystal corresponded to A-1 in Table 1 and FIG. This was placed in a HIP and treated at 1000°C and 1000 atm.

得られた多結晶体の強度はHIP処理前425kg/C
dに対し、処理後は525kg/Cdであり、他の諸特
性は第1表および第1図のCに相当した。実施例 2 搬送ガスとして純度99.999(f)のアルゴンガス
を用い、純度99.999%のセレン化水素および純度
99.99901)の溶融亜鉛からの亜鉛蒸気を反応温
度900℃、圧力150T0rrで反応させ、グラフア
イトの基板上に200μ/Hの成長速度で50時間成長
させ、10mm厚みの多結晶体板を合成した。
The strength of the obtained polycrystalline body was 425 kg/C before HIP treatment.
d, it was 525 kg/Cd after treatment, and other characteristics corresponded to C in Table 1 and FIG. Example 2 Using argon gas with a purity of 99.999(f) as a carrier gas, hydrogen selenide with a purity of 99.999% and zinc vapor from molten zinc with a purity of 99.99901) were reacted at a reaction temperature of 900°C and a pressure of 150T0rr. The mixture was reacted and grown on a graphite substrate at a growth rate of 200 μ/H for 50 hours to synthesize a polycrystalline plate with a thickness of 10 mm.

この多結晶体の諸特性は第1表および第1図のA−2に
相当した。これをHIPに入れ1000℃、1000気
圧で処理した。HIP処理前の強度370kg/Cll
に対し処理後の強度は520kg/Cdであり、また他
の諸特性は第1表および第1図のCに相当した。
The properties of this polycrystal corresponded to A-2 in Table 1 and FIG. This was placed in a HIP and treated at 1000°C and 1000 atm. Strength before HIP treatment: 370kg/Cl
On the other hand, the strength after treatment was 520 kg/Cd, and other properties corresponded to C in Table 1 and Figure 1.

実施例 3 搬送ガスとして純度99.999%のアルゴンガスを用
い、純度99.999(f)の硫化水素ガスおよび純度
99.999%の溶融亜鉛からの亜鉛蒸気を反応温度8
00℃、圧力100T0rrで反応させ、グラフアイト
の基板上に100μ/Hの成長速度で100時間成長さ
せ、1011厚みのZnS多結晶体を合成した。
Example 3 Using argon gas with a purity of 99.999% as a carrier gas, hydrogen sulfide gas with a purity of 99.999(f) and zinc vapor from molten zinc with a purity of 99.999% were reacted at a reaction temperature of 8
The reaction was carried out at 00°C and a pressure of 100T0rr, and the resultant was grown on a graphite substrate at a growth rate of 100μ/H for 100 hours to synthesize a ZnS polycrystal with a thickness of 1011.

これをHIPに入れ1000℃、1000気圧で処理し
た。
This was placed in a HIP and treated at 1000°C and 1000 atm.

得られた多結晶体はHIP処理前の強度840kg/C
!ILに対し、処理後は980kg/dであつた。また
この処理前後の光透過率をグラフで示したところ第5図
の如くなり、HIP前の値1より本発明のHIP後の値
2の方が優れていることが認め,られた。
The obtained polycrystal has a strength of 840 kg/C before HIP treatment.
! The IL was 980 kg/d after treatment. Further, when the light transmittance before and after this treatment is shown in a graph as shown in FIG. 5, it is recognized that the value 2 after HIP according to the present invention is superior to the value 1 before HIP.

実施例 4 搬送ガスとして純度99.999%のアルゴンガスを用
い、純度99.999q6のテルル化水素ガスおよび純
度99.999%の溶融カドミウムからのカドミウム蒸
気を反応温度600℃、圧力100T0rrで反応させ
、グラフアイトの基板上に80μ/Hの成長速度で10
0時間成長させ8mm厚みのCdTe多結晶体を合成し
た。
Example 4 Using argon gas with a purity of 99.999% as a carrier gas, hydrogen telluride gas with a purity of 99.999q6 and cadmium vapor from molten cadmium with a purity of 99.999% were reacted at a reaction temperature of 600°C and a pressure of 100T0rr. , 10 on a graphite substrate at a growth rate of 80 μ/H.
After 0 hours of growth, a CdTe polycrystal with a thickness of 8 mm was synthesized.

これをHIPに入れ、850℃、1000気圧で処理し
た。
This was placed in a HIP and treated at 850°C and 1000 atm.

