JPS594377B2 - Purification method of caustic soda aqueous solution - Google Patents

Purification method of caustic soda aqueous solution

Info

Publication number
JPS594377B2
JPS594377B2 JP51065665A JP6566576A JPS594377B2 JP S594377 B2 JPS594377 B2 JP S594377B2 JP 51065665 A JP51065665 A JP 51065665A JP 6566576 A JP6566576 A JP 6566576A JP S594377 B2 JPS594377 B2 JP S594377B2
Authority
JP
Japan
Prior art keywords
caustic soda
aqueous solution
sodium chlorate
resin
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51065665A
Other languages
Japanese (ja)
Other versions
JPS52149296A (en
Inventor
一成 井川
光雄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP51065665A priority Critical patent/JPS594377B2/en
Publication of JPS52149296A publication Critical patent/JPS52149296A/en
Publication of JPS594377B2 publication Critical patent/JPS594377B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は食塩及び塩素酸ソーダを含むカセイソーダ水溶
液から塩素酸ソーダを選択的に除去する、カセイソーダ
水溶液の精製法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for purifying a caustic soda aqueous solution, which selectively removes sodium chlorate from a caustic soda aqueous solution containing common salt and sodium chlorate.

カセイソーダの工業的製法は、いわゆる水銀法と隔膜法
の工大法があることはよく知られている。
It is well known that there are two industrial methods for producing caustic soda: the mercury method and the diaphragm method.

カセイソーダの製品品質は水銀法が隔膜法に比べ著しく
すぐれている為に過去においては水銀法が主流をなして
きたが、最近公害発生の心配があるとされ隔膜法に転換
されつつある。
In the past, the mercury method was the mainstream for producing caustic soda products because it was significantly superior to the diaphragm method, but recently the diaphragm method is being replaced due to concerns about pollution.

しかしながら隔膜法カセ・イソーダ液はその製造法の特
質として食塩、塩素酸ソーダなどの不純物を多く含み純
度の著しく悪い製品しか得られない。
However, the diaphragm method is characterized by the fact that it contains many impurities such as common salt and sodium chlorate, and only products with extremely poor purity can be obtained.

その為に高純度カセイソーダを必要とする用途にはその
ままでは使えず水銀法から隔膜法へのスムーズな転換を
さまたげている一因になっている。
For this reason, it cannot be used as is for applications that require high purity caustic soda, and this is one of the reasons that prevents a smooth transition from the mercury method to the diaphragm method.

そこで、隔膜法カセイソーダ液を安価でしかも効率の良
い精製法の開発が強く要望されている。
Therefore, there is a strong demand for the development of an inexpensive and efficient method for purifying caustic soda solution using a diaphragm method.

隔膜法食塩水電解で製造される希薄カセイソーダ液を約
50wt%に濃縮精製して得られる、いわゆる隔膜法カ
セイソーダ液は通常的1wt%の食塩の他に、0.02
〜0.3wt%の塩素酸ソーダを不純物として含んでい
る。
The so-called diaphragm method caustic soda solution, which is obtained by concentrating and purifying a dilute caustic soda solution produced by diaphragm method saline electrolysis to about 50 wt%, contains 0.02 wt% of common salt in addition to the usual 1 wt% of salt.
Contains ~0.3 wt% of sodium chlorate as an impurity.

この塩素酸ソーダは酸化性物質であることから隔膜法カ
セイソーダ液の使用にあたって、種々の悪影響が予想さ
れ、最も嫌われる不純物の一つである。
Since this sodium chlorate is an oxidizing substance, it is expected to have various adverse effects when using the diaphragm method caustic soda solution, and is one of the most hated impurities.

例えば、隔膜法カセイソーダ液を濃縮して固型のカセイ
ソーダを製造する際には、塩素酸ソーダが分解して濃縮
缶等の材料を腐蝕する。
For example, when concentrating a caustic soda solution using a diaphragm method to produce solid caustic soda, sodium chlorate decomposes and corrodes materials such as the concentration can.

又、隔膜法カセイソーダ液を化学反応に使用する場合は
、共存する塩素酸ソーダが副反応を起こしたりしてトラ
ブルの原因になりかねない。
Furthermore, when using the diaphragm method caustic soda solution in a chemical reaction, the coexisting sodium chlorate may cause side reactions and cause trouble.

