JPS5943017B2 - Interframe transmission phase switching method - Google Patents

Interframe transmission phase switching method

Info

Publication number
JPS5943017B2
JPS5943017B2 JP53127297A JP12729778A JPS5943017B2 JP S5943017 B2 JPS5943017 B2 JP S5943017B2 JP 53127297 A JP53127297 A JP 53127297A JP 12729778 A JP12729778 A JP 12729778A JP S5943017 B2 JPS5943017 B2 JP S5943017B2
Authority
JP
Japan
Prior art keywords
clock
child device
transmission
information
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53127297A
Other languages
Japanese (ja)
Other versions
JPS5553942A (en
Inventor
達郎 三好
寛二 俵
隆 松本
晃 堀木
恒男 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Hitachi Ltd
NEC Corp
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Original Assignee
Fujitsu Ltd
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Hitachi Ltd, Nippon Telegraph and Telephone Corp, Oki Electric Industry Co Ltd, Nippon Electric Co Ltd filed Critical Fujitsu Ltd
Priority to JP53127297A priority Critical patent/JPS5943017B2/en
Publication of JPS5553942A publication Critical patent/JPS5553942A/en
Publication of JPS5943017B2 publication Critical patent/JPS5943017B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】 本発明は複数装置からなる大規模システムにおけるパル
ス情報の架間伝送を高速かつ能率良く行なう架間伝送位
相切替方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inter-frame transmission phase switching method for performing inter-frame transmission of pulse information at high speed and efficiency in a large-scale system consisting of a plurality of devices.

第1図は従来の架間伝送方式を説明するための5 タイ
ムチャートであり、A、B2装置間の伝送についての一
例を示している。A、B装置AE、BEは各々架別に実
装されており、距離がはなれた位置に設置されているも
のとする。またB装置BEはA装置AEを中心として放
射状に接続されているものとする(この状態は図示して
ない)。このA,B装置AE,BE間に高速で能率よく
パルス情報(以下「情報]という。)伝送を行なうには
、A,B装置AE,BEの動作クロツクパルスCLおよ
びフレームタロツクFCの周波数および位相をともに正
確に一致させて、このクロツクベースで架間伝送を行え
ばよい。第1図において、動作クロツクパルス(以下「
クロツク」という。)の1周期をT秒とする。いま、一
例として、架間の伝送を2T秒以内に行なう場合につい
て説明する。なお、架間伝送がNT(N=1,2,3,
4・・・)の場合も以下の議論するところを多少の変更
によつて適用できる。A装置のクロツクAOで送り出さ
れた情報はA装置AEからB装置BEへ伝送され、A装
置AEのクロツタAと周波数および位相の一致したB装
置BEのクロツクBOB2で受信される(クロツクB1
の立上り後、クロツクB2の立上り前に到達する)。ま
た逆にクロツクBOでB装置BEから送り出された情報
はA装置AEにおいてクロツクA2で受信される(クロ
ツタA1の立上り後、クロツクA2の立上り前に到達す
る)。ここで注意が必要なのは架間の伝送を2T秒以内
に行なうだけの条件では、A装置AEから送り出された
情報が早く到達してクロツクB1で受信する場合と正規
にクロツクB2で受信する場合があり2種類のB装置B
Eが存在することとなり、伝送が正確に行なわれない。
従つて、A装置AEからB装置BEまでの伝送時間はT
秒〜2T秒でなければならない。ところで、装置間ケー
ブルでの遅延時間を1m当りτ秒とするとA装置AEs
B装置BE間を接続するケーブル長はT/τ〜2T/τ
mとなる。例として、T=120ns,τ=6nsとす
るとケーブル長は20m〜40mとなる。装置間で許容
される最大ケーブル長は40mであるが、近距離の装置
間であつても最小ケーブル長は20mとしなければなら
ず、装置間距離以上の長いケーブルで接続を行なう必要
がある。したがつて、無駄なケーブルを使用しているこ
とになる。本発明はこれらの欠点を解決して、初期の比
較的小規模なシステムから増設を行なつて、最終の大規
模システムまで拡張した場合でも正確な情報伝送を行な
える架間伝送位相切替方式を提供するものである。
FIG. 1 is a time chart for explaining a conventional interframe transmission system, and shows an example of transmission between devices A and B2. It is assumed that the A and B devices AE and BE are each mounted on separate racks and are installed at distant positions. It is also assumed that the B devices BE are radially connected to the A device AE (this state is not shown). In order to transmit pulse information (hereinafter referred to as "information") between A and B devices AE and BE at high speed and efficiently, the frequency and phase of the operating clock pulse CL and frame clock FC of A and B devices AE and BE must be determined. It is only necessary to match both clocks exactly and perform inter-frame transmission based on this clock.In Figure 1, the operating clock pulse (hereinafter referred to as
It's called "Krotsuku". ) is assumed to be T seconds. Now, as an example, a case will be described in which transmission between frames is performed within 2T seconds. Note that the inter-frame transmission is NT (N=1, 2, 3,
4...), the following discussion can be applied with some modifications. The information sent out by the clock AO of the A device is transmitted from the A device AE to the B device BE, and is received by the clock BOB2 of the B device BE, which has the same frequency and phase as the clock A of the A device AE (clock B1
after the rising edge of clock B2 and before the rising edge of clock B2). Conversely, the information sent from the B device BE at the clock BO is received by the A device AE at the clock A2 (it arrives after the rising edge of the clock A1 and before the rising edge of the clock A2). What needs to be noted here is that under the condition that transmission between frames is only performed within 2T seconds, there are cases in which the information sent from A equipment AE arrives early and is received by clock B1, and cases in which it is normally received by clock B2. Yes, two types of B equipment B
E exists, and transmission is not performed accurately.
Therefore, the transmission time from A device AE to B device BE is T
It must be between seconds and 2T seconds. By the way, if the delay time in the cable between devices is τ seconds per 1 m, then device A AEs
The cable length connecting B equipment BE is T/τ~2T/τ
m. As an example, if T=120 ns and τ=6 ns, the cable length will be 20 m to 40 m. The maximum cable length allowed between devices is 40 m, but the minimum cable length must be 20 m even between devices that are close to each other, and it is necessary to connect with a cable that is longer than the distance between the devices. Therefore, unnecessary cables are used. The present invention solves these shortcomings and provides an interframe transmission phase switching method that allows accurate information transmission even when an initial relatively small-scale system is expanded to a final large-scale system. This is what we provide.

