JPS5944750A - Magnetically insulated ion diode - Google Patents

Magnetically insulated ion diode

Info

Publication number
JPS5944750A
JPS5944750A JP57154700A JP15470082A JPS5944750A JP S5944750 A JPS5944750 A JP S5944750A JP 57154700 A JP57154700 A JP 57154700A JP 15470082 A JP15470082 A JP 15470082A JP S5944750 A JPS5944750 A JP S5944750A
Authority
JP
Japan
Prior art keywords
anode
magnetically insulated
dielectric
dielectric material
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57154700A
Other languages
Japanese (ja)
Inventor
Osamu Morimiya
森宮 脩
Setsuo Suzuki
鈴木 節雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57154700A priority Critical patent/JPS5944750A/en
Publication of JPS5944750A publication Critical patent/JPS5944750A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To generate uniform plasma along the surface of dielectric material deposited to the anode surface by providing an auxiliary anode connecting an impedance element to the positive pole in such a magnetic field where it is prevented for electrons to move between the cathode and anode. CONSTITUTION:A plurality of protrusions 9 are provided in the form of belts to the anode 1 in such a device as comprising the anode 1, cathode which extracts ions from the anode sheathed plasma generated by the anode 1 and magnetic field generating appratus which prevents movement of electrons between the cathode and anode 1. A dielectric material 7 is filled between protrusions so that it is closely placed in contact with the anode 1 and moreover the lines of an auxiliary anode 11 are closely disposed in parallel at the center on the dielectric material 7. The anode 11 and 1 are connected to each other through an impedance Z12. When a high voltage pulse is applied to the anode 1, a charging current flows through the anode 11 and a potential of anode 11 is different from the potential of anode 1. Such difference of potential causes surface discharge 8 between the protrusion 9 and the anode 11 and such discharging 8 occurs uniformly for almost the entire surface of dielectric material. Thereby, the dielectric material can be used for a longer period of time.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は軽イオンビーム慣性核融合装置などに用いら1
1る高出力パルスイオン源に適する磁気絶縁形イオンダ
イオードに関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention is applicable to light ion beam inertial fusion devices, etc.
The present invention relates to a magnetically insulated ion diode suitable for a high-power pulsed ion source.

〔従来技術とその問題点〕[Prior art and its problems]

従来の磁気絶縁形・fオンダイオードは、第1図に示す
ように、断面が長円の板状の陽極1とこの陽極1の周部
を・所定間隙を有して取り囲む工うに設けた陰極2とこ
の陰極の一面に孔設しfcスリット3とで秤1.成され
このスリット3からイオンビーム4を引出すようになっ
ていて、これら全体は図示しない7(空容器内に配置さ
れている。陰極2は断面Ω状の導体からなり、磁場発生
用コイルの役割を兼用し硅−場発生用電源5がらこの導
体に電流を流すことに工っで、陽極と平行な磁場Bを発
生する。このJ、うに構成したイオンダイオードの陽極
1と陰極2との間に例えば100T(V以上の高電圧を
放電、用看記源6から印加することにエリ、陽極1と陰
極2どの間に目、プラズマが生じ、このプラズマのイメ
ンをP、極に設けたスリット3を通して外部に導き出し
、イオンビーム4を得る。陽極1のmi K−)−J、
 RE体7が短冊状に設りらilている。このイオンビ
ーム4が得られる原理を説明するために、陽極1と陰極
2との間を拡大して断面で示したのが第2図である。電
子eは磁場Bにエリ曲り“らJ1陽伊1には達しない。
As shown in Figure 1, a conventional magnetically insulated f-on diode has a plate-shaped anode 1 with an oval cross section and a cathode that surrounds the anode 1 with a predetermined gap. 2 and an fc slit 3 provided on one side of the cathode. The ion beam 4 is drawn out from this slit 3, and the whole is placed in an empty container 7 (not shown). A magnetic field B parallel to the anode is generated by passing a current through this conductor using a silicon field generating power supply 5 which also serves as a conductor. When a high voltage of, for example, 100 T (V or more) is applied from the discharge source 6, a plasma is generated between the anode 1 and the cathode 2, and the plasma is formed between the slit P and the pole. 3 to the outside to obtain an ion beam 4. mi K-)-J of the anode 1,
The RE body 7 is provided in a rectangular shape. In order to explain the principle by which this ion beam 4 is obtained, FIG. 2 is an enlarged cross-sectional view of the area between the anode 1 and the cathode 2. The electron e is bent by the magnetic field B and does not reach J1.

