JPS5944750B2 - Battery diaphragm - Google Patents

Battery diaphragm

Info

Publication number
JPS5944750B2
JPS5944750B2 JP51013272A JP1327276A JPS5944750B2 JP S5944750 B2 JPS5944750 B2 JP S5944750B2 JP 51013272 A JP51013272 A JP 51013272A JP 1327276 A JP1327276 A JP 1327276A JP S5944750 B2 JPS5944750 B2 JP S5944750B2
Authority
JP
Japan
Prior art keywords
fibers
electrolyte
fine
sheet
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51013272A
Other languages
Japanese (ja)
Other versions
JPS5297131A (en
Inventor
昌也 浅野
克郎 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP51013272A priority Critical patent/JPS5944750B2/en
Publication of JPS5297131A publication Critical patent/JPS5297131A/en
Publication of JPS5944750B2 publication Critical patent/JPS5944750B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 本発明は、電池用電解質隔膜に関するものであり、さら
に詳細には燃料電池における電解質マトリックスとして
の新規なかつ改良された隔膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to electrolyte membranes for batteries, and more particularly to new and improved membranes as electrolyte matrices in fuel cells.

本発明の目的は、イオン透過性、ガス不透過性で、耐薬
品性がすぐれた、薄くて均一かつ強じんな、しかも、量
産化に適した電解質隔膜を提供することにある。
An object of the present invention is to provide an electrolyte diaphragm that is ion permeable, gas impermeable, and has excellent chemical resistance, is thin, uniform, and strong, and is suitable for mass production.

従来アルカリ電解液に対しては石綿繊維やガラス繊維が
、またアルカリ性および酸性の電解液に対して、セラミ
ックの粉末および繊維や、熱硬化性あるいは熱可塑性の
合成樹脂の粉末や繊維、およびイオン交換樹脂粉末等が
、結着剤として耐薬品性のすぐれた熱可塑性の樹脂粉末
、例えばポリオレフィンやフッ素樹脂などで結着された
シート状物が電解質隔膜として使用されてきた。しかし
ながらこれらの結着剤として提案された樹脂の欠点は、
−それらが疎水的であり、従つて結着剤の添加量を著し
く制限しなければならないことである。多くの場合結着
剤の添加量を15重量%以下に減らせば、電解液の保持
性は良好であるが、隔膜としての機械的強度が不足する
という結果を生じる。また結着剤の添加量を15重量%
以上に増すことにより、強度の高い電解質隔膜が得られ
ても、その時は電解液保持性の低下、即ちイオン透過性
の低下をもたらすことがわかつた。本発明の目的は、こ
れらの問題を解決し、比較的少量の結着剤を用いて、し
かも強度の大きいシート状物を与えることにより、良好
なイオン透過性とガス不透過性とを有しかつ耐久性のす
ぐれた薄層状電解質隔膜を提供することにある。さらに
他の目的は、このような機能を備えた低コストかつ量産
化に適する電解質隔膜を写本、ることにある。本発明の
これらの目的は、直径く、10μ、比表面積>0.4w
1/V、L/D>10(L:フィフリル長さ、D:直径
)を有する合成重合体フィフリル微細繊維と親水性の繊
維材料を相互に絡合させ、一部結着させたシート状の層
を含む電解質隔膜により達成される。ここで親水性繊維
材料とは、アルカリ性や酸性の電解液に対して濡れ性を
備えた有機または無機の繊維状材料を意味しており、こ
れらの薬品に対して侵されないことが必要である。例え
ばアルカリ性の電解液に対しては、石綿繊維やガラス繊
維、また酸性の電解液に対しては、フェノール繊維のよ
うな熱硬化性の有機繊維、酸性およびアルカリ性の電解
液に対しては、酸化ジルヲ=ウムや五酸化タンタルのよ
うなセラミック繊維、親水基を有する芳香族ポリアミド
イミドや芳を族ポリスルホンのような耐熱性繊維等が含
まれる。本発明に適する合成重合体のフィフリル状微細
繊維は、平均直径<10μ、比表面積>0.4Tr1/
Vただし好ましくは>1.0m″/ f7、L/D>1
0の範囲に入るものである。フィフリル状微細繊維の形
状がこれより大きくなるか、または微細な場合でもL/
Dく10と粒子状に近づくと、フィフリルと親水性の繊
維材料との絡合性が低下する結果、樹脂粉末を結着剤と
して用いた場合と同様の欠点を生じ、本発明の目的を達
成することが困難になる。また、比表面積く0.4WI
/tの場合は合成重合体フィフリル微細繊維が、単純な
繊維構造に近づき、所期の目的を達成することができな
くなる。
Traditionally, asbestos fibers and glass fibers are used for alkaline electrolytes, and ceramic powders and fibers, thermosetting or thermoplastic synthetic resin powders and fibers, and ion exchangers are used for alkaline and acidic electrolytes. BACKGROUND ART A sheet-like material in which resin powder or the like is bound with a thermoplastic resin powder having excellent chemical resistance as a binder, such as polyolefin or fluororesin, has been used as an electrolyte diaphragm. However, the drawbacks of these resins proposed as binders are that
- they are hydrophobic and the amount of binder added must therefore be significantly limited. In many cases, if the amount of binder added is reduced to 15% by weight or less, the electrolyte retention property is good, but the mechanical strength as a diaphragm is insufficient. In addition, the amount of binder added was 15% by weight.
It has been found that even if an electrolyte diaphragm with high strength is obtained by increasing the electrolyte diaphragm above, the electrolyte retention property decreases, that is, the ion permeability decreases. The object of the present invention is to solve these problems and provide a sheet-like material with high strength using a relatively small amount of binder, thereby having good ion permeability and gas impermeability. Another object of the present invention is to provide a thin layered electrolyte diaphragm with excellent durability. Still another object is to create an electrolyte diaphragm having such functions that is low cost and suitable for mass production. These objects of the invention are: diameter small, 10μ, specific surface area>0.4w
1/V, L/D>10 (L: fifurl length, D: diameter) Synthetic polymer fifurl fine fibers and hydrophilic fiber material are entangled with each other and partially bonded to form a sheet. This is accomplished by an electrolyte membrane comprising layers. The term "hydrophilic fibrous material" as used herein means an organic or inorganic fibrous material that has wettability with alkaline or acidic electrolytes, and must not be attacked by these chemicals. For example, for alkaline electrolytes, asbestos fibers and glass fibers, for acidic electrolytes, thermosetting organic fibers such as phenolic fibers, for acidic and alkaline electrolytes, oxidized Ceramic fibers such as diluronium and tantalum pentoxide, and heat-resistant fibers such as aromatic polyamideimide and aromatic polysulfone having hydrophilic groups are included. The fibrillar fine fibers of the synthetic polymer suitable for the present invention have an average diameter <10μ and a specific surface area>0.4Tr1/
V but preferably >1.0m''/f7, L/D>1
It falls within the range of 0. If the fibril-like fine fibers are larger than this, or even if they are fine, L/
When the particle size approaches D10, the entanglement between the fifurls and the hydrophilic fiber material decreases, resulting in the same drawbacks as when resin powder is used as a binder, and the object of the present invention is not achieved. becomes difficult to do. Also, the specific surface area is 0.4WI
/t, the synthetic polymer fifuryl fine fibers approach a simple fiber structure, making it impossible to achieve the intended purpose.

