JPS5943837B2 - blue light emitting device - Google Patents

blue light emitting device

Info

Publication number
JPS5943837B2
JPS5943837B2 JP51025219A JP2521976A JPS5943837B2 JP S5943837 B2 JPS5943837 B2 JP S5943837B2 JP 51025219 A JP51025219 A JP 51025219A JP 2521976 A JP2521976 A JP 2521976A JP S5943837 B2 JPS5943837 B2 JP S5943837B2
Authority
JP
Japan
Prior art keywords
light
blue light
light emitting
emitting device
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51025219A
Other languages
Japanese (ja)
Other versions
JPS52108779A (en
Inventor
恵史 布村
嚴雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP51025219A priority Critical patent/JPS5943837B2/en
Publication of JPS52108779A publication Critical patent/JPS52108779A/en
Publication of JPS5943837B2 publication Critical patent/JPS5943837B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は小型肯色発光装置を提供するもので、特に、G
al−xA6xAsに代表される半導体レーーザと薄膜
光導波路とを組み合わせ光導波路内で光学的に非線形相
互作用を発生させ、青色発光を得る装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a small chromatic light emitting device, in particular a G
This invention relates to a device that combines a semiconductor laser represented by al-xA6xAs and a thin film optical waveguide to generate optical nonlinear interaction within the optical waveguide to obtain blue light emission.

オプトエレクトロニクスの進展は目覚しく、特にレーザ
は、その出現以来、多くの研究、開発が行なわれ多方向
への応用がなされてきている。
Optoelectronics has made remarkable progress, and lasers in particular have undergone much research and development since their appearance, and have been applied in many directions.

また近年は、光通信、光情報処理への応用が期待されて
いる。これらの将来の応用を考える場合にはオプトエレ
クトロニクスの分野においても素子や装置の固定化、小
型化、集積化が進められなけれはならない。これらの努
力は、現在充分とは言えないが、着実に進められている
。伝送路としての光ファイバーは、実用段階にあり、受
光素子や光回路素子の固体化、小型化、集積化の研究も
盛んに行なわれている。
Furthermore, in recent years, applications in optical communications and optical information processing are expected. When considering these future applications, it is necessary to advance the immobilization, miniaturization, and integration of elements and devices in the field of optoelectronics. These efforts are currently progressing steadily, although they cannot be said to be sufficient. Optical fibers as transmission paths are at the practical stage, and research is being actively conducted on solid-state, miniaturization, and integration of light receiving elements and optical circuit elements.

特に発光源としての半導体レーザが実用の段階にあるこ
とは光応用の前途を明るいものにしている。
In particular, the fact that semiconductor lasers as light emitting sources are at the stage of practical use makes the future of optical applications bright.

しかし、現在のところ実用し供し得る室温動作のPn接
合式の半導体レーザとして得られる波長域は、約700
0A〜9000入であり、短波長の青色の発光について
は、発光ダイオードとしても容易でなくまして青色発振
半導体レーザダイオードの実現は非常に困難であり、現
在まだ成功例は全く報告されていない。従来の実用化さ
れている青色発振レーザはアルゴンガスレーザに見るご
とく、大型で高価であり水冷を要し、電力消費も大きい
ものである。
However, at present, the wavelength range that can be obtained as a Pn junction type semiconductor laser operating at room temperature that can be practically used is approximately 700 nm.
0A to 9,000, and it is not easy to use a light emitting diode to emit blue light with a short wavelength, and it is extremely difficult to realize a blue oscillation semiconductor laser diode, and no successful example has been reported yet. Like argon gas lasers, conventional blue oscillation lasers that have been put into practical use are large and expensive, require water cooling, and consume large amounts of power.

本発明は、全く新規な方法で従来の欠点、困難さを克服
し、低廉化された小型で低電力の青色発光素子を提供す
ることを目的とする。第1図は本発明で実施された全固
体で小型な青色発光装置の概略図であり、半導体レーザ
1と基板3の上に形成された光薄膜導波路2からなつて
いる。
It is an object of the present invention to overcome the conventional drawbacks and difficulties using a completely novel method, and to provide an inexpensive, compact, and low-power blue light emitting device. FIG. 1 is a schematic diagram of an all-solid-state compact blue light emitting device according to the present invention, which is composed of a semiconductor laser 1 and an optical thin film waveguide 2 formed on a substrate 3.

その接合は、後述する通りのものであり、図中の概略寸
法かられかるとおり、小型な構造の素子ができる。本発
明の原理は、本質的に高密度光エネルギーの電磁波が光
学的に非線形な媒質と相互作用を起し、基本波(一次光
)の周波数の2倍(波長で1/2)の第2高周波(二次
光)を発生することを利用している。
The bonding is as described below, and as can be seen from the approximate dimensions in the figure, an element with a compact structure can be obtained. The principle of the present invention is essentially that electromagnetic waves with high-density optical energy interact with an optically nonlinear medium, and the second It uses the generation of high frequency (secondary light).

