JPS5944380B2 - Method for producing metal or alloy for hydrogen storage - Google Patents

Method for producing metal or alloy for hydrogen storage

Info

Publication number
JPS5944380B2
JPS5944380B2 JP56041719A JP4171981A JPS5944380B2 JP S5944380 B2 JPS5944380 B2 JP S5944380B2 JP 56041719 A JP56041719 A JP 56041719A JP 4171981 A JP4171981 A JP 4171981A JP S5944380 B2 JPS5944380 B2 JP S5944380B2
Authority
JP
Japan
Prior art keywords
hydrogen
metal
alloy
hydrogen storage
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56041719A
Other languages
Japanese (ja)
Other versions
JPS57158340A (en
Inventor
修一郎 小野
耀 鈴木
「あ」 野村
貴史 酒井
直二郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sanyo Denki Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sanyo Denki Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56041719A priority Critical patent/JPS5944380B2/en
Publication of JPS57158340A publication Critical patent/JPS57158340A/en
Publication of JPS5944380B2 publication Critical patent/JPS5944380B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明は水素貯蔵用金属または合金の製造方法に関し、
より詳細には水素貯蔵用金属または合金の水素吸収、放
出時におけるヒステリシスを抑制すると共に、プラト一
部をより平坦ならしめる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrogen storage metals or alloys;
More specifically, the present invention relates to a method for suppressing hysteresis during hydrogen absorption and release of hydrogen storage metals or alloys, and for making a portion of the plateau flatter.

従来、水素貯蔵用金属または合金(以下、金属等と云う
)の水素化物の幾つかは平衡解離圧(水素圧力)が常圧
付近であり、また金属等の水素吸収、放出を室温近傍の
低温度で行なうことができるので、比較的取扱い易い水
素貯蔵用材料として注目されつ\ある。
Conventionally, some of the hydrides of hydrogen storage metals or alloys (hereinafter referred to as metals, etc.) have equilibrium dissociation pressures (hydrogen pressures) near normal pressure, and hydrogen absorption and release of metals, etc. has been carried out at low temperatures near room temperature. Since it can be carried out at high temperatures, it is attracting attention as a relatively easy-to-handle hydrogen storage material.

そして金属環−金属等水素化物間の可逆反応を利用した
水素貯蔵用途が期待されており、金属等の容積の約40
0倍の水素を貯蔵することができるし、また他の用途と
しては、水素吸収時の発生熱量を利用する蓄放熱装置(
蓄熱装置)や、水素放出のための加熱時に生ずる水素圧
力を利用する圧力機器への応用等が注目されている。
Hydrogen storage applications are expected to utilize the reversible reaction between metal rings and metal hydrides, and approximately 40% of the volume of metals, etc.
It can store 0 times as much hydrogen, and other uses include heat storage and release devices that utilize the amount of heat generated when hydrogen is absorbed.
Applications such as heat storage devices) and pressure equipment that utilize the hydrogen pressure generated during heating to release hydrogen are attracting attention.

ところで金属等の水素吸収、放出の反応はM(金属また
は合金)+H2;Mn2(水素化物)+反応熱のように
表わされ、この反応は系の圧力(水素圧力)、金属等水
素化物の組成、温度等によって特徴づけられる。
By the way, the reaction of hydrogen absorption and desorption by metals, etc. is expressed as M (metal or alloy) + H2; Mn2 (hydride) + reaction heat, and this reaction is caused by the pressure of the system (hydrogen pressure), the hydride of metal, etc. Characterized by composition, temperature, etc.

このため圧力(P)、組成(C1金属等1モルあたりの
水素吸収量で表わす)、および温度(′I5の関係を調
べることは金属等水素化物の特性を知る上で重要なこと
である。
Therefore, it is important to investigate the relationship among pressure (P), composition (expressed as the amount of hydrogen absorbed per mole of C1 metal, etc.), and temperature ('I5) in understanding the characteristics of metal hydrides.

