JPS5942918A - Preparation of heat shrinkable tube - Google Patents

Preparation of heat shrinkable tube

Info

Publication number
JPS5942918A
JPS5942918A JP57154341A JP15434182A JPS5942918A JP S5942918 A JPS5942918 A JP S5942918A JP 57154341 A JP57154341 A JP 57154341A JP 15434182 A JP15434182 A JP 15434182A JP S5942918 A JPS5942918 A JP S5942918A
Authority
JP
Japan
Prior art keywords
layer
tube
cross
tape
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57154341A
Other languages
Japanese (ja)
Other versions
JPH0344894B2 (en
Inventor
Isao Kaji
加治 功
Michio Takaoka
道雄 高岡
Mikiyuki Ono
小野 幹幸
Isao Mizunuma
水沼 勲
Shoichi Hasegawa
正一 長谷川
Keiichiro Kataoka
敬一郎 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP57154341A priority Critical patent/JPS5942918A/en
Publication of JPS5942918A publication Critical patent/JPS5942918A/en
Publication of JPH0344894B2 publication Critical patent/JPH0344894B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • B29C48/9105Heating, e.g. for cross linking of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/0608Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms
    • B29C61/0616Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms layered or partially layered preforms, e.g. preforms with layers of adhesive or sealing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing Of Terminals (AREA)

Abstract

PURPOSE:To obtain the titled tube free from void suitable for power cable, etc. by such an arrangement wherein after a tube made of not bridged plastics, etc. is formed by integrally extruding an outer semiconductor layer, intermediate insulation layer and internal high dielectric constant layer, it is caused to form bridge bond and then it is caused to expand under heating. CONSTITUTION:After a 3-layer tube 10c made of not-bridged plastics or not vulcanized rubber is formed by integrally extruding an outer semiconductor layer 12, intermediate insulation layer 14 and internal high dielectric constant layer (or semiconductor layer ) 16 from a 3-layer crosshead 32 of a 3-layer extrusion machine 30, it is sent to a heater 42 directly connected to the 3-layer extrusion machine 30 and it is heated and caused to form bridge-bond in a bridge cylinder 40 under pressurized condition, and then it is cooled by a cooling unit 48, and after that, the titled heat shrinkable tube 10 is obtained by such a method that the 3-layer tube 10c is caused to expand by being heated and softened and it is cooled as it is.

Description

【発明の詳細な説明】 この発明は、ゴム・プラスチック電カケープル用中間接
続部に用いる熱収縮チューブの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a heat-shrinkable tube used for an intermediate connection part for a rubber/plastic electric cable.

発明の背景 ゴム・プラスチックケーブル(主に特別高圧以下)の中
間接続部に、−Kになった多層の熱収縮チューブを使用
することが提案されている。
BACKGROUND OF THE INVENTION It has been proposed to use -K multilayer heat-shrinkable tubing for intermediate joints of rubber/plastic cables (mainly of special high voltage or lower).

すなわち「第1図」の10aがその3層収縮チューブで
、たとえば外側の半導電層12aと中間の絶縁層14a
と内側の高誘電率層16aとが一木になったものである
。これを「第2図」のように、ケーブル20の導体接続
部24上にかぶせて収縮させると、外部半導電層12b
と補強絶縁体14bと高誘電率層16b (電界緩和用
で、チンン酸バリウムなどの強誘電体を含む)とが−木
になった補強絶縁1101bができる。なお22はケー
ブル絶縁体、谷埋め絶縁層26はテープ巻きで作ってい
る。
That is, 10a in "Figure 1" is the three-layer shrink tube, for example, an outer semiconductive layer 12a and an intermediate insulating layer 14a.
and the inner high dielectric constant layer 16a are combined into one tree. When this is placed over the conductor connection part 24 of the cable 20 and contracted as shown in "Fig. 2", the outer semiconducting layer 12b
The reinforcing insulator 14b and the high dielectric constant layer 16b (for electric field relaxation and containing a ferroelectric material such as barium tinnate) form a reinforcing insulator 1101b made of wood. Note that 22 is a cable insulator, and the valley-filling insulating layer 26 is made of tape.