磁場Bによるイオンの曲りは僅かで陰極2のスリット3
を通りビーム4として夕■用:に導かれる。なお、スリ
ット3の数は理解し易いように図示しである。プラズマ
4は陽極1の表面近傍に陽極シースプラズマ8として存
在する。183図に陽極シースプラズマ8の生成原理を
示fo陽極1の表面に突起9を設け、陽極1と隣接突起
9との凹部にポリエチレン、ボロンナイトライド(BN
)等のU電体7を充tjA、密着させる。この工うな状
態で陽極−陰極間に高電圧を印加すると、陽棲部の三重
点10(金属・w8電休・真空部が接する点)で雷、界
が著しく強くなり、誘正1体を構成している原子、例え
ばポリエチレンではその中の水素、炭素、BNではホウ
素が放出されて、陽極部で放電プラズマ(陽極シースプ
ラズマ)8が生じる2、 このような放電プラズマの生成法を用い次従来のイオン
ダイメート゛(7は三f・14点の近傍にのみ放電がj
h中するので誘電体の寿命目高々数十ショットしか利用
出滓ず、短時間で消耗してり、−+う欠点があった。
The ions are slightly bent by the magnetic field B, and the slit 3 of the cathode 2
It passes through and is guided as beam 4 to evening. Note that the number of slits 3 is shown for ease of understanding. Plasma 4 exists near the surface of anode 1 as anode sheath plasma 8 . Figure 183 shows the principle of generating anode sheath plasma 8. A protrusion 9 is provided on the surface of the anode 1, and polyethylene, boron nitride (BN) is placed in the recess between the anode 1 and the adjacent protrusion 9.
), etc., and bring them into close contact. When a high voltage is applied between the anode and the cathode in this state, the lightning field becomes extremely strong at the triple point 10 of the positive zone (the point where the metal, W8, and the vacuum zone meet), and the dielectric field becomes extremely strong. Constituent atoms, such as hydrogen and carbon in polyethylene, and boron in BN, are released and a discharge plasma (anode sheath plasma) 8 is generated at the anode2. Conventional ion dimer (7 is the discharge only in the vicinity of the 3F/14 point)
Since the dielectric is used for a long period of time, the life expectancy of the dielectric material is only a few tens of shots at most, and it wears out in a short period of time.

〔発明の目的」 本発明IJ、 」二連した従来ゾはの欠点を改良しtも
ので、iiS電休の体命全署1〜く向上した磁気絶縁形
イオンダ・fオートイC」是伊どづ−ること金目〔白ど
する。
[Purpose of the Invention] The present invention IJ improves on the drawbacks of the conventional two-way system, and improves all aspects of the body's life by improving the magnetically insulated Ionda F Autotoy C. The most important thing is the gold medal.

〔発明の概要〕[Summary of the invention]

本発明は、従来のものが[1り極プラズマの生成企三3
1シ点の強電界にのみ依存り、−Cいlこのに対し、本
発明Cは誘電体表面に第2の陽極すなわち補助陽極を設
け、こり補助トす極と陽極と苓ンfンピーダンス要素(
抵抗もしくはインダクタンス)?介して接続して構成す
ることにより、この工うな接続状態で陽極に早い立上り
のパルスを印加すると、陽極と補助陽附どの間に?、Z
位差75粍[二じ、このため陽極突起部と補助陽極との
間で誘電体表面に沿った沿面放電が容易に起る↓うに構
成した磁気絶縁形イオンダイオードである○ 〔発明の効果〕 本発明によれば補助陽極を用いることにエリ、IN電休
体面に沿った一様な陽極プラズマが生じさせることがで
き、このため誘電体の極部的な消耗が起らず長寿命のイ
オンダイオードが得られる。
The present invention is different from the conventional one [1-pole plasma generation scheme 3].
In contrast, in the present invention C, a second anode, that is, an auxiliary anode is provided on the dielectric surface, and a stiffness auxiliary electrode and an anode are connected to the impedance element. (
(resistance or inductance)? By connecting and configuring this method, if a fast rising pulse is applied to the anode in this connected state, what happens between the anode and the auxiliary anode? ,Z
This is a magnetically insulated ion diode constructed in such a way that the potential difference is 75 mm [2], so creeping discharge along the dielectric surface easily occurs between the anode protrusion and the auxiliary anode. According to the present invention, by using an auxiliary anode, it is possible to generate a uniform anode plasma along the surface of the IN electric conduction body, which prevents local consumption of the dielectric material and provides long-lived ions. A diode is obtained.