そして、この関係はP−C−T特性と呼ばれ、水素吸収
時を示す吸収曲線と水素放出時を表わす解離曲線とは異
なったものとして表示され、この吸収曲線と解離曲線間
のずれをヒステリシスと称し、実際に金属等によって水
素の吸収、放出を行なわせるにあたっては、出来るだけ
ヒステリシスが小さいこと、すなわちはド同一の操作条
件で水素の吸収、放出を行ないうる金属等を選択するこ
とが好ましい。
This relationship is called the P-C-T characteristic, and the absorption curve that shows hydrogen absorption and the dissociation curve that shows hydrogen release are displayed as different curves, and the deviation between the absorption curve and dissociation curve is measured using hysteresis. When actually absorbing and releasing hydrogen using metals, etc., it is preferable to select metals that have as little hysteresis as possible, that is, metals that can absorb and release hydrogen under the same operating conditions. .

また、吸収曲線と解離曲線は、ある温度で一定の圧力を
示す区間(プラト一部)が長いほど、すなわち一定圧力
で組成が変化するものが使用し易い金属等と云うことが
できる。
Further, in the absorption curve and dissociation curve, it can be said that the longer the section showing a constant pressure at a certain temperature (part of the plateau), the easier it is to use a metal whose composition changes at a constant pressure.

か5るヒステリシスおよびプラト一部のずれの原因は、
今のところ金属等の不均一性にもとづくものと考えられ
ており、かメる不均一性は金属等の製造時に不活性雰囲
気下で金属の融点以下の温度で一定時間焼成するアニー
ル処理によって幾分は改善されることが知られている。
The cause of the hysteresis and the deviation of the plateau part is as follows.
At present, it is believed that this is due to the non-uniformity of the metal, etc., and the non-uniformity is caused by the annealing process in which the metal is baked at a temperature below the melting point of the metal for a certain period of time in an inert atmosphere during the production of the metal. is known to be improved.

しかしながら、かトるアニール処理では、(1)マイル
ドな条件であるため、均一化をす5めるには長時間の焼
成が必要であり、 (2)最適なアニール温度を決めることが容易でなく、 (3)不活性雰囲気下での操作が長時間必要であるなど
の欠点があった。
However, in Katoru annealing treatment, (1) the conditions are mild, so long firing is required to achieve uniformity, and (2) it is not easy to determine the optimal annealing temperature. (3) It had drawbacks such as requiring long hours of operation under an inert atmosphere.

そこで本発明はかトる欠点を解消すべくなされたもので
あり、ヒステリシスが従来のアニール処理の場合に比較
して著るしく小さくなり、しかもプラト一部もより平担
となり、安定した使用し易い金属等が得られる。
Therefore, the present invention was made to eliminate these drawbacks, and the hysteresis is significantly smaller than that in the case of conventional annealing treatment, and the plateau part is also made more flat, making it possible to use it stably. Easy metal etc. can be obtained.

すなわち本発明は、水素貯蔵用金属あるいは合金を水素
化し、脱水素したのち不活性ガス雰囲気中で微粉末化し
、次いで不活性ガス雰囲気中で溶融し、この溶融した合
金を不活性ガス雰囲気中で再粉末することを特徴とする
水素貯蔵用金属または合金の製造方法である。
That is, the present invention hydrogenates a metal or alloy for hydrogen storage, dehydrogenates it, pulverizes it in an inert gas atmosphere, then melts it in an inert gas atmosphere, and then pulverizes the metal or alloy in an inert gas atmosphere. This is a method for producing a metal or alloy for hydrogen storage, which is characterized by re-powdering.

本発明で使用する金属あるいは合金は従来知られている
ような水素を吸収、放出できる能力があるものであれば
如何なる種類であっても良く、たとえば金属単体として
のV、Nb、MgyTiなど、合金ではLaNi5.M
mNi5.CaNi5.Mg2Niなどが用いられる。
The metal or alloy used in the present invention may be of any known type as long as it has the ability to absorb and release hydrogen, such as V, Nb, MgyTi, etc. So LaNi5. M
mNi5. CaNi5. Mg2Ni or the like is used.

ここでMmは希土類元素の混合物でミツシュメタルと称
されるものである。
Here, Mm is a mixture of rare earth elements called mitshu metal.

本発明ではか5る金属等を通常の方法に従って、まず十
分に水素吸蔵させて金属等の水素化物となし、次いでこ
の水素化物から水素を放出させる。
In the present invention, these metals and the like are first sufficiently absorbed with hydrogen to form a hydride of the metal, etc., according to a conventional method, and then hydrogen is released from this hydride.