得られた多結晶体はHIP処理前の強度280Kg/C
r/Lに対し、処理後の強度は315kg/Cdと向上
した。実施例 5 搬送ガスとして純度99.999%のアルゴンガスを用
い、純度99.999CI)のセレン化水素および純度
99.999%の溶融亜鉛からの亜鉛蒸気を反応温度8
00℃、圧力100T0rrで反応させ、黒鉛の基板上
に40μ/Hの成長速度で200時間成長させ8mm厚
みの多結晶体を合成した。
The obtained polycrystal has a strength of 280 kg/C before HIP treatment.
The strength after treatment was improved to 315 kg/Cd compared to r/L. Example 5 Using argon gas with a purity of 99.999% as a carrier gas, hydrogen selenide with a purity of 99.999CI) and zinc vapor from molten zinc with a purity of 99.999% were reacted at a reaction temperature of 8
The reaction was carried out at 00°C and a pressure of 100T0rr, and the mixture was grown on a graphite substrate at a growth rate of 40μ/H for 200 hours to synthesize a polycrystalline body with a thickness of 8mm.

この多結晶体の諸特性は第1表および第1図A−1に相
当した。これをHIPに入れ1000℃、2000気圧
で処理した。
The various properties of this polycrystalline body corresponded to those shown in Table 1 and Figure 1 A-1. This was placed in a HIP and treated at 1000°C and 2000 atm.

得られた多結晶体の強度はHIP処理前420〜525
kg/dに対し、処理後は520〜525kg/Cdで
あり、他の諸特性は第1表および第1図のCに相当した
。実施例 6 搬送ガスとして純度99.999q6のアルゴンガスを
用い、純度99.999q6のセレン化水素および純度
99.999q6の溶融亜鉛からの亜鉛蒸気を反応温度
900℃、圧陸150T0rrで反応させ、グラフアイ
トの基板上に200μ/Hの成長速度で50時間成長さ
せ、10u厚みの多結晶体板を合成した。
The strength of the obtained polycrystalline body was 420-525 before HIP treatment.
kg/d, it was 520 to 525 kg/Cd after treatment, and other characteristics corresponded to C in Table 1 and FIG. Example 6 Using argon gas with a purity of 99.999q6 as a carrier gas, hydrogen selenide with a purity of 99.999q6 and zinc vapor from molten zinc with a purity of 99.999q6 were reacted at a reaction temperature of 900°C and a land compaction of 150T0rr. The polycrystalline material was grown on the Aite substrate at a growth rate of 200 μ/H for 50 hours to synthesize a polycrystalline plate with a thickness of 10 μ.

この多結晶体の諸特性は第1表および第1図のA−2に
相当した。これをHIPに入れ1000℃、2000気
圧で処理した。HIP処理前の強度350〜400kg
/011に対し処理後の強度は520〜525kg/C
dであり、また他の諸特性は第1表および第1図のCに
相当した。
The properties of this polycrystal corresponded to A-2 in Table 1 and FIG. This was placed in a HIP and treated at 1000°C and 2000 atm. Strength before HIP treatment: 350-400kg
/011, the strength after treatment is 520-525kg/C
d, and other characteristics corresponded to C in Table 1 and FIG.

比較例 搬送ガスとして純度99.999q6のアルゴンガスを
用い、純度99.999q6のセレン化水素および純度
99.999q6の溶融亜鉛からの亜鉛蒸気を反応温度
800℃、圧力100T0rrで反応させ、黒鉛の基板
上に100μ/Hの成長速度で100時間成長させ10
11厚みの多結晶体を得た。
Comparative Example Using argon gas with a purity of 99.999q6 as a carrier gas, hydrogen selenide with a purity of 99.999q6 and zinc vapor from molten zinc with a purity of 99.999q6 were reacted at a reaction temperature of 800°C and a pressure of 100T0rr to form a graphite substrate. Grow on top for 100 hours at a growth rate of 100 μ/H.
A polycrystal with a thickness of 11 was obtained.

これをアルゴンガス中1000℃、700kg/dの圧
力でホツトプレスした。ホツトブレス前の強度は455
Kg/Cdであり、ホツトプレス後の強度は469kg
/CrLであつた。
This was hot pressed in argon gas at 1000°C and a pressure of 700 kg/d. Strength before hot breath is 455
Kg/Cd, and the strength after hot pressing is 469 kg
/CrL.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種製法の赤外光透過率を比較したグラフ、第
2図はCVD法によるZnSe製造の1例を示す説明図
、第3図はホツトプレス法の1例を示す説明図、第4図
はHIP法のl例を示す説明図、第5図は本発明のZn
S多結晶体のHIP前後の光透過率の変化を示すグラフ
である。
Fig. 1 is a graph comparing the infrared light transmittance of various manufacturing methods, Fig. 2 is an explanatory diagram showing an example of ZnSe production by CVD method, Fig. 3 is an explanatory diagram showing an example of the hot press method, and Fig. 4 is an explanatory diagram showing an example of ZnSe production by the CVD method. The figure is an explanatory diagram showing an example of the HIP method, and Figure 5 shows the Zn of the present invention.
It is a graph showing a change in light transmittance of an S polycrystalline body before and after HIP.