また一様な沿面放電を起すので、容易に高電流密度の一
様なビームが得られる。
Furthermore, since uniform creeping discharge is caused, a uniform beam with high current density can be easily obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.

なお以下の説明において陽極部以外の構成部分について
は従来と同様であるためその詳細な説明を省略する。第
4図に本発明による陽極部の第一の実施例を示す。陽極
1に複数条の突起9を帯状に設ける。この突起と突起の
間に誘電体7(例えばポリエチレン、BN等)を陽極1
に密着するように充填させ、さらにこの誘電体7の上に
線状の補助陽極11を平行かつ中央に配置し密着させる
Note that in the following description, the components other than the anode portion are the same as those of the prior art, and therefore detailed description thereof will be omitted. FIG. 4 shows a first embodiment of the anode section according to the present invention. A plurality of protrusions 9 are provided in a strip shape on the anode 1. A dielectric material 7 (for example, polyethylene, BN, etc.) is placed between the protrusions of the anode 1.
Further, a linear auxiliary anode 11 is placed on top of the dielectric 7 in parallel and in the center and brought into close contact.

この補助陽極11と陽極1とをインピーダンス112を
介して接続する。このような状態で陽極1に高圧パルス
を印加すると補助陽極11には充電電流ICが流れる。
This auxiliary anode 11 and anode 1 are connected via an impedance 112. When a high voltage pulse is applied to the anode 1 in this state, a charging current IC flows through the auxiliary anode 11.

このときインピーダンスZ12があるため補助陽極11
の電位は陽極1エリZIeだけ差が生じる。このXL位
差により陽極突起9と補助陽極1ノとの間に沿面放電8
が生じる。この放電は防電体表面のほぼ全域にわ/ヒっ
て均一に生ずる。この均・−放電により誘電体の長寿命
化が可能となった。
At this time, since there is an impedance Z12, the auxiliary anode 11
There is a difference in potential between the two anodes by one area ZIe. Due to this XL level difference, creeping discharge 8 occurs between the anode protrusion 9 and the auxiliary anode 1.
occurs. This discharge occurs uniformly over almost the entire surface of the electric shield. This uniform discharge made it possible to extend the life of the dielectric.

また補助陽極を設けることにエリ、放電の生成に再現性
が著しく改着され乙。したがってビームの特性も再現性
が良くなった。
Additionally, the provision of an auxiliary anode significantly improved the reproducibility of discharge generation. Therefore, the reproducibility of the beam characteristics has also improved.

なお補助陽極1ノの形状および配置は、例えば第5図に
示す工うに、誘電体l内に補助陽極1ノを一部BK出す
るに埋め込み、この露出させた補助陽極11の表面を突
起9の表面どほぼ同一平面上に配置することによって安
定し/こ動作をさせることができる○まfc第6図に示
すように補助陽極11を完全に11 電体7の中に埋め
込んでも良い。
The shape and arrangement of the auxiliary anode 1 is, for example, as shown in FIG. The auxiliary anode 11 may be completely embedded in the electric body 7 as shown in FIG.

〔発明の他の実施例〕[Other embodiments of the invention]

次に本発明の他の実施例について説明する。なお、陽極
部以外の構成部分について前述したものと同一であるた
めにその説明および図を省略して示す。すなわち第7図
乃至第9図では本発明の陽極部部分のみ示す。
Next, other embodiments of the present invention will be described. It should be noted that the constituent parts other than the anode part are the same as those described above, and therefore their description and drawings are omitted. That is, in FIGS. 7 to 9, only the anode portion of the present invention is shown.