現在、実用段階にある半導体レーザは7000λ〜90
00λの範囲であり、逓倍により波長が3500Λ〜4
500Λ程度の青色光を得ることができる。
Semiconductor lasers currently in practical use have wavelengths ranging from 7000λ to 90λ.
00λ range, and by multiplication the wavelength can be increased from 3500Λ to 4
Blue light of about 500Λ can be obtained.

また、効率のよい第2高調波の発生のためには非線形効
果を有する媒質中を高光エネルギー密度で伝播させる必
要があるが、非線形材料を光導波路構造にすることによ
つて、出力0.1〜1ワツトの半導体レーザを一次光と
して使用した場合においても106W/d以上のエネル
ギー密度を実現することが可能である。
In addition, in order to efficiently generate the second harmonic, it is necessary to propagate it at high optical energy density through a medium that has a nonlinear effect, but by making the nonlinear material into an optical waveguide structure, it is possible to Even when a ~1 Watt semiconductor laser is used as the primary light, it is possible to achieve an energy density of 106 W/d or more.

勿論、このためには効率よく半導体レーザ光を膜中に導
入しなければならないが、これは第2図に示すような方
法によつて可能であり、小型化にも支障はない。第2図
は、薄膜2の終端部の膜上にテーパ4を蒸着やスパツタ
等でつけ、テーパ部に光5を入射し、テーパ4での光の
膜厚によるカツトオフを利用して膜内へー次光を導入す
る。またテーパ4と薄膜2との界面に格子6をつけてお
いてもよい。よく知られているように、光導波路型の光
高調波発生素子においても、一次光と二次光との伝播モ
ード間の位相整合がとれなければ第2高周波は発生しな
い。
Of course, for this purpose, it is necessary to efficiently introduce semiconductor laser light into the film, but this can be done by the method shown in FIG. 2, and there is no problem with miniaturization. In Fig. 2, a taper 4 is attached to the film at the end of the thin film 2 by vapor deposition or sputtering, light 5 is incident on the taper part, and the cut-off due to the film thickness of the light at the taper 4 is used to penetrate into the film. Introducing the second light. Further, a grating 6 may be provided at the interface between the taper 4 and the thin film 2. As is well known, even in an optical waveguide type optical harmonic generation element, a second high frequency is not generated unless phase matching is achieved between the propagation modes of the primary light and the secondary light.

優れた非線形光学材料として、LiNbO3、やLiT
aO3およびこれらの固体化がある。LlNbO3の導
波路はL1イオンの外部拡散や金属イオンの内部拡散に
よつて製作される。また、LiTaO3を基板として、
スパツタ法、液相成長法あるいは、熔融固化法等により
LlNbO3薄膜が形成されているが、これらのもので
は基板部と薄膜部での屈折率差が小さく、7000八〜
9000λの半導体レーザ光を一次光とした場合、位相
整合が不可能であり、高調波発生は実現されない。Li
NbO3等と充分大きな屈折率差をもち、しかも格子定
数のよく合つた基板による薄膜成長は従来行なわれてい
ない。本発明は、LiTaO3、LiNbO3等にくら
べてはるかに小さな屈折率をもつM9O単結晶を基板と
して利用し,スパツタ法等によりLiNblxTaxO
3(ただし、O≦x≦1)のC面の単結晶薄膜を形成し
低損失の光導波路としてこれを第2高周波発生素子とし
て利用する。
LiNbO3 and LiT are excellent nonlinear optical materials.
There are aO3 and their solidification. LlNbO3 waveguides are fabricated by out-diffusion of L1 ions and in-diffusion of metal ions. In addition, using LiTaO3 as a substrate,
LlNbO3 thin films are formed by the sputtering method, liquid phase growth method, melt solidification method, etc., but in these methods, the difference in refractive index between the substrate part and the thin film part is small;
When a 9000λ semiconductor laser beam is used as the primary light, phase matching is impossible and harmonic generation is not realized. Li
Thin film growth using a substrate that has a sufficiently large refractive index difference with NbO3 or the like and has a well-matched lattice constant has not been performed in the past. The present invention uses M9O single crystal, which has a much smaller refractive index than LiTaO3, LiNbO3, etc., as a substrate, and uses LiNblxTaxO by sputtering method etc.
3 (however, O≦x≦1), a C-plane single crystal thin film is formed and used as a low-loss optical waveguide as a second high-frequency generating element.