上記の3層収縮チューブ10aは、「第3図」のような
、長尺の3層収縮チューブ10(半導電層12と絶縁層
14と高誘電率層16とからなる)を所定の長さに切断
し、がっ端部18(第1図)を所定の形状に削って、作
ることができる。
The above-mentioned three-layer shrink tube 10a is a long three-layer shrink tube 10 (consisting of a semiconducting layer 12, an insulating layer 14, and a high dielectric constant layer 16) as shown in FIG. It can be made by cutting the end portion 18 (FIG. 1) into a predetermined shape.

この発明は、上記の3層収縮チューブ1oのような熱収
縮チューブの製造方法に関するものである。
The present invention relates to a method of manufacturing a heat shrinkable tube such as the three-layer shrinkable tube 1o described above.

ところで、従来の熱収縮、チューブの製造方法としては
、パイプ状にプラスチ、りを押出すと同時に内部に空気
などを入れてふくらませ、プラスチックの軟化温度以下
で冷却固定するという方法が一般的である。
By the way, the conventional method for producing heat-shrinkable tubes is to extrude plastic into a pipe shape, at the same time inflating it by introducing air inside, and then cooling and fixing it below the softening temperature of the plastic. .

しかし、この方法は大気圧下で製造しているので、原料
中のガスや分解ガスで水分などによって収縮チューブ内
にボイドができる。したがって電気的性能や機械的強度
が悪くなる。
However, since this method is manufactured under atmospheric pressure, voids are created in the shrink tube due to moisture in the gases in the raw materials and decomposed gases. Therefore, electrical performance and mechanical strength deteriorate.

この発明は、ボイドのない、3層−木化し、た熱収縮チ
ューブの製造方法の提供を目的とするものである。
The object of the present invention is to provide a method for manufacturing a void-free three-layer lignified heat shrink tube.

発明の構成 (1) 笥/発明は、「第を図」のように、1)未架橋
のプラスチックまたは未加硫のゴムがらなり、かつ外側
の半導電層と、中間の絶縁層と、内側の高誘電率(また
は半導電層)とが一体になった3層チューブ10cを押
出し成形すること、2)その直後に前記3層チ=−ブ1
0cを加圧状態のもとで、加熱架橋しがっ冷却すること
、3)その後、前記架橋プラスチックまたは加硫ゴムの
3層チューブ10cを加熱軟化させてふくらませ、その
まま冷却すること、 を特徴とする。
Structure of the Invention (1) As shown in Figure 1, the drawer/invention consists of 1) uncrosslinked plastic or unvulcanized rubber, and an outer semiconductive layer, an intermediate insulating layer, and an inner layer. 2) Immediately thereafter, the three-layer tube 10c is integrally formed with the high dielectric constant (or semi-conductive layer) of the three-layer tube 10c.
0c under a pressurized state, heat cross-linking and cooling; 3) Thereafter, the three-layer tube 10c of cross-linked plastic or vulcanized rubber is heated to soften and swell, and then cooled as it is. do.

(2)第2発明は、「第S図」のように、3層押出し機
60に架橋筒4oを直結し、がっ架橋筒40内に心金5
8を突出させた装置を使用し、心金58上にたて添えテ
ープ62を連続的に送り出す点で第1発明と異なり、そ
の他は@/発明と同じように、前記テープ62上に3層
チューブ10cを押出し成形し、それを加圧下で加熱架
橋と冷却とを行ない、その後ふくらませてそのまま冷却
すること、 を特徴とする。
(2) In the second invention, as shown in "Fig.
This invention differs from the first invention in that a device with 8 protruding is used to continuously feed the vertical splicing tape 62 onto the mandrel 58, but otherwise, as with the @/ invention, three layers are placed on the tape 62. The tube 10c is extruded, cross-linked and cooled under pressure, and then expanded and cooled as it is.