フィフリル状微細繊維を形成する合成重合体は前記の形
状的な条件を満足し、かつその時々の電池構成条件、と
くに電解質の選定に関連する耐薬品性を備えたものであ
れば何でもよいが、本発明の目的に合致する特に好まし
いものとしては、ポリエチレン、ポリプロピレン、ポリ
ブテン−1、ポリ−3−メチルブテンなどのポリオレフ
イン類、ポリスチレン、ポリアクリロニトリル、ポリ塩
化ビニルなどのビニル重合体、ポリ塩化ビニリデン、ポ
リフツ化ビニリデンなどのビニリデン重合体があげられ
る。またこれら単独重合体組成の他に、加工性能および
製品性能の改良を目的として、これら重合体の単量体成
分相互あるいは他種の単量体成分との間にランダム共重
合、プロツク共重合、グラフト共重合などを行なつて得
られる各種共重合体を用いることも可能である。本発明
に用いられる合成フィフリル微細繊維の特に好ましい例
としていわゆる合成パルプ状物と称されるものをあげる
ことができる。
The synthetic polymer forming the fibrillar fine fibers may be of any material as long as it satisfies the above-mentioned shape conditions and has chemical resistance related to the battery configuration conditions at the time, especially the selection of the electrolyte. Particularly preferred materials that meet the purpose of the present invention include polyolefins such as polyethylene, polypropylene, polybutene-1, and poly-3-methylbutene; vinyl polymers such as polystyrene, polyacrylonitrile, and polyvinyl chloride; polyvinylidene chloride; Examples include vinylidene polymers such as vinylidene chloride. In addition to these homopolymer compositions, for the purpose of improving processing performance and product performance, random copolymerization, block copolymerization, It is also possible to use various copolymers obtained by graft copolymerization or the like. A particularly preferred example of the synthetic fifryl fine fibers used in the present invention is what is called a synthetic pulp-like material.