以下実施例とともに本発明について詳細に説明する。第
2図は本発明における子装置CEの送受信部の実施例を
示すプロツク図であり、第3図は本発明の実施例を説明
するためのタイムチヤートである。
The present invention will be described in detail below along with examples. FIG. 2 is a block diagram showing an embodiment of the transmitting/receiving section of the child device CE according to the present invention, and FIG. 3 is a time chart for explaining the embodiment of the present invention.

また、親装置PEと子装置CEとの接続状態、設置状態
は従来例で説明したと同様である。本発明の実施例を説
明するに際してもクロツクの1周期T秒を120ns1
装置間ケーブルでの1m当りの遅延時間τを6nsとす
る。また、動作の基本となるクロツクは親装置PEから
各子装置CEへ伝送される。装置間距離が20〜40m
(遠距離)の子装置CEにおいては、親装置PEからク
ロツクAOの立ち上り(以下特に明記しないかぎりクロ
ツクはすべて立ち上りが使用される。)で送出され、ケ
ーブルで遅延された情報をクロツクB1の立上り後クロ
ツクB2の立ち上り前の間(第3図イ)に受信回路RE
CVで受信し、入力バツフア1PBでクロツクB2によ
り読み出す。読み出された情報は受信側遅延補正回路R
DLYを経てT秒後に受信側内部バツフアR1Bでタロ
ツクC3で子装置内部にとり込む。クロツクC3のC系
列クロツクはB系列クロツクと周波数、位相が一致して
いる。また、装置間距離が20mより近い(近距離)子
装置CEにおいては、親装置からクロツクAOで送出さ
れケーブルで遅延された情報をクロツクBOの立上り後
クロツクB1の立上り前の間(第3図口)に受信回路R
ECVで受信し、入カバツフア1PBでクロツクB1に
より読み出す。
Further, the connection state and installation state between the parent device PE and the child device CE are the same as those described in the conventional example. When explaining the embodiment of the present invention, one cycle of the clock T seconds is 120 ns1.
It is assumed that the delay time τ per meter in the inter-device cable is 6 ns. Further, a clock, which is the basis of operation, is transmitted from the parent device PE to each child device CE. Distance between devices is 20-40m
The (long distance) child device CE transmits information from the parent device PE at the rising edge of clock AO (unless otherwise specified, all clocks are used at the rising edge) and is delayed by the cable at the rising edge of clock B1. Before the rising edge of the rear clock B2 (Fig. 3A), the receiving circuit RE
It is received by CV and read out by input buffer 1PB and clock B2. The read information is sent to the receiving side delay correction circuit R.
T seconds after passing through DLY, the receiving side internal buffer R1B takes in the data into the slave device using tarok C3. The C-series clock of clock C3 has the same frequency and phase as the B-series clock. In addition, in a child device CE where the distance between the devices is shorter than 20 m (short distance), the information sent from the parent device by clock AO and delayed by the cable is transmitted after the rising edge of clock BO and before the rising edge of clock B1 (see Fig. 3). (opening) receiving circuit R
It is received by ECV and read by clock B1 in input buffer 1PB.