か\る水素吸蔵、水素放出を行なったのち、金属等を不
活性ガス雰囲気中で粉砕する。
After hydrogen absorption and hydrogen release, the metal etc. is crushed in an inert gas atmosphere.

この粉砕した金属等を同様に不活性ガス雰囲気中で、す
なわち酸化雰囲気にさらすことなく、たとえばアーク溶
解炉または誘導加熱炉等で溶融し、次にこの溶融した金
属等を再び不活性ガス雰囲気で再び粉砕するのである。
This pulverized metal, etc. is similarly melted in an inert gas atmosphere, that is, without being exposed to an oxidizing atmosphere, for example, in an arc melting furnace or an induction heating furnace, and then this molten metal, etc. is again placed in an inert gas atmosphere. It will be crushed again.

なお、溶融中に撹拌をして、組成の均一化をはかつても
良い。
Note that it is also good to stir the melting process to make the composition uniform.

得られた金属は通常の方法に従って水素吸蔵、放出に使
用される。
The obtained metal is used for hydrogen storage and desorption according to conventional methods.

ここで不活性ガスとしてはHe、Ne、Ar等のいわゆ
る不活性ガスが用いられる。
Here, so-called inert gas such as He, Ne, Ar, etc. is used as the inert gas.

なお、N2は高温下で金属等の表面に窒化物層を形成す
るおそれがあるので好ましくない。
Note that N2 is not preferred because it may form a nitride layer on the surface of metal etc. at high temperatures.

本発明の方法はか5る不活性ガスの雰囲気中で行なうこ
とが重要であり、空気の存在下などのいわゆる酸化雰囲
気下での処理においては、極度に微粉化された金属の表
面が酸化され易く、生じる酸化物が水素吸収の際の妨害
要因となるので避ける必要がある。
It is important that the method of the present invention be carried out in an inert gas atmosphere, and in the treatment in a so-called oxidizing atmosphere such as in the presence of air, the surface of the extremely finely divided metal will be oxidized. It is necessary to avoid this because the oxides produced can interfere with hydrogen absorption.

粉砕は金属等の組成の均一化をもたらす上で重要な操作
であり、不活性ガス雰囲気、たとえばドライボックス中
で通常の方法で乳鉢やボールミルを用いて行なわれる。
Grinding is an important operation for uniformizing the composition of metals, etc., and is carried out in an inert gas atmosphere, for example in a dry box, using a mortar or a ball mill in a conventional manner.

粉砕度は通常では10μm〜300μであり、好ましく
は、数10μ〜100μである。
The degree of pulverization is usually 10 μm to 300 μm, preferably several tens of μm to 100 μm.

粉砕度が10μ以下では極度の微粉状態であるので通常
操作が困難なこと、また300μ以上では水素化時機粉
化がかなり進行し、粉体としての性状がかなり変化する
ので取り扱い上、好ましくない。
If the degree of grinding is less than 10μ, the powder will be in an extremely fine powder state, making normal operation difficult; if the degree of grinding is more than 300μ, pulverization will progress considerably during hydrogenation, and the properties of the powder will change considerably, which is undesirable in terms of handling.

また、本発明では、上述した粉砕−溶融−粉砕の操作を
複数回繰返すこともできる。
Further, in the present invention, the above-described pulverization-melting-pulverization operation can be repeated multiple times.

このように本発明の方法は一度水素化し水素放出させた
金属等を不活性ガス雰囲気中で粉砕し、再度溶融処理を
する方法であり、従来のように、たとえば合金組成に適
合した単体金属を一度だけ溶融する、いわゆるアニール
法とは基本的に処理方法が異なっている。
In this way, the method of the present invention is a method in which metals, etc. that have been hydrogenated and released hydrogen are crushed in an inert gas atmosphere and then melted again. The processing method is fundamentally different from the so-called annealing method, which involves melting only once.

本発明について推論するならば、一度完全に水素化した
金属等は水素化前には大きな粒子であっても水素化によ
って7μ以下の粒径まで崩壊し、これを再び溶融するこ
とによって均一な組成を有する金属等が形成されるもの
と考えられる。
Inferring the present invention, once completely hydrogenated metals, etc., even if they are large particles before hydrogenation, they collapse to a particle size of 7μ or less by hydrogenation, and by melting them again, a uniform composition can be obtained. It is thought that metals etc. having the following properties are formed.