この場合基板と導波路の屈折率差が充分大きいために目
的とする波長範囲でも容易に位相整合条件を満たすこと
ができる。第3図には、M9O単結晶の(111)面を
基板としているLlNbO3薄膜(C面)の導波路での
一次光(0.82μ)、二次光(0.41μ)の伝播定
数の変化を膜厚を横軸として示す。
In this case, since the refractive index difference between the substrate and the waveguide is sufficiently large, the phase matching condition can be easily satisfied even in the target wavelength range. Figure 3 shows changes in the propagation constants of primary light (0.82μ) and secondary light (0.41μ) in a waveguide of an LlNbO3 thin film (C-plane) whose substrate is the (111) plane of M9O single crystal. is shown with the film thickness as the horizontal axis.

第3図では一例として一次光、二次光ともTMモードと
した場合である。これよりわかるように、低次モード間
での位相整合も可能であり、効率のよい第2高周波の発
生が期待される。
In FIG. 3, as an example, both the primary light and the secondary light are set to the TM mode. As can be seen from this, phase matching between low-order modes is also possible, and efficient generation of the second high frequency is expected.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 基板にM9O単結晶(111)面を光学的研磨をして用
い、この上にLiNbO3単結晶を高周波二極スパツタ
法によりエピタキシ一成長させた。
An optically polished M9O single crystal (111) plane was used as an example substrate, and a LiNbO3 single crystal was epitaxially grown thereon by high-frequency dipole sputtering.

スパツタ時にLlNbO3は組成ずれを起すので化学量
論的組成より若干Li2O成分の多い焼結体をスパツタ
のターゲツトとして使用した。スパツタ条件としては、
40%02入りのArガスを用いてガス圧は2×102
t0rrとした。
Since LlNbO3 undergoes a compositional shift during sputtering, a sintered body containing slightly more Li2O than the stoichiometric composition was used as a sputtering target. As for the spatuta conditions,
Using Ar gas containing 40% 02, the gas pressure is 2 x 102
It was set to t0rr.

基板温度700℃、陽極電流1101nAとして、スパ
ツタ速度を約500人/Hrにて、膜厚2200へのL
lNbO3膜を成長させた。次いで容易軸方向に膜に電
気分極を施した後第2図で示したようにテーパ膜として
AS2S3をテーパ比100:1として蒸着し、この部
分より半導体レーザ光が導入されるように第1図に示す
ように設置した。半導体レーザはパルス駆動とし、約1
00mMのレーザ゛出力とした。
The substrate temperature was 700°C, the anode current was 1101 nA, the sputtering speed was about 500 people/Hr, and the film thickness was 2200 mm.
A lNbO3 film was grown. Next, after applying electric polarization to the film in the easy axis direction, AS2S3 was deposited as a tapered film with a taper ratio of 100:1 as shown in FIG. It was installed as shown. The semiconductor laser is pulse driven and approximately 1
The laser output was 00mM.

膜中でのレーザ光のエネルギー密度は約5×106W/
Crilと考えられる。第3図に示すごとく、LiNb
O3膜厚を2200λとした場に一次光のTMOのモー
ドと二次光のTMl、モード位相整合することが計算さ
れるが、本実施例においても集光性のよい青色光が検出
され効率は約170程度であつた。本実施例のLlNb
O3の代わりに、LlTaO3やLiNbl−XTax
O3(0≦X≦1)の単結晶膜をM9O基板に成長させ
ることが可能であるので、これら薄膜によつて同様な第
2高調波を発生させることができるのは勿論である。
The energy density of the laser light in the film is approximately 5 x 106 W/
It is considered to be Cril. As shown in Figure 3, LiNb
When the O3 film thickness is set to 2200λ, it is calculated that the primary light TMO mode and the secondary light TML mode phase match, but in this example also, blue light with good convergence was detected and the efficiency was It was about 170. LlNb of this example
Instead of O3, LlTaO3 or LiNbl-XTax
Since it is possible to grow a single crystal film of O3 (0≦X≦1) on an M9O substrate, it is of course possible to generate a similar second harmonic with these thin films.

以上説明したように本発明によれば、半導体レーザとの
組み合せによつて全固体で小型の波長3500人〜45
00人のコヒーレントな青色発光装置を得ることができ
る。
As explained above, according to the present invention, by combining with a semiconductor laser, an all-solid-state, small-sized laser beam with a wavelength of 3,500 to 45
000 coherent blue light emitting devices can be obtained.

このような装置は、従来得られなかつた全固体の青色レ
ーザ光源となるばかりか、この波長の光は光化学反応を
起し易く、また集光性がよいので光プリンター(NOn
−1mpactPrinter)ホログラフイ等への応
用が考えられる。
Such a device not only provides an all-solid-state blue laser light source that has not been available before, but also allows light of this wavelength to easily cause photochemical reactions and has good light focusing properties, so it can be used as an optical printer (NOn).
-1mpactPrinter) Applications to holography, etc. can be considered.