この合成パルプ状物はそれ自体単純な繊維状の構造をと
る場合もあるが、一般には単純なものでなく、例えば分
岐構造のごとく多数の微細なフィフリル構造の集合とし
て成立していることが多い。このように複雑な形状を有
するパルプそれ自体の形態を規定することは困難である
が、本発明の目的を達成するためには、合成パルプ状物
を構成している微細フィフリルは平均直径く10μ、L
/D〉10のものであることを必要とする。このような
微細フィフリル状の合成パルプを製造する方法には種々
のものがある。例えばフラッシユ紡糸、エマルジヨンフ
ラツシユ紡糸、溶液剪断法、スプリットフアイバ一法、
ダイレクトフアプリケーシヨン法、溶融紡糸法、湿式紡
糸法などの方法によりパルプの原料になる長、短繊維状
物あるいは直接パルプ状物を得ることができる。これら
の繊維状物はさらに必要に応じて延伸され、適当な長さ
に切断された後叩解機にかけられてパルプ状物になる。
得られたパルプ状物は水あるいは有機溶剤中に分散させ
られ、親水性の繊維材料と混合されて、抄紙の工程に移
される。経済性、安全性の点から水中に分散させた系で
の湿式抄紙法が有利である。先に述べた合成パルプを与
える種々の方法の中で特に好ましいものとしてエマルジ
ヨンフラツシユ紡糸法をあげることができる。この紡糸
法は合成重合体とその溶媒を界面活性剤の存在下にその
非溶媒(好ましくは水)と混合し、かきまぜ、昇温して
生成するエマルジヨンを高温高圧下に口金を通して噴出
させることにより微細繊維状物を得る方法である。用い
られる重合体としてはポリエチレンやポリプロピレンな
どのポリオレフイン類があり、水相(非溶媒相)には多
くの場合ポリビニルアルコール、ポリアクリルアミド、
ポリアクリル酸などの親水性重合体が添加される。この
ようにして得られるパルプ状物は内部および表面近傍に
親水性重合体や界面活性剤を含み、少なくとも部分的に
親水化されているため、後の工程におけるパルプ状物の
水中分散が容易に進められ、さらには最終生成品である
電解質隔膜の電解液保持性を向上させる。また親水性重
合体をブレンドした重合体組成物を溶液とし、これを湿
式紡糸して繊維を製造したり、組成物をそのまま溶融押
出ししたものを使用することもできる。前者の例として
アクリロニトリルをグラフトしたポリビニルアルコール
をポリアクリロニトリルとともにジメチルスルホキサイ
ドに溶解して紡糸する方法が、また後者の例としてポリ
エチレンをプロツク重合したポリプロピレンにポリビニ
ルアルコールをブレンドしてフイルム状に押し出し、延
伸、開繊する方法がそれぞれあげられる。このような方
法にしたがつて得られたフィフリル状微細繊維を水中ま
たは有機溶剤中に分散させた分散液に、所定量の親水性
繊維材料を添加して十分混合する。
Although this synthetic pulp-like material itself may have a simple fibrous structure, it is generally not simple, and is often formed as a collection of many fine fibril structures, such as a branched structure. . Although it is difficult to define the form of the pulp itself, which has such a complex shape, in order to achieve the purpose of the present invention, the fine fibrils constituting the synthetic pulp must have an average diameter of 10 μm. , L
/D>10. There are various methods for producing such fine fibril synthetic pulp. For example, flash spinning, emulsion flash spinning, solution shearing method, split fiber method,
Long or short fibrous materials or direct pulp materials that can be used as raw materials for pulp can be obtained by methods such as direct fiber application, melt spinning, and wet spinning. These fibrous materials are further stretched as necessary, cut into appropriate lengths, and then subjected to a beating machine to be made into pulp.
The resulting pulp is dispersed in water or an organic solvent, mixed with a hydrophilic fiber material, and transferred to the papermaking process. From the viewpoint of economy and safety, a wet papermaking method using a system in which the paper is dispersed in water is advantageous. Among the various methods for producing the synthetic pulp mentioned above, the emulsion flash spinning method is particularly preferred. This spinning method involves mixing a synthetic polymer and its solvent with its non-solvent (preferably water) in the presence of a surfactant, stirring, raising the temperature, and ejecting the resulting emulsion through a spinneret under high temperature and pressure. This is a method for obtaining fine fibrous materials. Polymers used include polyolefins such as polyethylene and polypropylene, and the aqueous phase (non-solvent phase) often contains polyvinyl alcohol, polyacrylamide,
A hydrophilic polymer such as polyacrylic acid is added. The pulp thus obtained contains hydrophilic polymers and surfactants inside and near the surface, making it at least partially hydrophilic, making it easy to disperse the pulp in water in subsequent steps. Furthermore, the electrolyte retention property of the final product, the electrolyte diaphragm, is improved. Further, a polymer composition obtained by blending a hydrophilic polymer may be made into a solution, and the solution may be wet-spun to produce fibers, or the composition may be melt-extruded as it is. An example of the former is a method in which polyvinyl alcohol grafted with acrylonitrile is dissolved together with polyacrylonitrile in dimethyl sulfoxide and then spun, and an example of the latter is a method in which polyvinyl alcohol is blended with polypropylene obtained by block polymerization of polyethylene and extruded into a film. Examples include stretching and opening methods. A predetermined amount of hydrophilic fiber material is added to a dispersion liquid in which fibrillar fine fibers obtained according to such a method are dispersed in water or an organic solvent, and the mixture is thoroughly mixed.

しかる後公知の湿式抄紙法にしたがつて紙様の組織をも
つた薄層シート状物に成型する。ここで本発明の目的を
達成するために必要とされる合成重合体微細フィフリル
の量は3〜30重量%であり、特に5〜15重量%の範
囲が好ましい。上記のような製法にしたがつて得られた
合成重合体フィフリル状微細繊維と親水性繊維材料を相
互に絡合したシートは、合成重合体微細フィフリルの融
点付近での適当な加熱圧着を施すことにより、微細フィ
フリルと親水性繊維材料の結着がより強固になり、その
結果シート状物の機械的強度を向上させる効果がある。
Thereafter, it is formed into a thin sheet having a paper-like structure according to a known wet paper making method. The amount of synthetic polymer fine fifurls required to achieve the object of the present invention is 3 to 30% by weight, particularly preferably in the range of 5 to 15% by weight. The sheet in which the synthetic polymer fibril fine fibers and the hydrophilic fiber material are intertwined with each other obtained according to the above manufacturing method is subjected to appropriate heat and pressure bonding at a temperature near the melting point of the synthetic polymer fine fifrills. This makes the bond between the fine fifrills and the hydrophilic fiber material stronger, and as a result, it has the effect of improving the mechanical strength of the sheet-like article.