本発明は、このような塩素酸ソーダを選択的に除去する
カセイソーダ水溶液の精製法を提供するものである。
The present invention provides a method for purifying an aqueous caustic soda solution that selectively removes such sodium chlorate.

従来、カセイソーダ水溶液中の塩素酸ソーダを除去する
方法としては、有機物、鉄などの還元性の薬剤を加えて
分解してしまう方法がある。
Conventionally, as a method for removing sodium chlorate from an aqueous solution of caustic soda, there is a method of decomposing it by adding a reducing agent such as an organic substance or iron.

しかしこの方法では、■)かなり高温でなければ分解し
ない。
However, with this method, ■) it will not decompose unless the temperature is quite high.

2)薬剤コストが高い。3)分解生成物が混入する。2) Drug costs are high. 3) Contamination by decomposition products.

などの欠点を有している為に工業的には採用され難い。Due to these drawbacks, it is difficult to be adopted industrially.

又、精製法としては晶出法、液安抽出法などがあるが、
これらは塩素酸ソーダのみを対象としたものではなく、
不純物量の大半を占める食塩を主な精製対象としている
ので、塩素酸ソーダのみの除去を目的とする場合には、
はなはだ不経済な精製法である。
In addition, purification methods include crystallization method, liquid extraction method, etc.
These are not only for sodium chlorate;
The main target of purification is table salt, which accounts for the majority of impurities, so if the purpose is to remove only sodium chlorate,
This is a very uneconomical refining method.

本発明者らは、塩素酸ソーダの選択的な除去についてイ
オン交換樹脂を用いる方法に着目し種々検討した。
The present inventors focused on a method using an ion exchange resin for selectively removing sodium chlorate and conducted various studies.

一般にイオン交換樹脂は充填塔が使えて操作が非常に簡
単であることから広く利用されているが、その工業化に
際しては次の点が満足されなければならない。
In general, ion exchange resins are widely used because they can be used in packed columns and are very easy to operate, but the following points must be satisfied for their industrialization.

(1)交換して溶出するイオンが問題にならないこと。(1) Ions exchanged and eluted should not be a problem.

(2)イオン交換容量が大きいこと。(2) Large ion exchange capacity.

(3)イオン交換速度が充分速いこと。(3) The ion exchange rate is sufficiently fast.

(4)樹脂の再生が容易であること。(4) The resin can be easily recycled.

(5)操作中に固体の析出、樹脂の破砕などのトラブル
がないこと。
(5) There should be no troubles such as precipitation of solids or crushing of resin during operation.

などである。etc.

従来、カセイソーダ水溶液をイオン交換樹脂で処理した
例はある。
Conventionally, there are examples of treating an aqueous solution of caustic soda with an ion exchange resin.

例えば、米国特許第3042491号明細書は45〜5
0wt%カセイソーダ水溶液から食塩、塩素酸ソーダを
除去するのにゲル型の強塩基性陰イオン交換樹脂を用い
ており、該使用樹脂の再生は炭酸ソーダ、硫酸ソーダ、
リン酸ソーダのいずれの水溶液で行なっている。
For example, U.S. Patent No. 3,042,491 specifies 45-5
A gel-type strongly basic anion exchange resin is used to remove salt and sodium chlorate from a 0wt% caustic soda aqueous solution, and the used resin can be regenerated using sodium carbonate, sodium sulfate,
Any aqueous solution of sodium phosphate is used.

又、米国特許第3681214号明細書は隔膜法カセイ
ソーダ液を20〜40wt%の濃度に薄めた後にゲル型
の強塩基性陰イオン交換樹脂で不純物を除き、更にアマ
ルガムで処理するというものである。
Further, US Pat. No. 3,681,214 discloses that after diluting a caustic soda solution using a diaphragm method to a concentration of 20 to 40 wt%, impurities are removed using a gel-type strongly basic anion exchange resin, and the solution is further treated with an amalgam.