読み出されたデータは受信側遅延補正回路RDLYを経
て2Tの遅延を受けて受信側内部バツフアRlBでクロ
ツクC3で子装置CE内部にとり込む。このように遠距
離伝送と近距離伝送では、各子装置CEはA系列クロツ
クの同一時刻に送出された情報を、B系列の異なる時刻
で受信してから、C系列クロツクの同一時刻で情報を子
装置CE内部にとり込むまでの遅延量を異なる値に設定
してある。つぎに子装置CEから親装置PEへの伝送を
説明する。子装置CEから親装置PEへの伝送は、前述
の子装置CEの情報受信と逆であるが、クロツクC3で
出て来た情報は送信側内部バツフアTlBl送信側遅延
補正回路TDLYl出力バツフア0PBを経て、遠距離
伝送ではクロツクB4で送信回路TRSから送出され(
第3図ハ)、近距離伝送においてはクロツクB5で送出
される(第3図二)。このように各子装置CEから親装
置PEへ情報は伝送され、遠距離伝送においても近距離
伝送においても親装置PEのクロツクA6で受信される
ことになる。したがつて、子装置CEを設置する場合に
子装置CEと親装置PE間の距離を測り、子装置CE内
の遅延量補正回路を切替えて、遠距離伝送又は近距離伝
送を選択する。
The read data passes through the receiving side delay correction circuit RDLY, receives a delay of 2T, and is taken into the child device CE by the receiving side internal buffer R1B at the clock C3. In this way, in long-distance transmission and short-distance transmission, each child device CE receives information sent at the same time on the A-series clock at different times on the B-series clock, and then transmits the information at the same time on the C-series clock. The amount of delay until it is taken into the child device CE is set to different values. Next, transmission from the child device CE to the parent device PE will be explained. The transmission from the child device CE to the parent device PE is the reverse of the above-mentioned information reception by the child device CE, but the information output at the clock C3 is sent to the transmitting side internal buffer TlBl, the transmitting side delay correction circuit TDLYl, and the output buffer 0PB. Then, in long-distance transmission, it is sent out from the transmitting circuit TRS using clock B4 (
In the case of short-distance transmission, it is sent by clock B5 (Fig. 3 2). In this way, information is transmitted from each child device CE to the parent device PE, and is received by the clock A6 of the parent device PE in both long-distance transmission and short-distance transmission. Therefore, when installing the child device CE, the distance between the child device CE and the parent device PE is measured, and the delay amount correction circuit in the child device CE is switched to select either long-distance transmission or short-distance transmission.

この様にする事により、装置間距離が近くても長いケー
ブルで接続する必要がなくなり、装置間距離のケーブル
で接続しても正確なデータ伝送を行なえる。
By doing this, there is no need to connect devices with long cables even if the distance between the devices is short, and accurate data transmission can be performed even if the devices are connected with a cable with a short distance.

また、初期の比較的小規模なシステムから増設を行なつ
て、最終の大規模システムまで拡張することが遅延量補
正回路を切替えて容易に行なえる。次に本発明の第2の
実施例について第4図を参照して説明する。
Further, it is possible to easily expand an initial relatively small-scale system to a final large-scale system by switching the delay amount correction circuit. Next, a second embodiment of the present invention will be described with reference to FIG.