第7図に示す本発明の実施例は、陰極2と対面する位置
にアルミナあるいはボロンナイトライドなどからなる板
状誘電体13を設け、この板状誘電体13の陰極2側の
表面に短冊状の陽極14と補助陽極15とが交互に夫々
が離間して固着配設されている。l1lIr接する陽極
14と補助陽極15とはインピーダンス擬木16によっ
て接続されている。そして陽極14および補助陽極15
の材質を例えばチ・タン(TJ)  のような水素化物
を作りゃすい金属で椛成し、あらかじめ水素もしくは水
素の同位体もしくはモの同位体の混合物を吸蔵させであ
る。この工うに構成した陽極(!l’l’:)z 4に
立ちエリの早いパルス電圧を印加すると、陽極14と補
助陽極15とに充電電流1c  が流れる。このとき、
陽極14と補助陽極15との間にZIc  の電子差が
生じ、陽極14と補助陽極15との間で沿面放電が生じ
、lli;3極プラズマ8が生じる。この陽極プラズマ
から、本図では示さないが陰極2に設けfc開口部(ス
リット3)を通し、外部にイオンビーム4を引出せる。
In the embodiment of the present invention shown in FIG. 7, a plate dielectric 13 made of alumina or boron nitride is provided at a position facing the cathode 2, and the surface of the plate dielectric 13 on the cathode 2 side is shaped like a strip. Anodes 14 and auxiliary anodes 15 are alternately spaced apart and fixedly arranged. The anode 14 and the auxiliary anode 15 which are in contact with l1lIr are connected by an impedance pseudo tree 16. and an anode 14 and an auxiliary anode 15
For example, the material is made of a metal that does not form hydrides, such as titanium (TJ), and hydrogen or a hydrogen isotope or a mixture of hydrogen isotopes is occluded in advance. When a fast pulse voltage is applied to the anode (!l'l':)z4 constructed in this manner, a charging current 1c flows through the anode 14 and the auxiliary anode 15. At this time,
An electron difference of ZIc occurs between the anode 14 and the auxiliary anode 15, a creeping discharge occurs between the anode 14 and the auxiliary anode 15, and a triode plasma 8 is generated. Although not shown in this figure, an ion beam 4 can be extracted from this anode plasma to the outside through an fc opening (slit 3) provided in the cathode 2.

、 尚、第7図に示f工うに個々の補助陽極には、独立した
インピーダンス要素を接続することが望ましいが、補助
陽極群を一括して接続し、この補助陽極群に一つのイン
ピーダンス要素を介して主陽極(群)に接続しても良い
Although it is desirable to connect an independent impedance element to each auxiliary anode as shown in Fig. 7, it is possible to connect a group of auxiliary anodes together and connect one impedance element to this auxiliary anode group. It may also be connected to the main anode(s) via the main anode(s).

前述した実施例ではビームになる原子はF5電休ヲ拾成
している原子、例えばポリエチレン中の水素、炭素、ボ
ロンナイトライド中のホウ素等を利用していたので、誘
電体の寿命を長くする工夫は可能であるが消耗は避りら
第1tJいが、この実Mν例の工うに構成することによ
−)て誘電体を直接ビーム原子として利用しl、(い磁
、気絶H:形形材オンダイオ・ドを提供できる。。
In the above-mentioned embodiments, the atoms that become the beam are atoms that are present in the F5 electrolyte, such as hydrogen and carbon in polyethylene, and boron in boron nitride, so that the life of the dielectric can be extended. It is possible to devise a method to avoid consumption, but by configuring it as in this practical Mν example, the dielectric material can be used directly as the beam atom. We can provide materials on diode.

すなわちこの実Ali例で1曾、陽極を金属水零化物を
用い、この71・′素(あるいは水素の同位体)をビー
ムに用い、しかも陽極プラズマ5の生成を容易にするた
め補助陽極音用い、主陽極とこの補助陽極とをインピー
ダンス要素を介して接続する。この工うな措成で主陽極
に立上りの?いパルスを印加すると、補助陽極との間に
電位差が生じ、誘電体表面で放電が生じる。このとき金
属水素化物の電極から水素または水素の同位体(同位体
の混合物でも可)が放出され、水素プラズマが生じる。
That is, in this actual Ali example, a metal hydride is used as the anode, this 71·' element (or hydrogen isotope) is used as the beam, and an auxiliary anode sound is used to facilitate the generation of the anode plasma 5. , the main anode and this auxiliary anode are connected via an impedance element. Does this work cause the main anode to rise? When a high pulse is applied, a potential difference is created between the anode and the auxiliary anode, and a discharge occurs on the dielectric surface. At this time, hydrogen or a hydrogen isotope (a mixture of isotopes is also possible) is released from the metal hydride electrode, producing hydrogen plasma.