しかしながら、これらを含めたイオン交換樹脂を用いる
従来の公知方法は食塩、塩素酸ソーダを含むカセイソー
ダ液から塩素酸ソーダを選択的に除去するに際しては、
以下に述べるような欠点のあることが本発明者らの検討
で明らかとなった。
However, conventionally known methods using ion exchange resins including these cannot selectively remove sodium chlorate from a caustic soda solution containing salt and sodium chlorate.
The inventors' studies have revealed that there are drawbacks as described below.

すなわち、 (1)水酸型の強塩基性陰イオン交換樹脂で処理すると
、確かに塩素酸イオンが除去されるが、共存する塩素イ
オンも除去されてしまって、塩素酸イオンの交換容量が
低下してしまう。
That is, (1) Treatment with a hydroxyl-type strongly basic anion exchange resin does remove chlorate ions, but coexisting chlorine ions are also removed, resulting in a decrease in the exchange capacity of chlorate ions. Resulting in.

又、水酸型樹脂で処理する為には、該使用樹脂をカセイ
ソーダ水溶液で再生しなければならないが、塩素酸型に
なった樹脂を水酸型に変えるのにかなり多量の高純度カ
セイソーダを必要とする。
In addition, in order to treat the resin with hydroxyl type resin, the resin used must be regenerated with an aqueous solution of caustic soda, but a considerably large amount of high-purity caustic soda is required to convert the resin that has become chloric acid type into the hydroxyl type. shall be.

(2)炭酸ソーダ、硫酸ソーダ、リン酸ソーダなどの水
溶液で再生した強塩基性陰イオン交換樹脂を用いると、
塩素酸イオンと交換して炭酸イオン、硫酸イオン、リン
酸イオンが混入してくる。
(2) When using a strongly basic anion exchange resin regenerated with an aqueous solution such as soda carbonate, sodium sulfate, or sodium phosphate,
Carbonate ions, sulfate ions, and phosphate ions are mixed in by exchanging with chlorate ions.

(3)精製と再生の操作をくりかえすと次第に樹脂が破
砕され粉々になり、もはや充填塔操作ができなくなって
しまう。
(3) If the refining and regeneration operations are repeated, the resin will gradually be crushed and become powder, making it no longer possible to operate the packed column.

この中(3)が最も大さな欠点であるが、この事実1つ
を考えてみても、公知のイオン交換樹脂法ではカセイソ
ーダ水溶液からの塩素酸ソーダの選択的除去は工業的に
は不可能である。
Among these, (3) is the biggest drawback, but even considering this fact, it is industrially impossible to selectively remove sodium chlorate from a caustic soda aqueous solution using the known ion exchange resin method. It is.

本発明者らは、上記欠点を解消した工業化可能なカセイ
ソーダ精製法につき鋭意研究を重ねたところ、以下に述
べる如き特定な強塩基性陰イオン交換樹脂を、特定な条
件下で行なえば可能であることを見出し本発明を完成し
た。
The present inventors have conducted intensive research on an industrially possible caustic soda purification method that eliminates the above drawbacks, and have found that it is possible to perform the process using a specific strongly basic anion exchange resin under specific conditions as described below. They discovered this and completed the present invention.

本発明は、食塩及び塩素酸ソーダを含むカセイソーダ水
溶液を塩素型の巨大網状構造を有するMR型強塩基性陰
イオン交換樹脂と40°C以上の温度条件下で接触させ
、選択的に塩素酸ソーダを吸着除去し、更に該使用樹脂
を塩素型に再生後再使用することを特徴とするカセイソ
ーダ水溶液の精製法である。
In the present invention, a caustic soda aqueous solution containing common salt and sodium chlorate is brought into contact with an MR type strong basic anion exchange resin having a chlorine type giant network structure under a temperature condition of 40°C or higher, and selectively sodium chlorate This is a method for purifying a caustic soda aqueous solution, which is characterized by adsorbing and removing the used resin, and regenerating the used resin into a chlorine form and then reusing it.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

濃厚なカセイソーダ水溶液と強塩基性陰イオン交換樹脂
とを接触させると、樹脂は激しく収縮するが、その収縮
した樹脂を比較的希薄な再生剤水溶液に接触させると膨
潤する。
When a concentrated aqueous solution of caustic soda is brought into contact with a strongly basic anion exchange resin, the resin contracts violently, but when the contracted resin is brought into contact with a relatively dilute aqueous regenerant solution, it swells.