加熱圧着の方法のもつとも簡単なものは平板加熱プレス
であり、上記微細複合繊維から成るシートを、あるいは
必要に応じて他のシート状物とを重ね合わせて2枚の金
属板の間にはさみ、通常油圧で駆動される加熱された金
属プロツクによつて熱と圧力を加える。また加熱され相
互に圧着された少なくとも1対のローラーの間に上記シ
ート状物を、あるいは必要に応じて他のシート状物とを
重ね合わせた状態で供給して通過させ、連続的に熱と圧
力を加える方法をとれば本発明の目的の1つである均一
な製品の量産化の効果がより顕著になる。この連続プロ
セスに適した装置として、紙状物の光沢付与加工に利用
されているカレンダー設備を使用できる。カレンダにお
けるニツプの数は1個でも本発明の目的は達せられるが
、3本ロール・4本ロール・2組以上の2本ロールなど
複数個のニツプを有する設備を使用すると圧着がより強
固に、より均一なものになる。ここで加熱圧着されるべ
きシート頃上記の重合体微細フィフリルと親水性の繊維
材料が相互に絡合したシート単独、あるいは必要に応じ
て他のシート状物、例えばイオン半透過性のポリビニル
アルコール膜、セルローズ膜および親水基を有する芳香
族ポリアミドイミド膜、さらにはイオン透過性のイオン
交換膜等と重ね合わせたものであつてもよい。また重ね
合わすべきシート状物としては、電解質隔膜のフレーム
を形成するべく適当な大きさに切断した合成重合体シー
トやフイルム、例えばポリ−4−フツ化エチレン、4フ
ツ化エチレンと6フツ化ブロピレンの共重合体、ポリエ
ステル、ポリプロピレン、エチレンとブロピレンの共重
合体等から成るシートやフイルムであつてもよい。以上
例示した方法に従つて製造された合成重合体フィフリル
状微細繊維と親水性繊維が相互に絡合し、一部結着した
シート状物を含む電解質隔膜は、合成重合体フィフリル
状微細繊維と親水性繊維の均一分散と相互の強固な絡み
合いが達成されているために、親水性粒子と結着剤の粉
末を混合結着したシートおよび親水性繊維材料を粉末状
結着剤で結着したシートに比べて、少量の結着剤(合成
重合体微細フィフリル)を用いて、強度が大きくかつ電
解液保持性の良好なシート状物を与えることができ、そ
の結果良好なイオン伝導性およびガス不透過性を有し、
かつ耐久性のすぐれた電解質隔膜が得られる。
The simplest heat-press bonding method is a flat plate heat press, in which the sheet made of the fine composite fibers described above, or other sheet-like materials as required, is sandwiched between two metal plates, and the sheet is usually pressed using hydraulic pressure. Heat and pressure are applied by a heated metal block driven by In addition, the above-mentioned sheet-like material, or other sheet-like material as needed, is supplied and passed through at least one pair of rollers that are heated and pressed against each other to continuously heat and heat the material. If a method of applying pressure is used, the effect of mass-producing uniform products, which is one of the objects of the present invention, will be more pronounced. As an apparatus suitable for this continuous process, a calender equipment used for glossing paper-like materials can be used. Although the object of the present invention can be achieved even with one nip in the calender, using equipment with multiple nips, such as three rolls, four rolls, or two or more sets of two rolls, will make the crimping stronger. It becomes more uniform. Here, the sheet to be heat-pressed may be a single sheet in which the above-mentioned fine polymer fibrils and a hydrophilic fiber material are entangled with each other, or if necessary, other sheet-like materials, such as an ion semi-permeable polyvinyl alcohol membrane. , a cellulose membrane, an aromatic polyamideimide membrane having hydrophilic groups, or an ion-permeable ion exchange membrane, etc. may be used. The sheet materials to be stacked include synthetic polymer sheets and films cut into appropriate sizes to form the frame of the electrolyte diaphragm, such as poly-4-fluoroethylene, tetrafluoroethylene, and hexafluoropropylene. It may be a sheet or film made of a copolymer of polyester, polypropylene, a copolymer of ethylene and propylene, or the like. An electrolyte diaphragm containing a sheet-like material in which synthetic polymer fibrillar fine fibers and hydrophilic fibers are intertwined with each other and partially bonded is produced according to the method exemplified above. In order to achieve uniform dispersion of hydrophilic fibers and strong mutual entanglement, sheets made of a mixture of hydrophilic particles and binder powder and hydrophilic fiber materials bound together with a powdered binder are used. Compared to sheets, it is possible to use a small amount of binder (synthetic polymer fine fibrils) to provide a sheet-like material with high strength and good electrolyte retention properties, resulting in good ionic conductivity and gas It has impermeability,
Moreover, an electrolyte diaphragm with excellent durability can be obtained.