この陽極水素プラズマからイオンビームを引出すことが
可能となつりjoこの工うに金属水素化物電極を用い、
しかも補助陽極を用いることにエリ、純度の高い水素プ
ラズマが陽極部にほぼ一様に生ずるので純度の高い高電
流密度の水素プラズマが生じる。しかもパルスビームを
引出した休止期間中に水素ガスを補給することにエリ放
電で遊園した水素を再び金属に吸蔵させることが出来る
のでダイオードの寿命ia、飛躍的に向上した。第8図
に本発明のその池の実施例を示す。この実施例では誘電
体13の裏面に陽極14と同電位の導体17を密着させ
てある0この工うに背後電極f、設けることにエリ、主
陽極14と補助陽極15間の静電容量が増大するので、
それに応じて充電電流1c  が大きくなり、同一のイ
ンピーダンスz16に対し大きな電位差ZIc  が生
じる。この皮め、主陽極14と補助陽極15間の放電が
容易に起り、ざらにまfC,第9図に示す工うに背後電
極17と補助陽極15とを直接接続しても良く、効果は
第8図の例と同様である。
It became possible to extract an ion beam from this anode hydrogen plasma using a metal hydride electrode.
Moreover, the advantage of using the auxiliary anode is that high-purity hydrogen plasma is generated almost uniformly in the anode portion, resulting in high-purity hydrogen plasma with a high current density. Furthermore, by replenishing hydrogen gas during the pause period when the pulse beam is drawn out, the hydrogen that has been released by the electric discharge can be stored in the metal again, so the life span of the diode (ia) has been dramatically improved. FIG. 8 shows an embodiment of the pond according to the present invention. In this embodiment, a conductor 17 having the same potential as the anode 14 is brought into close contact with the back surface of the dielectric 13.In this way, the back electrode f is provided, and the capacitance between the main anode 14 and the auxiliary anode 15 is increased. So,
The charging current 1c increases accordingly, and a large potential difference ZIc occurs for the same impedance z16. In this case, the discharge between the main anode 14 and the auxiliary anode 15 can easily occur, and the back electrode 17 and the auxiliary anode 15 can be directly connected as shown in FIG. This is similar to the example shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の一部切欠斜視図、第2図は原理を示
す説明図、第3図は陽極部を示す一部INF面図、第4
図は本発明のイオンダイオードの要部を示す断面図、第
5図乃至第9図は本発明の他の実施例を示す要部断面図
である。 1・・・陽極部、2・・・陰極、4・・・イオンビーム
、13・・・誘電体、14・・・陽極、15・・・補助
陽極、16・・・インピーダンス、17・・・背後電極
。 (7317)代理人 弁邸士 則 近 慾イ4i  (
ほか1名)第  1  図             
第  2 9第3図 第 5 図      第 1S 図
Fig. 1 is a partially cutaway perspective view of a conventional device, Fig. 2 is an explanatory diagram showing the principle, Fig. 3 is a partial INF view showing the anode section, and Fig. 4 is a partially cutaway perspective view of the conventional device.
The figure is a cross-sectional view showing a main part of an ion diode of the present invention, and FIGS. 5 to 9 are cross-sectional views of main parts showing other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Anode part, 2... Cathode, 4... Ion beam, 13... Dielectric, 14... Anode, 15... Auxiliary anode, 16... Impedance, 17... back electrode. (7317) Agent: Benteishi Noriyuki Chika 4i (
and 1 other person) Figure 1
Figure 29 Figure 3 Figure 5 Figure 1S

Claims (1)