精製と再生のくりかえしとは、樹脂の収縮と膨潤のくり
かえしである。
Repeated refining and regeneration means repeated contraction and swelling of the resin.

その為か、他の原因の為かは明らかではないが、参考例
に示すようにアンバーライトIRA−400(登録商標
名)などのようなゲル型の強塩基性陰イオン交換樹脂で
は数回のくりかえしで樹脂の破砕が目立つようになり、
10回程度のくりかえしで樹脂が粉々になってしまう。
It is not clear whether this is due to this or other causes, but as shown in the reference example, gel-type strongly basic anion exchange resins such as Amberlite IRA-400 (registered trademark) As the resin is repeatedly crushed, it becomes noticeable.
After repeating this process about 10 times, the resin will break into pieces.

しかしアンバーライトIRA−900(登録商標名)、
同IRA−904(登録商標名)などのような巨大網状
構造を有する、いわゆるMR型強塩基性陰イオン交換樹
脂はそのような傾向は全く認められない。
However, Amberlight IRA-900 (registered trademark name),
Such a tendency is not observed at all in so-called MR type strongly basic anion exchange resins having a huge network structure such as IRA-904 (registered trademark).

ところが、塩素型のこれら樹脂と食塩及び塩素酸ソーダ
を含むカセイソーダ水溶液とを室温付近で接触させても
塩素イオンと塩素酸イオンの交換速度が非常に遅く、実
用的な平衡状態になるまでに50〜60時間を要するこ
とが明らかとなった。
However, even when these chlorine-type resins are brought into contact with a caustic soda aqueous solution containing common salt and sodium chlorate at around room temperature, the rate of exchange between chlorine ions and chlorate ions is extremely slow, and it takes 50 It became clear that it would take ~60 hours.

しかし40℃以上の温度条件下で行なうとその理由はさ
だがでないが第−表に示すように交換速度が速くなると
同時に実用的平衡交換容量が増すことが確認された。
However, as shown in Table 1, it was confirmed that when the reaction was carried out at a temperature of 40 DEG C. or higher, the practical equilibrium exchange capacity increased at the same time as the exchange rate became faster, although the reason for this is not clear.

注1)使用した樹脂はアンバーライトIRA−900(
塩素型) 注2)接触後の液組成は、カセイソーダ48.5wt係
、食塩1wt狼塩素酸ソーダ0.15wt係に統一した
Note 1) The resin used is Amberlite IRA-900 (
Note 2) The liquid composition after contact was unified to 48.5 wt of caustic soda, 1 wt of common salt, and 0.15 wt of sodium chlorate.

又、40°C以上の温度条件下で行なうことの他の効果
は、塩素酸イオンと塩素イオンとの交換で溶出する塩素
イオンの為にカセイソーダ水溶液中の食塩濃度が若干増
すが、たとえ室温下で食塩が飽和溶解しているカセイソ
ーダ水溶液を処理しても、40°C以上であれば溶解度
が増し、充填塔内で食塩が析出し閉塞するなどのトラブ
ルの心配がなくなることである。
Another effect of conducting the process at a temperature of 40°C or higher is that the salt concentration in the caustic soda aqueous solution increases slightly due to the chlorine ions eluted by the exchange of chlorate ions with chloride ions, but even at room temperature, Even if a caustic soda aqueous solution in which salt is saturated dissolved therein is treated, the solubility increases if the temperature is 40°C or higher, and there is no need to worry about troubles such as salt precipitation and blockage in the packed tower.

なお、温度条件の上限は使用されるイオン交換樹脂の耐
熱性により制限をうけるが通常80℃程度である。
The upper limit of the temperature conditions is usually about 80°C, although it is limited by the heat resistance of the ion exchange resin used.

精製能力が低下したら該使用樹脂を再生し再使用しなけ
ればならないが、本発明の目的からいって塩素型以外の
、例えば炭酸型、硫酸型、リン酸型に再生することは好
ましくない。
When the refining ability decreases, the used resin must be regenerated and reused, but for the purposes of the present invention, it is not preferable to regenerate it into a type other than the chlorine type, such as a carbonate type, sulfuric acid type, or phosphoric acid type.