(3)第3発明は、「第3図」のように、微小孔66を
持ちかつその上にテープ68を巻くかまたはたて添えし
た孔あきバイブロ4を、3層押出し機60に連続して送
り込み、その上に第1発明の場合同様に3層チー−ブ1
0cを押出し成形し、その直後に、加圧下において加熱
架橋と冷却とを行ない、その後、前記孔あきバイブロ4
内に高圧ガスを送り込んで3層チューブ10cをふくら
ませること、 を特徴とする。
(3) In the third invention, as shown in FIG. Then, as in the case of the first invention, a three-layer cheese 1 is placed on top of it.
Immediately after extrusion molding 0c, heat crosslinking and cooling are performed under pressure, and then the perforated vibro 4
The three-layer tube 10c is inflated by sending high-pressure gas into the tube.

(4’)第を発明は、「第7図」のように−13層押出
し機60に架橋筒40を直結し、かう置を使用し、心金
パイプ58a上にたて添えテープ62を連続的に送り出
し、そのテープ上に3層チューブ10cを押出し成形し
、それを加圧下で加熱架橋を行ない(ここまでは、心金
にパイプ状のものを用いる点を除き、第2発明と同じ)
、前記心金パイプ58a内に圧縮ガスを導入し、かつそ
の圧縮ガスを加熱部42内ぼうにて心金パイプ58aか
ら解放して、3層チューブ10cを所定径までふくらま
し、引続いて冷却すること、を特徴とする。
(4') In the invention, the crosslinking tube 40 is directly connected to the -13 layer extruder 60 as shown in FIG. A three-layer tube 10c is extruded onto the tape, and it is cross-linked by heating under pressure (the process up to this point is the same as the second invention except that a pipe-shaped mandrel is used).
, a compressed gas is introduced into the mandrel pipe 58a, and the compressed gas is released from the mandrel pipe 58a in the inner chamber of the heating section 42 to inflate the three-layer tube 10c to a predetermined diameter, and then cool it. It is characterized by.

構成の詳しい説明 上記の3層押出し機60と架橋筒40とが直結した装置
としては、公知のCVケーブルのCV機やゴム絶縁ケー
ブルの連続加硫機を、使用することができる。
Detailed Description of the Structure As a device in which the three-layer extruder 60 and the crosslinking cylinder 40 are directly connected, a known CV cable machine or a continuous vulcanizer for rubber insulated cables can be used.

CV機を使った一例の概略を「第を図」に示す。An example using a CV machine is shown in Figure 1.

30は3層押出し機、ろ2は3層クロスヘッドである。30 is a three-layer extruder, and filter 2 is a three-layer crosshead.

なお請求範囲中の3層押出し機という用語の中には、各
層の押出し機をタンデムに並べたものも含む。
Note that the term "three-layer extruder" in the claims also includes one in which extruders for each layer are arranged in tandem.

40は架橋筒で、3層押出し機60に直結している。4
2は加熱部で、たとえば内部に高温高圧の蒸気や窒素ガ
ス、シリコーンオイルなどの熱媒体44が入っている。
40 is a crosslinking cylinder, which is directly connected to the three-layer extruder 60. 4
Reference numeral 2 denotes a heating section, in which, for example, a heat medium 44 such as high-temperature, high-pressure steam, nitrogen gas, silicone oil, etc. is contained.

46は前記の加圧加熱媒体の供給源である。46 is a supply source of the pressurized heating medium.

48は冷却部で、50は境界を示す。冷却部48内には
たとえば高圧の冷却水や冷却用の窒素ガス、シリコーン
オイルなどの冷却媒体51が入っている。52は冷却媒
体の循環加圧用ポンプ、54は冷却器、56はシールで
ある(以上述べたところは従来の07機と同じである)
48 is a cooling section, and 50 indicates a boundary. The cooling section 48 contains a cooling medium 51 such as high-pressure cooling water, cooling nitrogen gas, and silicone oil. 52 is a pump for circulating and pressurizing the cooling medium, 54 is a cooler, and 56 is a seal (the above description is the same as the conventional 07 aircraft).
.

58は心金で、丸棒またはパイプからなり、3層クロス
ヘッド62から加熱部42内に突出させたものである。
A mandrel 58 is made of a round bar or a pipe and projects from the three-layer crosshead 62 into the heating section 42 .