【特許請求の範囲】 (1)陽極シースプラズマを生成する陽極部と、この陽
極部で生成した陽極シースプラズマからイオンを引出す
陰極と、この陰極と前記陽極との間を電子が移動するの
を防ぐ磁場発生装置とを具備したものにおいて、前記陽
極部にインピーダンス要素を接続してなる補助陽極を設
は友ことを特徴とする磁気絶縁形イオンダイオード。 (2)陽極部を表面に凹凸部の形成された金属板状の陽
極とこの陽極の凹部に充填付着してなる誘電体とで格成
し、補助陽極を前記誘電体に接触させて配設してなるこ
とを特徴とする特FF請求の範囲第1項記載の磁気絶縁
形イオンダイオード。 (3)補助陽極を誘電体の表面に配置したことを特徴と
する特if請求の範囲第2項記載の磁気絶縁形イオンダ
イオード。 (4)補助陽極を誘電体の中に埋設したことを特徴とす
る特許請求の範囲第2項記載の磁気絶縁形イオンダイオ
ード。 (5)誘電体の表面に補助陽極の−・部が露出してなる
ことを特tXtどする特許請求の範囲第4項記載の磁気
絶縁形イメンダイオード1、 (6)誘電体をポリエチレン樹脂とし/こことを特徴と
する特許請求の範囲第2項記載の磁気絶縁形イオンダイ
オード。 (力 誘電体をボロ:/ナイトライドとしたことを特徴
とする特8′「請求の範囲第2項記載の磁気絶縁形iオ
ンダイオ−1!。 (8)陽極部を板状Hか電体とこの誘電体の表面に配置
した祷t(の陽極と、この陽極ど離間しかつ前記誘電体
の表面に配置1.だ補助陽極とで構成したことを特徴と
する特lvf請求の範囲第1項記載の磁気絶縁形イオン
ダイオ・−ド。 (9)誘電体の裏面に金8板を面設しこの金属板と陽極
の電位とを同電位としたことを特徴とする特許請求の範
囲第8項記載の磁気絶縁形イオンダイオード。 0(1)陽、甑を水沢・ヨもしく1才水素の同位体を吸
蔵させてなる水素吸蔵性金属とし之ことを特徴とする特
許請求の範囲第8項記載の磁気絶縁形イオンダイオード
。 (11)水素吸蔵性金iをTI  としたことを特徴と
する特Vr請求の範囲第10項記載の磁気絶縁形イオン
ダイオード。 02)  fi1m休をアルミナとしたことを特徴とす
る特I′「請求の範囲#i) 8項記載の磁気絶縁形イ
オンダイ、!!I′ド。 (13)  誘電体をボロンナイトライドとしたことを
特徴とする特H′「請求の範囲第8項記載の磁気絶縁形
イオンダイオード(、 (+4)  陽極上補助陽極とを接続してなるインピー
ダンス要素の組HIQ組としたことを特徴とする特!!
′r請求の範囲第8項記載の磁気絶縁形イオンダイオー
ド。
[Scope of Claims] (1) An anode section that generates anode sheath plasma, a cathode that extracts ions from the anode sheath plasma generated in this anode section, and a system that prevents electrons from moving between this cathode and the anode. What is claimed is: 1. A magnetically insulated ion diode, comprising: a magnetic field generating device for preventing a magnetic field; (2) The anode part is composed of a metal plate-shaped anode with an uneven surface and a dielectric material filled and adhered to the recesses of this anode, and the auxiliary anode is arranged in contact with the dielectric material. 2. A magnetically insulated ion diode according to claim 1, characterized in that: (3) A magnetically insulated ion diode according to claim 2, characterized in that the auxiliary anode is disposed on the surface of the dielectric. (4) A magnetically insulated ion diode according to claim 2, characterized in that the auxiliary anode is embedded in the dielectric. (5) A magnetically insulated type diode 1 according to claim 4, characterized in that - part of the auxiliary anode is exposed on the surface of the dielectric; (6) the dielectric is made of polyethylene resin; A magnetically insulated ion diode according to claim 2, characterized in that: (Magnetically insulated i-on diode according to claim 2) characterized in that the dielectric material is made of borosilicate/nitride. Claim 1: The invention is characterized by comprising: an anode disposed on the surface of the dielectric; and an auxiliary anode spaced apart from the anode and disposed on the surface of the dielectric. (9) A gold plate is provided on the back surface of the dielectric, and the potential of this metal plate and the anode are set to be the same potential. The magnetically insulated ion diode according to claim 8. Claim 8, characterized in that the ion diode is a hydrogen-absorbing metal obtained by occluding an isotope of Mizusawa-Yo or 1-year hydrogen. The magnetically insulated ion diode according to claim 8. (11) The magnetically insulated ion diode according to claim 10, characterized in that the hydrogen-absorbing gold i is TI.02) The fi1m is made of alumina. (13) Feature H' characterized in that the dielectric material is boron nitride. ``The magnetically insulated ion diode (, (+4) as set forth in claim 8) is characterized in that the impedance element set HIQ is formed by connecting the anode and the auxiliary anode!!
'rThe magnetically insulated ion diode according to claim 8.
JP57154700A 1982-09-07 1982-09-07 Magnetically insulated ion diode Pending JPS5944750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154700A JPS5944750A (en) 1982-09-07 1982-09-07 Magnetically insulated ion diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154700A JPS5944750A (en) 1982-09-07 1982-09-07 Magnetically insulated ion diode