か\る本発明によれば、一度水素吸蔵、放出させた金属
等を粉砕し後に再溶融しているので、金属等の組成が均
一化され、その結果、水素吸収曲線と金属等水素化物の
解離曲線とのずれ、いわゆるヒステリシスが大巾に改善
されると共に、一定水素圧力における金属等の組成変化
、すなわちプラト一部も従来の処理方法の場合に比較し
て、より平坦に近くなり、この結果、取り扱い易く、水
素の吸蔵、放出がより安定化した水素貯蔵用金属、また
は合金が得られる。
According to the present invention, since the metal, etc. that has absorbed and released hydrogen is crushed and then remelted, the composition of the metal, etc. is made uniform, and as a result, the hydrogen absorption curve and the hydride of the metal, etc. The deviation from the dissociation curve, so-called hysteresis, has been greatly improved, and the change in the composition of metals, etc. at a constant hydrogen pressure, that is, the plateau part, has become more flat than in the case of conventional processing methods. As a result, a hydrogen storage metal or alloy that is easy to handle and has more stable hydrogen storage and release can be obtained.

以下、実施例により本発明を更に詳述する。Hereinafter, the present invention will be explained in further detail with reference to Examples.

実施例 水素吸蔵用合金として良く知られているカルシウム・ニ
ッケル合金CaNi5を99.9%純度のCa粉末と、
99.9%純度のNi粉末とを合金組成にあわせて混合
、成型し、アルゴン雰囲気中で溶融して約10g製造し
た。
Example Calcium-nickel alloy CaNi5, which is well known as a hydrogen storage alloy, is mixed with 99.9% pure Ca powder,
It was mixed with 99.9% pure Ni powder according to the alloy composition, molded, and melted in an argon atmosphere to produce about 10 g.

得られた合金を既知のP−C−T装置を用い、75℃で
P−C−T特性図を描かせた。
A P-C-T characteristic diagram of the obtained alloy was drawn at 75° C. using a known P-C-T device.

結果を図面の曲線AおよびBに示す。The results are shown in curves A and B of the drawing.

この図から水素吸収曲線Aと解離曲線Bとのずれ、すな
わちヒステリシスはかなり大きく、またプラトー圧力は
特に水素吸収曲線の場合において一定ではないことが理
解できる。
From this figure, it can be seen that the deviation between the hydrogen absorption curve A and the dissociation curve B, that is, the hysteresis, is quite large, and the plateau pressure is not constant, especially in the case of the hydrogen absorption curve.

次にこのようにして水素吸収と水素放出を行なわせたC
aNi5をドライボックス中に取り出し、アルゴン雰囲
気中でメノウ乳鉢で数10μ程度に粉砕した後、酸化雰
囲気に一度もさらすことなく、アルゴン雰囲気中でドラ
イボックス中のアーク溶融炉に充填し、再び溶融させた
Next, C that absorbed and released hydrogen in this way
The aNi5 was taken out into a dry box and ground in an agate mortar to a size of several tens of microns in an argon atmosphere, then filled into an arc melting furnace in a dry box in an argon atmosphere and melted again without ever being exposed to an oxidizing atmosphere. Ta.

次にこれをアルゴン雰囲気中で100〜300μ程度に
粉砕した後、P−C−T装置に封入し、水素雰囲気中、
75℃で前記同様にP−C−T曲線を測定した。
Next, this was crushed to about 100 to 300 microns in an argon atmosphere, and then sealed in a P-C-T device, and in a hydrogen atmosphere.
PCT curves were measured at 75°C in the same manner as described above.

結果を水素吸収曲線Cおよび水素解離曲線りに示す。The results are shown in hydrogen absorption curve C and hydrogen dissociation curve.