また本発明の対象は合成重合体微細フィフリルと親水性
材料の絡み合いをベースとする紙状構造にあるから、薄
層化が容易であり、しかも少量の結着剤(合成重合体微
細フィフリル)で強度を高いレベルに保持できる。さら
に本発明の電解質隔膜の製造は先に例示した合成重合体
エマルジヨンの7ラツシユ紡糸と公知の湿式抄紙法との
組み合わせにみられるとおり、従来の隔膜製造法に比べ
てきわめて高能率かつ容易に大型化できる簡単な製造プ
ロセスにより与えられる。本発明の電解質隔膜は気体状
の燃料および酸化剤により作動する燃料電池の電解質マ
トリツクスとして有効に利用できることはいうまでもな
いが、その他の電池システム、例えばヒドラジン空気系
やメタノール空気系などの液体燃料電池の隔膜、亜鉛一
空気系やアルカリ金属−ハロゲン系電池の隔膜、さらに
は鉛蓄電池やニツケルカドミウムアルカリ電池の隔膜と
して用いるときも同様の効果をあげることがでぎる。
Furthermore, since the object of the present invention is a paper-like structure based on the entanglement of synthetic polymer fine fifrills and a hydrophilic material, it can be easily made into a thin layer, and moreover, it can be made with a small amount of binder (synthetic polymer fine fifrils). Strength can be maintained at a high level. Furthermore, the production of the electrolyte diaphragm of the present invention is extremely efficient and easy to manufacture in large scale compared to conventional diaphragm production methods, as seen in the combination of the 7-lush spinning of the synthetic polymer emulsion and the known wet papermaking method as exemplified above. It is provided by a simple manufacturing process that can be It goes without saying that the electrolyte diaphragm of the present invention can be effectively used as an electrolyte matrix for fuel cells operated with gaseous fuel and oxidizer, but also for other battery systems, such as those using liquid fuels such as hydrazine-air systems and methanol-air systems. Similar effects can be achieved when used as a diaphragm for batteries, diaphragms for zinc-air batteries, alkali metal-halogen batteries, and even lead-acid batteries and nickel-cadmium alkaline batteries.

以下実施例について本発明の内容を説明する。The contents of the present invention will be explained below with reference to Examples.

実施例 1市販のプロピレン粉末80f1ポリビニルア
ルコール粉末2.4f1界面活性剤としてスチレンメチ
ルメタクリレートーラウリルメタクリレートー無水マレ
イン酸共重合体(モル比30:15:5:50)のナト
リウム塩41、および2・6−ジ一t−ブチル−4−メ
チルフエノール0.5rを塩化メチレン1.151およ
び水1.851の混合物に添加し、これを51のオート
クレーブに仕込む。
Example 1 Commercially available propylene powder 80f1 Polyvinyl alcohol powder 2.4f1 Sodium salt of styrene methyl methacrylate-lauryl methacrylate-maleic anhydride copolymer (molar ratio 30:15:5:50) 41 and 2. 0.5 r of 6-di-tert-butyl-4-methylphenol is added to a mixture of 1.15 l of methylene chloride and 1.85 l of water, which is charged to a 51 autoclave.

かきまぜながらスチームで加熱し、140℃に達した後
しばらくこの温度に保持する。仕込みから2.5分後に
1.6m1!φのノズルを通して自生圧17kg/Cd
で吐出した。吐出された重合体は塊状不連続の繊維集合
物となり、この繊維状物(含水率90%)100rを水
61とともにリフアイナ一に仕込み、叩解・離解するこ
とによつて水中分散性のすぐれたフィフリル状微細繊維
が得られた。BET法により測定した微細繊維の表面積
は10イ/7であつた。顕微鏡観察により、フィフリル
状繊維の平均直径は約5μ、L/Dは少なくとも20程
度であることが確かめられた。このフィフリル状微細繊
維を水中に分散させ、この分散系にあらかじめ調整した
直径4〜7μ、長さ0.5〜5mmのフエノール●ホル
ムアルデヒド繊維を、微細フイブリルリフエノール・ホ
ルムアルデヒド繊維の重量比が10:90になるように
添加し、よく混合する。
Heat with steam while stirring, and after reaching 140°C, maintain this temperature for a while. 1.6m1 2.5 minutes after preparation! Self-generating pressure 17kg/Cd through φ nozzle
I spit it out. The discharged polymer becomes a lumpy discontinuous fiber aggregate, and 100 liters of this fibrous material (water content 90%) is charged into a refiner together with 61 parts of water, and by beating and disintegrating it, fifurils with excellent water dispersibility are produced. Fine fibers were obtained. The surface area of the fine fibers measured by the BET method was 10/7. By microscopic observation, it was confirmed that the fibrillar fibers had an average diameter of about 5 μm and an L/D of at least about 20. These fibrillar fine fibers are dispersed in water, and phenol formaldehyde fibers with a diameter of 4 to 7 μm and a length of 0.5 to 5 mm, which have been prepared in advance, are added to the dispersion system at a weight ratio of fine fibrillar phenol formaldehyde fibers of 10. : Add to 90% and mix well.