Publications (1)

Publication Number Publication Date
JPS5944750A true JPS5944750A (en) 1984-03-13

Family

ID=15590030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154700A Pending JPS5944750A (en) 1982-09-07 1982-09-07 Magnetically insulated ion diode

Country Status (1)

Country Link
JP (1) JPS5944750A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511774B1 (en) 1997-01-16 2003-01-28 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
JP2006299283A (en) * 1999-05-13 2006-11-02 Three M Innovative Properties Co Adhesive-backed article
US7250210B2 (en) 1993-10-29 2007-07-31 3M Innovative Properties Company Pressure-sensitive adhesives having microstructured surfaces
US8313822B2 (en) 2007-07-17 2012-11-20 Lintec Corporation Pressure-sensitive adhesive sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250210B2 (en) 1993-10-29 2007-07-31 3M Innovative Properties Company Pressure-sensitive adhesives having microstructured surfaces
US6511774B1 (en) 1997-01-16 2003-01-28 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
JP2006299283A (en) * 1999-05-13 2006-11-02 Three M Innovative Properties Co Adhesive-backed article
US8313822B2 (en) 2007-07-17 2012-11-20 Lintec Corporation Pressure-sensitive adhesive sheet

Similar Documents

Publication Publication Date Title
Goldstein et al. Ion-induced pinch and the enhancement of ion current by pinched electron flow in relativistic diodes
Brown et al. High current ion source
US3312840A (en) Thermionic generators embodying main and auxiliary discharge chambers, closely spaced emitter and collector structures, and means for neutralizing self-magnetic fields
JPS5944750A (en) Magnetically insulated ion diode
US5053184A (en) Device for improving the service life and the reliability of a sealed high-flux neutron tube
JP6426155B2 (en) Dielectric wall accelerator using diamond or diamond-like carbon
JPS58216327A (en) Field emission cathode
Kovalchuk et al. Electron-beam accelerator for pumping of a Xe2 lamp
Walko et al. A high output neutron tube using an occluded gas ion source
US3455781A (en) Thermionic energy converter and nuclear reactor containing same
Schulz et al. Investigations of micropinches with comparison to the predictions of the radiative collapse model
Flinta Pulsed high-intensity ion source: Part I
JPS5740845A (en) Ion beam generator
Genuario et al. Characterization of electron and ion current flow in very large aspect‐ratio terawatt diodes employing heated and unheated anodes
Boggasch et al. A 400 kA pulse generator with pseudo-spark switches
Cooperstein et al. Light ion production and focusing with pinch-reflex diodes
US3912930A (en) Electron beam focusing system
Schwirzke et al. Ion formation on the surfaces of electrodes
JPH0766763B2 (en) Ion neutralizer
Matsukawa et al. High brightness point-like source for intense ion beam
RU2143766C1 (en) Charged particles emitter
JP2757963B2 (en) Ion source accelerating electrode
Korenev et al. High current pulsed ion inductor accelerator for destruction of radioactive wasters
Schmidt et al. Duoplasmatron source modifications for He+ 3 operation
Bieg et al. Lithium fluoride ion source experiments on PBFA II