塩素型に再生する方法としては、塩素イオンを含む水溶
液ならば伺んでも良い。
As a method for regenerating into chlorine form, an aqueous solution containing chlorine ions may be used.

例えば、食塩水溶液、塩酸、塩化鉄水溶液、塩化カルシ
ウム水溶液及びそれらを含む混合水溶液で塩素酸イオン
を完全に脱着することができる。
For example, chlorate ions can be completely desorbed using a saline solution, hydrochloric acid, an aqueous iron chloride solution, an aqueous calcium chloride solution, or a mixed aqueous solution containing these.

中でも、価格、入手のしやすさ、再生効率、再生廃液の
処理の点を考えると食塩水溶液が最適である。
Among these, a saline solution is most suitable in terms of price, ease of availability, regeneration efficiency, and treatment of recycled waste liquid.

その使用量は、第二衣に示すように膨潤樹脂1m”当り
0.3tでほぼ完全に塩素酸イオンを脱着することがで
きた。
As shown in Figure 2, the amount used was 0.3 t/m'' of the swollen resin, and the chlorate ions could be almost completely desorbed.

注1)使用した樹脂はアンバーライトIRA−00 注2)使用した再生液は10wt%食塩水注3)使用量
は100%Nacl換算 注4)再生温度は室温 本発明法が大きな効果を発揮するのは、カセイソーダ濃
度が30〜55wt%の比較的濃厚な水溶液であるが食
塩と塩素酸ソーダが共存していれば、本発明法の対象と
なる。
Note 1) The resin used is Amberlite IRA-00 Note 2) The regeneration liquid used is 10 wt% saline Note 3) The amount used is 100% NaCl conversion Note 4) The regeneration temperature is room temperature The method of the present invention is highly effective. This is a relatively concentrated aqueous solution with a caustic soda concentration of 30 to 55 wt%, but if common salt and sodium chlorate coexist, it is applicable to the method of the present invention.

食塩の濃度が高くなると精製効率が低下してくるが、5
wt%以下であれば特に問題はない。
As the concentration of salt increases, the purification efficiency decreases, but 5
There is no particular problem if it is below wt%.

隔膜法食塩水電解で製造される希薄カセイソーダ液を濃
縮精製して得られる、いわゆる隔膜法カセイソーダ液や
、隔膜法カセイソーダ液を希釈し、あるいは希釈せずし
てカセイソーダの結晶を取得した後の母液から塩素酸ソ
ーダを除去する場合は、本発明法は特に効果を発揮する
A so-called diaphragm caustic soda solution obtained by concentrating and purifying a dilute caustic soda solution produced by diaphragm saline electrolysis, or a mother liquor after obtaining caustic soda crystals with or without diluting the diaphragm method caustic soda solution. The method of the present invention is particularly effective when removing sodium chlorate from.

以下実施例、比較例をもって詳細に説明する。This will be explained in detail below using Examples and Comparative Examples.

参考例 アンバーライトIRA−400、同IRA−402(登
録商標名)、同IRA−900、同IRA−904を別
々の容器に10m1づつとり、カセイソーダ485 w
t%食塩10wt%、塩素酸ソーダ0.17wt係の隔
膜法カセイソーダ液100m1を入れ、50°Cに保持
して約18時間振とうした。
Reference Example Amberlite IRA-400, Amberlite IRA-402 (registered trademark name), Amberlite IRA-900, and Amberlite IRA-904 were placed in separate containers (10ml each), and 485w of caustic soda was added.
100 ml of a diaphragm method caustic soda solution containing 10 wt % salt and 0.17 wt % sodium chlorate was added, and the mixture was kept at 50°C and shaken for about 18 hours.

次にカセイソーダ液をすてて10wt係食塩水溶液を1
00m1入れて50°Cに保持しながら5時間振とうし
た。
Next, discard the caustic soda solution and add 10wt saline solution.
00ml and was shaken for 5 hours while maintaining the temperature at 50°C.