近距離伝送については、親装置PEのクロツクAOで送
られた情報を子装置においてクロツクB1で受信し(第
4図イ)、次のクロツクB2と同位相のクロツクC2で
子装置CE内部にとり込む。また子装置CEからの親装
置PEへの伝送は、クロツクC2で出た情報はクロツク
B3で送出され(第4図口)、親装置PEのクロツクA
4で受信される。すなわち、装置間の伝送を1クロツク
幅の伝送で行なつていることは前記の実施例と同様であ
る。遠距離伝送については、親装置PEのクロツクAO
で送られた情報を子装置CE(7)B系列のクロツクを
1/4周期遅延させたg系列のクロツクBVで受信し(
第4図ハ)、クロツクC2で子装置CE内にとり込む。
For short-range transmission, the information sent by the clock AO of the parent device PE is received by the clock B1 in the slave device (Fig. 4A), and is taken into the slave device CE by the clock C2, which has the same phase as the next clock B2. . In addition, for transmission from the child device CE to the parent device PE, information output at clock C2 is sent out at clock B3 (Figure 4), and information output from clock A of the parent device PE is sent out at clock B3 (Figure 4).
Received at 4. That is, as in the previous embodiment, the transmission between the devices is carried out in one clock width. For long-distance transmission, the clock AO of the parent device PE
The child device CE (7) receives the information sent by the g-series clock BV, which is delayed by 1/4 period from the B-series clock (
(c) in FIG. 4, the data is taken into the child device CE by clock C2.

子装置CEから親装置PEの伝送は、クロツクC2で出
た情報はクロツクB7の立ち下りで送出され(第4図ニ
)、親装置PEのクロツクA4で受信される。このよう
に、遠距離伝送では、装置間の伝送を5/4クロツク幅
で行なつている。このように遠距離伝送の場合、子装置
CEの送受信側へ供給するクロツクのうち情報の送受信
のためのクロツクを他のクロツクと1/4周期だけ位相
をずらすことにより、比較的長い範囲にわたつて遠距離
伝送又は近距離伝送として切替えることができるので装
置間に関してシステム設計の厳密性を要求されない。以
上説明したように、本発明によれば初期から設置されて
いる装置の影響を与えず、システムの拡張が容易に行な
える。
In the transmission from the slave device CE to the parent device PE, the information output at the clock C2 is sent out at the falling edge of the clock B7 (FIG. 4D), and is received by the clock A4 of the parent device PE. In this manner, in long-distance transmission, transmission between devices is performed with a 5/4 clock width. In this way, in the case of long-distance transmission, by shifting the phase of the clock for transmitting and receiving information by 1/4 cycle from the other clocks among the clocks supplied to the transmitting and receiving sides of the child device CE, transmission can be performed over a relatively long range. Since it is possible to switch between long-distance transmission and short-distance transmission, strict system design is not required between devices. As described above, according to the present invention, the system can be easily expanded without being affected by the devices installed from the beginning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の架間伝送方式を説明するためのタイムチ
ヤート、第2図は本発明の第1の実施例を説明するため
の子装置の送受信側のプロツク図、第3図は本発明の第
1の実施例を説明するためのタイムチヤート、第4図は
本発明の第2の実施例を説明するためのタイムチヤート
である。
Fig. 1 is a time chart for explaining the conventional inter-frame transmission system, Fig. 2 is a block diagram of the transmitting/receiving side of the slave device for explaining the first embodiment of the present invention, and Fig. 3 is a diagram of the transmitting/receiving side of the slave device for explaining the first embodiment of the present invention. FIG. 4 is a time chart for explaining the first embodiment of the present invention. FIG. 4 is a time chart for explaining the second embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 クロックパルスで動作する複数の装置からなり、前
記クロックパルスは前記複数の装置の中の親装置から各
子装置へ伝送され、前記クロックパルスのクロックベー
スで同期しているシステムの前記親装置と前記各子装置
との間の情報伝送を同期したクロツクパルスによつて行
なうに際し、前記各子装置の送受信側は、情報を受信又
は送信するための第1のクロックパルスにより読み書き
する第1の入出力バッファと、前記親装置と当該子装置
とを各々別架に実装することにより生ずる情報の伝送遅
延量を各架間距離に応じて切替えて補正する遅延量補正
回路と、情報を当該子装置にとり込む又は当該子装置か
ら送出するための第2のクロックパルスにより読み書き
する第2の入出力バッファとを有し、第1の入出力バッ
ファで、各子装置ごとに異なる位相の情報を受信又は送
信し、第2の入出力バッファで、各子装置同一位相の情
報をとり込み又は送出することを特徴とする架間伝送位
相切替方式。 2 親装置と子装置とを実装している架間距離が小さい
場合は装置間伝送を1クロック幅の間隔で行ない、架間
距離が大きい場合は当該伝送を行う子装置の第1のパル
スの位相を1/4クロックだけ遅らせて、子装置での受
信は第1のパルスの立ち上りで行ない、送信は立ち下が
りで行なうことで5/4クロック幅の間隔で伝送するこ
とを特徴とする特許請求の範囲第1項記載の架間伝送位
相切替方式。
[Claims] 1. Consisting of a plurality of devices that operate with clock pulses, the clock pulses are transmitted from a parent device to each child device among the plurality of devices, and are synchronized on a clock basis of the clock pulses. When transmitting information between the parent device and each child device of the system using synchronized clock pulses, the transmitter/receiver side of each child device reads and writes information using a first clock pulse for receiving or transmitting information. a first input/output buffer, and a delay amount correction circuit that switches and corrects the amount of information transmission delay caused by mounting the parent device and the child device on separate racks according to the distance between each rack; a second input/output buffer that reads and writes information using a second clock pulse to take in information to or send information from the child device; the first input/output buffer has a different phase for each child device; An inter-frame transmission phase switching system characterized in that a second input/output buffer takes in or sends information of the same phase to each child device. 2 If the distance between the frames where the parent device and child device are mounted is small, the transmission between the devices is performed at intervals of one clock width, and if the distance between the devices is large, the first pulse of the child device that performs the transmission is A patent claim characterized in that the phase is delayed by 1/4 clock, reception by the slave device is performed at the rising edge of the first pulse, and transmission is performed at the falling edge of the first pulse, thereby transmitting at intervals of 5/4 clock width. The inter-frame transmission phase switching method described in item 1.
JP53127297A 1978-10-18 1978-10-18 Interframe transmission phase switching method Expired JPS5943017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53127297A JPS5943017B2 (en) 1978-10-18 1978-10-18 Interframe transmission phase switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53127297A JPS5943017B2 (en) 1978-10-18 1978-10-18 Interframe transmission phase switching method