これは加熱架橋するとき中空の3層チューブ10cがつ
ぶれるのを防ぐために設ける。
This is provided to prevent the hollow three-layer tube 10c from collapsing during heat crosslinking.

以上の装置を使用し、たとえば架橋プラスチックを土木
とする3層チューブ10c (外層が半導電層、中間が
絶縁層、内層が高誘電率層)を押出し成形する。すなわ
ちケーブル導体を送り込まない点で違いはあるが、その
ほかは3層同時押出しのCVケーブル製造と同じことを
する訳である。
Using the above-mentioned apparatus, a three-layer tube 10c (outer layer is a semiconductive layer, middle layer is an insulating layer, and inner layer is a high dielectric constant layer) is extruded and molded using, for example, a cross-linked plastic. In other words, the difference is that the cable conductor is not fed in, but otherwise the process is the same as the three-layer simultaneous extrusion CV cable manufacturing process.

押出した3層チー−ブ10cを架橋筒40の加熱部42
内で、たとえば高温高圧の蒸気や窒素ガス、シリコーン
オイルなどの熱媒体44により架橋シ、冷却部48にお
いて高圧の冷却水や冷却用窒素ガス、シリコーンオイル
など、の冷却媒体51によって冷却し、それらからいっ
たん巻きとるうその後、上記の架橋ポリエチレンからな
る3層チューブ10cを加熱軟化させるとともに内部に
高圧ガスを入れてふくらませ、そのまま冷却して、「第
3図」のような3層収縮チューブ10とする。
The extruded three-layer tube 10c is heated to the heating section 42 of the crosslinking tube 40.
In the cooling section 48, a cooling medium 51 such as high-pressure cooling water, cooling nitrogen gas, silicone oil, etc. is used to cool the cross-linking, and After that, the three-layer tube 10c made of cross-linked polyethylene is heated and softened, and high-pressure gas is introduced inside to inflate it, and then cooled to form a three-layer shrinkable tube 10 as shown in "Figure 3". do.

なおその場合外径規制用のパイプ内に格納してふくらま
せれば、均一外径になる。
In that case, if it is stored in a pipe for regulating the outer diameter and inflated, it will have a uniform outer diameter.

第2発明の場合は、たとえば「第S図」のように、心金
58(丸棒またはパイプ)を3層クロスヘッド62のニ
ップル34を貫通させ、先端は上記同様に架橋筒40の
加熱部42内に、それがら後端は3層クロスヘッド62
の後方(図で左側)まで少し突出させ、かつ適当な手段
(図示省略)によって動かないように固定しておく。
In the case of the second invention, the mandrel 58 (round bar or pipe) is passed through the nipple 34 of the three-layer crosshead 62, as shown in "Fig. 42, the rear end of which is a three-layer crosshead 62
It is made to protrude a little to the rear (to the left in the figure), and is fixed by appropriate means (not shown) so that it does not move.

そして送出しロール60からテープ62を連続して繰り
出し、心金58上にたて添えしてゆき、そのテープ62
上に、上記同様に3層チューブ10cを順次押出し成形
してゆく。その後は上記同様に架橋筒40内で、加圧下
において加熱架橋と冷却とを行ない、いったん3層チュ
ーブ10cとテープ62とをいっしょに巻きとる。
Then, the tape 62 is continuously fed out from the delivery roll 60 and placed vertically on the mandrel 58.
A three-layer tube 10c is successively extruded on top in the same manner as described above. Thereafter, heat crosslinking and cooling are performed under pressure in the crosslinking tube 40 in the same manner as described above, and the three-layer tube 10c and tape 62 are once wound together.