Claims (1)

【特許請求の範囲】[Claims] 1 化学蒸着法により得られたII族−VI族元素の化合物
を更に熱間静水圧プレスに入れて昇温加圧することを特
徴とする高密度多結晶体の製造方法。
1. A method for producing a high-density polycrystalline material, which comprises further placing a compound of group II-VI elements obtained by chemical vapor deposition in a hot isostatic press and heating and pressurizing it.
JP54038998A 1979-03-31 1979-03-31 Method for manufacturing high-density polycrystalline material Expired JPS5944773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54038998A JPS5944773B2 (en) 1979-03-31 1979-03-31 Method for manufacturing high-density polycrystalline material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54038998A JPS5944773B2 (en) 1979-03-31 1979-03-31 Method for manufacturing high-density polycrystalline material

Publications (2)

Publication Number Publication Date
JPS55132046A JPS55132046A (en) 1980-10-14
JPS5944773B2 true JPS5944773B2 (en) 1984-11-01

Family

ID=12540792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54038998A Expired JPS5944773B2 (en) 1979-03-31 1979-03-31 Method for manufacturing high-density polycrystalline material

Country Status (1)

Country Link
JP (1) JPS5944773B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126081A (en) * 1980-12-29 1992-06-30 Raytheon Company Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality
JPS5957951A (en) * 1982-09-27 1984-04-03 住友電気工業株式会社 Manufacture of zns polycrystal body
JPS6011293A (en) * 1983-06-29 1985-01-21 Sumitomo Electric Ind Ltd Manufacture of znse single crystal
JPS60216497A (en) * 1984-04-09 1985-10-29 セイコーエプソン株式会社 Thin film el display panel
JP5444397B2 (en) * 2012-03-09 2014-03-19 住友電気工業株式会社 Manufacturing method of optical components

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DENSIFICATION OF CASTINGS BY HOT ISOSTATIC PRESSING=1978 *
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA=1973 *
POWDER METALLURGY INTERNATIONAL=1978 *
PROCEEDING OF THE BRITISH CERAMIC SOCIETY=1969 *

Also Published As

Publication number Publication date
JPS55132046A (en) 1980-10-14

Similar Documents

Publication Publication Date Title
Narayan et al. Laser method for synthesis and processing of continuous diamond films on nondiamond substrates
JPS5935099A (en) Method for growing silicon carbide crystal
CN108728813A (en) A kind of method and device quickly continuously preparing oversized single crystal film
US6149975A (en) Potassium-containing thin film and process for producing the same
US20040182700A1 (en) Silicon monoxide sintered prroduct and method for production thereof
JPS5944773B2 (en) Method for manufacturing high-density polycrystalline material
EP0296409B1 (en) Process for the preparation of reflective pyrolytic graphite
JPS63285923A (en) Manufacture of silicon-germanium alloy
US4584053A (en) Process for preparing ZnSe single crystal
US5503104A (en) Synthetic diamond product
CN115353082B (en) Method for sintering high-quality aluminum nitride raw material in one step
CN114540944B (en) Vertical CVT seed crystal method for preparing outer layer method for preparing crystalline metal oxide
CN115012028A (en) Method for preparing large-size silicon carbide crystals
CN111392699B (en) Preparation method of cadmium selenide
Hong et al. Diamond formation from a system of SiC and a metal
US20020071803A1 (en) Method of producing silicon carbide power
JPS60141606A (en) Preparation of cadmium telluride powder
CN117165917A (en) Method for preparing large-size single-layer rhenium disulfide film
CN115491760B (en) Preparation method of monocrystalline Hittorf's phosphorus material
JPS6016391B2 (en) Manufacturing method of high purity, high strength ZnSe sintered body by hot forging method
CN115417390B (en) Preparation method of single crystal purple phosphorus
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same
JP2614870B2 (en) Manufacturing method of polycrystalline diamond sintered body
GB2037264A (en) Cadmium mercury telluride sputtering targets
JPH0375291A (en) Production of znse single crystal