この曲線CおよびDと前記曲線AおよびBとの比較から
明らかなように、ヒステリシスが著るしく改善されると
共に、曲線CとDのプラト一部もかなり平坦に近くなっ
ており、本発明の方法が金属等の特性、特にヒステリシ
スとプラトー圧力の改善のための有効な手段であること
が理解できる。
As is clear from the comparison of curves C and D with the curves A and B, the hysteresis is significantly improved and the plateau portions of curves C and D are also fairly flat, indicating that the present invention It can be seen that the method is an effective means for improving properties of metals etc., especially hysteresis and plateau pressure.

なお、LaNi5合金、MmNi 5合金、V、Nb、
Mg。
In addition, LaNi5 alloy, MmNi5 alloy, V, Nb,
Mg.

Tiなどの場合についても同様な結果が得られた。Similar results were obtained for Ti, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図は従来の方法によって製造された水素貯蔵用合金と本
発明の方法によって製造された水素貯蔵用合金の水素圧
力と合金1モルあたりの水素吸蔵モル数との関係を示す
図である。
The figure is a diagram showing the relationship between hydrogen pressure and the number of hydrogen storage moles per mole of alloy for a hydrogen storage alloy produced by a conventional method and a hydrogen storage alloy produced by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 水素貯蔵用金属または合金の水素化物を脱水素し、
不活性ガス雰囲気中で粉砕した後に不活性ガス雰囲気中
で溶融し、次いで不活性ガス雰囲気中で再度粉砕するこ
とを特徴とする水素貯蔵用金属または合金の製造方法。
1. Dehydrogenating the hydride of hydrogen storage metal or alloy,
1. A method for producing a hydrogen storage metal or alloy, which comprises pulverizing the metal or alloy in an inert gas atmosphere, melting the metal in an inert gas atmosphere, and then pulverizing it again in an inert gas atmosphere.
JP56041719A 1981-03-24 1981-03-24 Method for producing metal or alloy for hydrogen storage Expired JPS5944380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56041719A JPS5944380B2 (en) 1981-03-24 1981-03-24 Method for producing metal or alloy for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56041719A JPS5944380B2 (en) 1981-03-24 1981-03-24 Method for producing metal or alloy for hydrogen storage

Publications (2)

Publication Number Publication Date
JPS57158340A JPS57158340A (en) 1982-09-30
JPS5944380B2 true JPS5944380B2 (en) 1984-10-29

Family

ID=12616226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56041719A Expired JPS5944380B2 (en) 1981-03-24 1981-03-24 Method for producing metal or alloy for hydrogen storage

Country Status (1)

Country Link
JP (1) JPS5944380B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788129B (en) * 2018-06-29 2021-07-06 宁夏东方钽业股份有限公司 Refractory metal powder, preparation method thereof and metal product

Also Published As

Publication number Publication date
JPS57158340A (en) 1982-09-30

Similar Documents

Publication Publication Date Title
JP2649245B2 (en) Method for producing tough and porous getter by hydrogen grinding and getter produced therefrom
JPS61295308A (en) Production of alloy powder containing rare earth metal
JPH0517293B2 (en)
US3883346A (en) Nickel-lanthanum alloy produced by a reduction-diffusion process
US3918933A (en) Nickel-lanthanum alloy produced by a reduction-diffusion process
US4996002A (en) Tough and porus getters manufactured by means of hydrogen pulverization
JPS5944380B2 (en) Method for producing metal or alloy for hydrogen storage
JPH05247568A (en) Hydrogen storage alloy electrode and battery using them
US2041493A (en) Pulverulent alloy
US5338333A (en) Production of powdery intermetallic compound having very fine particle size
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JPH108180A (en) Hydrogen storage alloy
JP2560566B2 (en) Method for producing hydrogen storage alloy
JPS6256939B2 (en)
JPS63291363A (en) Hydrogen absorption alloy
JP2665014B2 (en) Manufacturing method of thermoelectric conversion element material
JP2000169903A (en) Manufacture of hydrogen storage alloy powder
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
JPS648063B2 (en)
JPH06306413A (en) Production of hydrogen storage alloy powder
JPH10332861A (en) Method for preparing uranium mononitride
JPH06228613A (en) Production of granular hydrogen storage alloy
JPS63162830A (en) Structure of hydrogen storage alloy and its production
JPH08120365A (en) Hydrogen storage alloy and its production
JPH05255712A (en) Production of group 3a element-transition metal-al hydrogen occlusion alloy powder