また螢光体(ZnS)を用いれば、容易に高効率で可視
のあらゆる波長の光を得ることができる。このように広
範な応用が本発明の小型青色発光装置によつて期待でき
るので、その工業的価値は極めて大である。
Furthermore, by using a phosphor (ZnS), it is possible to easily obtain light of all visible wavelengths with high efficiency. Since the small-sized blue light emitting device of the present invention can be expected to have a wide range of applications as described above, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子構造の例の概略図、第2図は
本発明での半導体レーザと薄膜光導波路との結合を示す
図、第3図は膜厚と伝播定数の関係を示し、一次光と二
次光とのグラフ土の交点が位相整合膜厚を与えることを
TM波を例に示してある。 1・・・・・・半導体レーザ、2・・・・・・LiNb
lxTaxO3薄膜光導波路、3・・・・・・M9O単
結晶基板、4・・・・・・テーパ、5・・・・・・一次
光、6・・・・・・格子、7・・・・・・ヒートシンク
FIG. 1 is a schematic diagram of an example of an element structure according to the present invention, FIG. 2 is a diagram showing the coupling between a semiconductor laser and a thin film optical waveguide according to the present invention, and FIG. 3 is a diagram showing the relationship between film thickness and propagation constant. It is shown using a TM wave as an example that the intersection point of the graph of the primary light and the secondary light provides a phase matching film thickness. 1... Semiconductor laser, 2... LiNb
lxTaxO3 thin film optical waveguide, 3... M9O single crystal substrate, 4... Taper, 5... Primary light, 6... Lattice, 7... ··heat sink.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体レーザと、MgO単結晶の(111)面上に
形成されたLiNb_1−xTaxO_3(ただし、0
≦x≦1)薄膜光導波路とを組み合わせ、半導体レーザ
光を前記のLiNb_1−xTaxO_3薄膜光導波路
に導入し第2高調波を発生させることにより、青色光を
発生させるようにしたことを特徴とする青色発光装置。
1 Semiconductor laser and LiNb_1-xTaxO_3 formed on the (111) plane of MgO single crystal (however, 0
≦x≦1) In combination with a thin film optical waveguide, semiconductor laser light is introduced into the LiNb_1-xTaxO_3 thin film optical waveguide to generate a second harmonic, thereby generating blue light. Blue light emitting device.
JP51025219A 1976-03-09 1976-03-09 blue light emitting device Expired JPS5943837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51025219A JPS5943837B2 (en) 1976-03-09 1976-03-09 blue light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51025219A JPS5943837B2 (en) 1976-03-09 1976-03-09 blue light emitting device

Publications (2)

Publication Number Publication Date
JPS52108779A JPS52108779A (en) 1977-09-12
JPS5943837B2 true JPS5943837B2 (en) 1984-10-24

Family

ID=12159841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51025219A Expired JPS5943837B2 (en) 1976-03-09 1976-03-09 blue light emitting device

Country Status (1)

Country Link
JP (1) JPS5943837B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179949A (en) * 1984-02-25 1985-09-13 Sony Corp Optical disk reproducer

Also Published As

Publication number Publication date
JPS52108779A (en) 1977-09-12

Similar Documents

Publication Publication Date Title
JP3325825B2 (en) Three-dimensional periodic structure, method for producing the same, and method for producing film
CA2264753A1 (en) Laser
CN113168070A (en) Wavelength conversion device
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JP3129028B2 (en) Short wavelength laser light source
US6807210B2 (en) Systems and a method for generating blue laser beam
JPH0523410B2 (en)
JPS5943838B2 (en) blue light emitting device
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
CN107394575A (en) The frequency doubling device of laser
JPH11326966A (en) Second harmonic generator
JPS5943837B2 (en) blue light emitting device
EP1653278A1 (en) Blue laser beam oscillating method and device
EP1407522A1 (en) Optical frequency mixing
JP3050333B2 (en) Method for manufacturing second harmonic generation element
JPS61189524A (en) Optical wavelength converting element
JP2676743B2 (en) Waveguide type wavelength conversion element
EP1468328A2 (en) Rubidium titanyl arsenate-silver gallium selenide tandem optical parametric oscillator
JPH01172934A (en) Non-linear optical element
CN115036783A (en) Low-noise visible light single-frequency laser
Tien Integrated optics and thin-film technology
JP2738155B2 (en) Waveguide type wavelength conversion element
CN114175421A (en) Chip integration titanium: sapphire laser
CN117613649A (en) Frequency conversion optical fiber
JP2973463B2 (en) Optical waveguide device