更に食塩水溶液をすてて同ようの操作をくりかえしたと
ころ、アンバーライトIRA−400、同IRA−40
2は5回目でかなり破砕し、10回目でもはや原形を保
っているものはなかった。
Furthermore, when the saline solution was discarded and the same operation was repeated, Amberlite IRA-400 and Amberlite IRA-40
No. 2 was considerably crushed on the 5th try, and by the 10th try, nothing was still in its original shape.

200回目は更に細く破砕されていた。The 200th time it was crushed into even thinner pieces.

しかしアンバーライトIRA−900、同IRA−90
4は50回くりかえしたが全く破砕されていなかった。
However, Amberlite IRA-900, the same IRA-90
4 was repeated 50 times, but no crushing was observed.

実施例 1 容積50rrL11長さ1mのカラムに塩素型の強塩基
性陰イオン交換樹脂アンバーライトIRA−900を充
填し、湿度を50°Cに保持しながらカセイソーダ48
.5wt係、食塩1.Owt係、塩素酸ソーダ0.17
wt%の隔膜法カセイソーダ液700JをSV 0.
8Hr−’で通液したところ、塩素酸ソーダが5ppm
以下になった。
Example 1 A chlorine-type strongly basic anion exchange resin Amberlite IRA-900 was packed into a column with a volume of 50 rr L11 and a length of 1 m, and caustic soda 48 was added while maintaining the humidity at 50°C.
.. 5wt, salt 1. Owt person, sodium chlorate 0.17
700 J of wt% diaphragm caustic soda solution was added at SV 0.
When the liquid was passed for 8 hours, sodium chlorate was 5 ppm.
It became below.

又食塩濃度は1.1 w を係であった。The salt concentration was 1.1 w.

更に50罰の水を通してから膨潤樹脂1ぜ当り0.5t
の食塩量に相当する250.9の10wt係食塩水溶液
をSV 1.0Hr−1で流し、樹脂を再生した。
After passing 50 times more water, 0.5t per swelled resin.
A 10 wt salt aqueous solution of 250.9 liters corresponding to the amount of salt was poured at a SV of 1.0 Hr-1 to regenerate the resin.

水洗後にこの再生樹脂を用いて上記と同様に同じ隔膜法
カセイソーダ液を処理したところ同じ結果を得た。
After washing with water, this recycled resin was used to treat the same caustic soda solution using the diaphragm method as described above, and the same results were obtained.

更にこの操作を8回くりかえしたが樹脂の破砕は全くな
かった。
This operation was repeated 8 times, but the resin was not crushed at all.

比較例 アンバーライt−IRA−400を用いて実施例1と同
様に処理したところ、2回再生し3回目の通液中に目づ
まりをおこし、通液が不可能になった。
Comparative Example When Amberlight t-IRA-400 was used and treated in the same manner as in Example 1, it was regenerated twice and during the third liquid passage, clogging occurred and liquid passage became impossible.

樹脂をとり出し観察したところ激しく破砕していた。When the resin was taken out and observed, it was found to be severely crushed.

Claims (1)