この系を公知の湿式抄紙法にしたがつて抄紙し、得られ
たシート状物を、平滑な表面を持つ2個の金属プロツク
の間にはさみ、加熱プレス装置によつて170℃、60
kg/Cdの条件で20分間圧着し、次いで金属プロツ
クにはさんだ状態で冷却プレスによつて常温まで冷却し
たのちシート状物をとり出して、厚さ0.25mmの電
解質隔膜を得た。この電解質隔膜を85%リン酸溶液に
一昼夜浸セキして、電解液保持量および膜抵抗率を測定
した。電解液保持量は2.17/Cd、膜抵抗率は1.
00Ω・Cdで電解質マトリツクスとして良好な性能を
示した。この電解質マトリツクスを、公知の白金付活性
炭とフツ素樹脂からなる2枚の電極ではさみ、それを両
側から溝を設けた樹脂含浸したグラフアイト板で圧着す
ることによりマトリツクス型燃料電池を組み立て、燃料
として水素ガスを、酸化剤として空気を供給し、125
℃の温度で作動させた。回路電圧は0.80V1電池電
圧0,5Vでの電流密度は85mA/Cdで、50mA
/Cdの長時間作動においても、電池電圧は0.60V
で電池性能の低下は認められなかつた。実施例 2 実施例1によつて製造したフィフリル状微細繊維を水中
に分散させ、この分散系に直径2〜10μ、長さ10〜
20mmの石綿繊維を、石綿繊維:微細フィフリルの重
量比が90:10になるように添加し、ミキサーによつ
てよく混合した後、公知の湿式抄紙法にしたがつて抄紙
し、得られたシート状物を、実施例1に示した装置を用
いて加熱圧着させ、厚み0.37ft1Lの電解質隔膜
を得た。
Paper was made from this system according to a known wet paper making method, and the resulting sheet was sandwiched between two metal blocks with smooth surfaces and heated at 170°C and 60°C using a hot press machine.
kg/Cd for 20 minutes, and then cooled to room temperature using a cooling press while being sandwiched between metal blocks, the sheet-like material was taken out to obtain an electrolyte diaphragm with a thickness of 0.25 mm. This electrolyte diaphragm was soaked in an 85% phosphoric acid solution for one day and night, and the electrolyte retention amount and membrane resistivity were measured. The amount of electrolyte retained is 2.17/Cd, and the membrane resistivity is 1.
It showed good performance as an electrolyte matrix at 00Ω・Cd. This electrolyte matrix is sandwiched between two electrodes made of known platinized activated carbon and fluororesin, and these are crimped with resin-impregnated graphite plates with grooves on both sides to assemble a matrix fuel cell. Supplying hydrogen gas as an oxidizing agent and air as an oxidizing agent, 125
Operated at a temperature of °C. The circuit voltage is 0.80V, and the current density at battery voltage 0.5V is 85mA/Cd, which is 50mA.
Even during long-term operation of /Cd, the battery voltage is 0.60V.
No deterioration in battery performance was observed. Example 2 The fibrillar fine fibers produced in Example 1 were dispersed in water, and in this dispersion, fibers with a diameter of 2 to 10μ and a length of 10 to
20 mm of asbestos fibers were added so that the weight ratio of asbestos fibers to fine fifrils was 90:10, and after mixing thoroughly with a mixer, paper was made according to a known wet paper making method, and the obtained sheet These materials were heat-pressed using the apparatus shown in Example 1 to obtain an electrolyte diaphragm having a thickness of 0.37 ft and 1 L.

この電解質隔膜を25%カセイカリ溶液に一昼夜浸せき
した後の電解液保持量と膜抵抗率はそれぞれ9.17/
CllllO.85Ω・CFFlで電解質マトリツクス
として良好な性能を示した。実施例 3 実施例1によつて製造したフィフリル状微細繊維を水中
に分散させ、この分散系に直径3〜6μ、長さ0.5〜
3muの酸化ジルコニウムから成るセラミツク繊維を、
セラミツク繊維を、セラミツク繊維:微細フィフリルの
重量比が90:10になるように添加し、ミキサーによ
つてよく混合した蕾、公知の湿式抄紙法にしたがつて抄
紙し、得られたシート状物を実施例1に示した装置を用
いて加熱圧着させ、厚み0.13w!lの電解質隔膜を
得た。
After this electrolyte diaphragm was immersed in a 25% caustic potash solution for one day and night, the amount of electrolyte retained and the membrane resistivity were 9.17/
CllllO. It showed good performance as an electrolyte matrix at 85Ω・CFFL. Example 3 The fibrillar fine fibers produced in Example 1 were dispersed in water, and in this dispersion, fibers with a diameter of 3 to 6μ and a length of 0.5 to
Ceramic fiber made of 3mu zirconium oxide,
Ceramic fibers were added so that the weight ratio of ceramic fibers and fine fifrills was 90:10, the buds were thoroughly mixed in a mixer, and the resulting sheets were made into paper according to a known wet papermaking method. were heat-pressed using the apparatus shown in Example 1, and the thickness was 0.13w! 1 of electrolyte membranes were obtained.