Publications (2)

Publication Number Publication Date
JPS5553942A JPS5553942A (en) 1980-04-19
JPS5943017B2 true JPS5943017B2 (en) 1984-10-19

Family

ID=14956470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53127297A Expired JPS5943017B2 (en) 1978-10-18 1978-10-18 Interframe transmission phase switching method

Country Status (1)

Country Link
JP (1) JPS5943017B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228206A (en) * 1987-03-17 1988-09-22 Nec Corp Clock distribution system
JPH0626332B2 (en) * 1990-10-29 1994-04-06 岩崎通信機株式会社 Synchronizer for digital channels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947231A (en) * 1972-09-19 1974-05-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947231A (en) * 1972-09-19 1974-05-07

Also Published As

Publication number Publication date
JPS5553942A (en) 1980-04-19

Similar Documents

Publication Publication Date Title
KR920017404A (en) Transceiver stations and ring bus systems suitable for connecting to digital data ring buses
US3959588A (en) Digital line synchronizer
JPS5943017B2 (en) Interframe transmission phase switching method
EP0268664B1 (en) A method of coupling a data transmitter unit to a signal line and an apparatus for performing the invention
JPS58201440A (en) Loop mode transmission system
US4901311A (en) Communication method and equipment therefor
JPH04294413A (en) Time adjusting device for network system
JPH06164564A (en) Data transfer system
JPS63110838A (en) Synchronizing signal transfer system
JP2504615B2 (en) Signal transmission timing control system
KR20090063833A (en) System for transmission of synchronous and integrated synchronous frame
JPS5853807B2 (en) Transmission method using clock loopback
SU826983A3 (en) Method and device for instruction data transmission
KR100392298B1 (en) Method and apparatus for extending length of transmission line of synchronous communication system using reverse clock
JPH0145785B2 (en)
EP0544451A1 (en) A communication bus
JPS5962248A (en) Bus system compensating delay amount
JPS63187927A (en) Repeating system
JP2759585B2 (en) Character assembly disassembler
JPH05199273A (en) Signal isolation transmitter
CN110752889A (en) Synchronization method of optical transmission network
JPS6269735A (en) Butst synchronization system in time division multiple access communication system
JPS60248040A (en) Digital subscriber line burst transmission and reception system
JPS645787B2 (en)
JP2004228915A (en) Digital signal relay transmitter