【特許請求の範囲】 1 食塩及び塩素酸ソーダを含むカセイソーダ水溶液を
塩素型の巨大網状構造を有するMR型強塩基性陰イオン
交換樹脂と40°C以上の温度条件下で接触させ、選択
的に塩素酸ソーダを吸着除去し、更に該使用樹脂を塩素
型に再生後再使用することを特徴とするカセイソーダ水
溶液の精製法。 2 使用イオン交換樹脂を塩素型に再生するに際し、該
使用樹脂1m当り0.3を以上の食塩を含む水溶液を用
いて再生した後、再使用する特許請求の範囲第1項記載
の精製法。 3 食塩及び塩素酸ソーダを含むカセイソーダ水溶液が
、隔膜法食塩水電解で製造される希薄カセイソーダ液を
濃縮精製して得られる。 いわゆる隔膜法カセイソーダ液である特許請求の範囲第
1項または第2項記載の精製法。 4 食塩及び塩素酸ソーダを含むカセイソーダ水溶液が
、いわゆる隔膜法カセイソーダ液を希釈して、あるいは
希釈せずしてカセイソーダの結晶を取得した後の母液で
ある特許請求の範囲第1項または第2項記載の精製法。
[Claims] 1. A caustic soda aqueous solution containing common salt and sodium chlorate is brought into contact with an MR type strongly basic anion exchange resin having a chlorine type giant network structure under a temperature condition of 40°C or higher, and selectively A method for purifying a caustic soda aqueous solution, which comprises removing sodium chlorate by adsorption, and regenerating the used resin into a chlorine type before reusing it. 2. The purification method according to claim 1, wherein the ion exchange resin used is regenerated into a chlorine type using an aqueous solution containing 0.3 or more salt per 1 m of the resin used, and then reused. 3. An aqueous caustic soda solution containing common salt and sodium chlorate is obtained by concentrating and purifying a dilute caustic soda solution produced by diaphragm method saline electrolysis. The purification method according to claim 1 or 2, which is a so-called diaphragm method caustic soda solution. 4. Claims 1 or 2, wherein the caustic soda aqueous solution containing common salt and sodium chlorate is a mother liquor obtained by obtaining caustic soda crystals by diluting or not diluting the so-called diaphragm method caustic soda solution. Purification method as described.
JP51065665A 1976-06-07 1976-06-07 Purification method of caustic soda aqueous solution Expired JPS594377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51065665A JPS594377B2 (en) 1976-06-07 1976-06-07 Purification method of caustic soda aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51065665A JPS594377B2 (en) 1976-06-07 1976-06-07 Purification method of caustic soda aqueous solution

Publications (2)

Publication Number Publication Date
JPS52149296A JPS52149296A (en) 1977-12-12
JPS594377B2 true JPS594377B2 (en) 1984-01-30

Family

ID=13293506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51065665A Expired JPS594377B2 (en) 1976-06-07 1976-06-07 Purification method of caustic soda aqueous solution

Country Status (1)

Country Link
JP (1) JPS594377B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421864A (en) * 1981-12-09 1983-12-20 The Dow Chemical Company Improved ion exchange particle regeneration method
JP5648231B2 (en) * 2013-05-22 2015-01-07 野村マイクロ・サイエンス株式会社 Purification method of alkaline aqueous solution

Also Published As

Publication number Publication date
JPS52149296A (en) 1977-12-12

Similar Documents

Publication Publication Date Title
US3725530A (en) Method of removing mercury vapor from gases
CN110436482A (en) A kind of method of high potassium/sodium in removal ammonium chloride mother liquor
US4060465A (en) Method of purifying the raw brine used in alkali salt electrolysis
CN113443639A (en) Preparation process of electronic-grade potassium hydroxide
JPH06157008A (en) Method for recovering iodine from waste liquor containing iodine and/or inorganic iodine compound
KR100321476B1 (en) Method for regenerating oxidizing catalyst for use in fabrication of trimellitic acid
JPS594377B2 (en) Purification method of caustic soda aqueous solution
JPH01261224A (en) Production of alkali iodide
JPH0569761B2 (en)
US6017506A (en) Process for the preparation of periodates
US3965164A (en) Recovery of oxidation catalyst metals from adipic acid production
JPH073485A (en) Method for electrolyzing alkaline metal chloride
JPS62213893A (en) Method of treating waste water containing hydroxylamine or salt thereof
US2884310A (en) Production of alkali metal hydroxides by ion exchange
US3047363A (en) Manufacture of inorganic thiocyanates
US3441376A (en) Process for producing an acid and a basic salt from an alkali metal halide
JPH05155609A (en) Zero discharge method for manufacturing phosphorous acid and hypophosphorous acid
JP2001247305A (en) Method for recovering boron
JP7518481B2 (en) How lithium hydroxide is produced
JPH06144802A (en) Recovery of iodine from waste liquid containing organoiodine compound
JPS5944102B2 (en) Ion exchange resin regeneration method
JPS6054886B2 (en) Method for purifying aqueous alkali chloride solution
EP0609839B1 (en) Method for electrolyzing an alkali metal chloride
US4453020A (en) Process for purifying the methanol employed in the preparation of formaldehyde
US3042491A (en) Purification of caustic alkali by ion exchange