この電解質隔膜を85%リン酸溶液に浸せきした後の電
解液保持量と膜抵抗率は、それぞれ2.07/Cftl
l.3Ω・Criiで電解質マトリツクスとして良好な
性能を示した。比較例 1 市販のポリプロピレン粉末とあらかじめ調整した直径4
〜7μ、長さ0.5〜5m1Lのフエノール・ホルムア
ルデヒド繊維を、ポリプロピレン粉末:フエノール・ホ
ルムアルデヒド繊維を重量比がそれぞれ10:90、2
0:80および30:70になるように調整し、界面活
性剤を含む水性分散液中に添加しよく混合する。
After immersing this electrolyte diaphragm in an 85% phosphoric acid solution, the amount of electrolyte retained and the membrane resistivity were 2.07/Cftl, respectively.
l. It showed good performance as an electrolyte matrix at 3Ω・Crii. Comparative Example 1 Commercially available polypropylene powder and pre-adjusted diameter 4
Phenol/formaldehyde fibers of ~7 μm and length of 0.5 to 5 m/L were prepared using polypropylene powder:phenol/formaldehyde fibers at weight ratios of 10:90 and 2, respectively.
The ratio is adjusted to 0:80 and 30:70, added to an aqueous dispersion containing a surfactant, and mixed well.

それらを平滑なろ過板を有する吸引ろ過装置上でシート
化し、しかる後実施例1で述べたと同様に加熱圧着し、
厚み0.25m77!の電解質隔膜を得た。ポリプロピ
レン粉末10重量%を含む電解質隔膜は、85%リン酸
浸せき時に形状を保持できなくなり、フエノール・ホル
ムアルデヒド繊維集合体がほぐれてきた。ポリプロピレ
ン粉末20重量%および30重量%を含む電解質隔膜の
85%リン酸浸せき後の電解液保持量はそれぞれ1.4
7/Crll、107/Clflで実施例1に記載した
合成重合体微細から成る電解質隔膜に比べて電解液保持
性は劣る。次にポリプロピレン粉末20重量%を含む電
解質隔膜に85%リン酸を含浸して、実施例1と同様の
水素一空気系マトリツクス型燃料電池を作動させたとこ
ろ、回路電圧は0.70V、電池電圧0.5Vでの電流
密度は17mA/Cdであり、実施例1に記載した電解
質マトリツクスに比べて性能は劣ることが示された。実
施例 4 市販のポリフツ化ビニリデン粉末5tを507のN−N
−ジメチルアセトアミド中に添加し、加温して溶解させ
る。
They were formed into a sheet on a suction filtration device having a smooth filter plate, and then heated and pressed in the same manner as described in Example 1,
Thickness 0.25m77! An electrolyte diaphragm was obtained. An electrolyte membrane containing 10% by weight of polypropylene powder could no longer hold its shape when immersed in 85% phosphoric acid, and the phenol-formaldehyde fiber aggregates began to loosen. The electrolyte retention capacity of electrolyte membranes containing 20% and 30% by weight of polypropylene powder after immersion in 85% phosphoric acid was 1.4, respectively.
7/Crll and 107/Clfl, the electrolyte retention property is inferior to that of the electrolyte membrane made of fine synthetic polymer described in Example 1. Next, an electrolyte membrane containing 20% by weight of polypropylene powder was impregnated with 85% phosphoric acid, and a hydrogen-air matrix fuel cell similar to that in Example 1 was operated. The circuit voltage was 0.70V, and the cell voltage was The current density at 0.5 V was 17 mA/Cd, indicating inferior performance compared to the electrolyte matrix described in Example 1. Example 4 5 tons of commercially available polyvinylidene fluoride powder was mixed with 507 N-N
- Add to dimethylacetamide and warm to dissolve.

このポリフツ化ビニリデン溶液を、5001のグリセリ
ンを入れた高度に撹拌しているミキサー中に、2uφの
ノズルをとおして注ぎ込む。このような操作によつて得
られたポリフツ化ビニリデンの微細フィフリルをろ過、
水洗後、水浴中に移すことにより、水中分散性のすぐれ
たフィフリル状微細繊維が得られた。BET法により測
定した微細繊維の表面積は4イ/7であり、顕微鏡観察
により、フィフリル状繊維の平均直径は約10μ、L/
Dは少なくとも20程度であることが確かめられた。こ
のフィフリル状微細繊維を水中に分散させ、この分散系
に実施例1で記載したフエノール・ホルムアルデヒド繊
維を、微細フィフリル・フエノール・ホルムアルデヒド
繊維の重量比が10:90になるように添加し、よく混
合する。
The polyvinylidene fluoride solution is poured through a 2uφ nozzle into a highly agitated mixer containing 5001 glycerin. The fine fifriles of polyvinylidene fluoride obtained by such operations are filtered,
After washing with water, the fibers were transferred to a water bath to obtain fibrillar fine fibers with excellent dispersibility in water. The surface area of the fine fibers measured by the BET method is 4I/7, and the average diameter of the fibrillar fibers is approximately 10μ, L/7 by microscopic observation.
It was confirmed that D was at least about 20. The fifurl-like fine fibers were dispersed in water, and the phenol-formaldehyde fibers described in Example 1 were added to the dispersion so that the weight ratio of fine fifryl-phenol-formaldehyde fibers was 10:90, and the mixture was thoroughly mixed. do.

この系を公知の湿式抄紙法にしたがつて抄紙し、得られ
たシート状物を、実施例1と同様の装置によつて加熱圧
着させ、厚み0.25mmの電解質隔膜を得た。この電
解質隔膜を85%リン酸溶液に浸せきした後の電解液保
持量と膜抵抗率はそれぞれ2.3f/CdlO.98Ω
・dで電解質マトリツクスとして良好な性能を示した。
次に85%リン酸を含浸したこのマトリツクスを用いて
、実施例1に記載した水素一空気系の燃料電池を作動さ
せたところ、回路電圧は0,78V、電池電圧0.5V
での電流密度は84mA/Clilであつた。50mA
/Crilの電流密度で長期にわたつて作動させたとこ
ろ、電池電圧は0.58Vを示し、性能低下は認められ
なかつた。
This system was paper-made according to a known wet paper-making method, and the obtained sheet-like material was heat-pressed using the same apparatus as in Example 1 to obtain an electrolyte diaphragm with a thickness of 0.25 mm. After this electrolyte diaphragm was immersed in an 85% phosphoric acid solution, the amount of electrolyte retained and the membrane resistivity were 2.3 f/CdlO. 98Ω
・D showed good performance as an electrolyte matrix.
Next, when this matrix impregnated with 85% phosphoric acid was used to operate the hydrogen-air fuel cell described in Example 1, the circuit voltage was 0.78V, and the cell voltage was 0.5V.
The current density was 84 mA/Clil. 50mA
When the battery was operated at a current density of /Cril for a long period of time, the battery voltage was 0.58 V, and no deterioration in performance was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 平均直径≦10μ、比表面積≧0.4m^2/g、
L/D≧10(L:フィブリル長さ、D:直径)を有す
る合成重合体フィブリル微細繊維と親水性の繊維材料を
相互に絡合させ、一部結着させたシート状の層を含むこ
とを特徴とする電池用隔膜。
1 Average diameter≦10μ, specific surface area≧0.4m^2/g,
Contains a sheet-like layer in which synthetic polymer fibril fine fibers having L/D≧10 (L: fibril length, D: diameter) and a hydrophilic fiber material are entangled with each other and partially bonded. A battery diaphragm featuring:
JP51013272A 1976-02-12 1976-02-12 Battery diaphragm Expired JPS5944750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51013272A JPS5944750B2 (en) 1976-02-12 1976-02-12 Battery diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51013272A JPS5944750B2 (en) 1976-02-12 1976-02-12 Battery diaphragm

Publications (2)

Publication Number Publication Date
JPS5297131A JPS5297131A (en) 1977-08-15
JPS5944750B2 true JPS5944750B2 (en) 1984-10-31

Family

ID=11828569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51013272A Expired JPS5944750B2 (en) 1976-02-12 1976-02-12 Battery diaphragm

Country Status (1)

Country Link
JP (1) JPS5944750B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312115B2 (en) * 1985-05-28 1991-02-19 Asahi Glass Co Ltd
US9085121B2 (en) 1999-05-13 2015-07-21 3M Innovative Properties Company Adhesive-backed articles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618366A (en) * 1979-07-24 1981-02-21 Sanyo Electric Co Ltd Electrolyte matrix of fuel cell
JPS5699968A (en) * 1980-01-12 1981-08-11 Nippon Muki Kk Separator for battery
JPS61128459A (en) * 1984-11-28 1986-06-16 Abekawa Seishi Kk Separator for sealed lead-acid battery
JP2001313066A (en) * 2000-04-27 2001-11-09 Matsushita Electric Ind Co Ltd Alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312115B2 (en) * 1985-05-28 1991-02-19 Asahi Glass Co Ltd
US9085121B2 (en) 1999-05-13 2015-07-21 3M Innovative Properties Company Adhesive-backed articles

Also Published As

Publication number Publication date
JPS5297131A (en) 1977-08-15

Similar Documents

Publication Publication Date Title
US6120939A (en) Meltblown fiber battery separator
US4330602A (en) Battery separator
US7238413B2 (en) Conductive sheet material
US5298348A (en) Battery separator for nickel/metal hydride batteries
JPH056305B2 (en)
DE102011116780A1 (en) battery separator
DE3026246C2 (en)
KR20110076893A (en) Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet
CN104471765B (en) Porous electrode base material, its manufacture method, film-electrode bond and polymer electrolyte fuel cell
JPH1064503A (en) Lithium ion battery
JPS5944750B2 (en) Battery diaphragm
JP6481330B2 (en) Base material for alkaline water electrolysis diaphragm
US3713890A (en) Flexible battery separator and method of production
US5470409A (en) Process for making fluoropolymer composites
JP7409777B2 (en) Separator for lithium ion secondary batteries
DE102013210302A1 (en) Sulfonated PPS fuel cell electrode
CN103441228A (en) Polysulfonamide base lithium ion battery separator prepared through wet papermaking process
JP2008186718A (en) Gas diffusion layer for fuel cell, fuel cell, fuel cell mounted device
CN111373570B (en) Separator and separator for alkaline manganese dry battery formed by same
CA2034590A1 (en) Battery separator for recombinant batteries
US20180108920A1 (en) Porous electrode substrate and manufacturing method therefor
JP2004288495A (en) Electrolyte film for polymer electrolyte fuel cell and manufacturing method of the same
DE102013220970B4 (en) Process for the production of PFCB fibers on a nanometer scale
IT8319386A1 (en) MATERIAL FOR BATTERY SEPARATORS AND METHOD FOR ITS FORMATION
JP4716649B2 (en) Conductive molding material, fuel cell separator using the same, and method for producing the same