テープ62の材質にはテフロン、ポリエステルなどを使
う。このテープ62の使用により、押し出したプラスチ
ックの心金58への粘着が防がれ「@6図」に示す第3
発明の場合は、微小孔66を持つ孔あきバイブロ4を、
その上に薄いテープ68(材質はテフロン、ポリエステ
ルなど)を巻くかまたはたて添えして微小孔66をふさ
いでおいて、3層押出し機ろDに連結したクロスへラド
ろ2内に連続して送り込む。そしてその上に3層チュー
ブ10cを押出し成形する。すなわちeVケーブル製造
におけるケーブル導体の代’lに、孔あきバイブロ4を
送り込むのと同じことをする訳である。それから、上記
同様に架橋しくただし中に孔あきバイブロ4が入ったま
ま)、いったん巻きとる。
The tape 62 is made of Teflon, polyester, or the like. By using this tape 62, adhesion of the extruded plastic to the mandrel 58 is prevented, and the third
In the case of the invention, a perforated vibro 4 having micro holes 66,
Wrap a thin tape 68 (made of Teflon, polyester, etc.) on top of the tape 68 (made of Teflon, polyester, etc.) to block the micropores 66, and then connect it to the cross connected to the three-layer extruder filter D and continue into the rad filter 2. and send it in. Then, a three-layer tube 10c is extruded thereon. In other words, it is the same as feeding a perforated vibro 4 into the cable conductor gap in eV cable manufacturing. Then, in the same manner as above, it is cross-linked (with the perforated vibro 4 still inside) and then wound up.

なお、孔あきバイブロ4には架橋時の熱と圧力に耐える
金属パイプなどを使用する。
Note that for the perforated vibro 4, a metal pipe or the like that can withstand heat and pressure during crosslinking is used.

その後3層チューブ10cを加熱軟化させ、孔あきバイ
ブロ4内に高圧空気などを吹き込み微小孔66を通して
流出させて3層チューブ10cをふくらませ、後は上記
同様に冷却して3層収縮チューブ10にする。
Thereafter, the 3-layer tube 10c is heated and softened, and high-pressure air is blown into the perforated vibro 4 and flows out through the micro holes 66 to inflate the 3-layer tube 10c, and then cooled in the same manner as above to form the 3-layer shrinkable tube 10. .

「第7図」は第弘発明の場合である。"Fig. 7" is the case of the Koinsha invention.

上記第1〜3発明の場合は、何れも3層チューブ10c
を製造してからいったん巻きとり、その後加熱軟化させ
てふくらませるようにしていた。
In the case of the above first to third inventions, the three-layer tube 10c
After manufacturing, it was rolled up and then heated to soften and inflate.

しかしこの第グ発明においては、3層チューブ10cの
架橋工程に引続いて、ふくらませを行なう。
However, in this invention, the three-layer tube 10c is inflated subsequent to the crosslinking step.

使用する装置は、「第S図」の第2発明の場合とほぼ同
しである。ただし中空の心金パイプ58aを用い、かつ
その中に供給源70がら圧縮ガス72を送り込めるよう
にしている点で、若干の違いがある。
The apparatus used is almost the same as in the case of the second invention shown in "Fig. S". However, there is a slight difference in that a hollow mandrel pipe 58a is used and compressed gas 72 can be fed into it from a supply source 70.

心金パイプ58a上にたて添えテープ62を連続して送
り込み、その上に3層チューブ10cを押出し被覆し、
その3層チューブ10cを架橋筒40内において加圧状
態のもとて加熱架橋したら(ここまでは第2発明の場合
と同じ)、心金パイプ58aの先端(加熱部42の終端
近ぼうにある)から圧縮ガス72(空気や窒素ガスなど
)を3層チューブ10c内に送り込む。そのとき3層チ
ューブ10cはまだ軟らかいのでふくらむ。ふくらむの
は架橋筒40の冷却部48に入った所であり、その中に
は高圧の冷却水51などが入っているので、内外圧のバ
ランスするところまでふくらむ。なお、内外圧の片方ま
たは両方を調節することによって、ふくらんだときの外
径を所定値にすることができる。また上記のように外径
規制用のパイプなどを使用することもできる。
Continuously feed the vertical support tape 62 onto the mandrel pipe 58a, extrude and cover the three-layer tube 10c on top of it,
After heating and crosslinking the three-layer tube 10c under pressure in the crosslinking tube 40 (this is the same as in the second invention), the tip of the mandrel pipe 58a (near the end of the heating section 42) ) A compressed gas 72 (air, nitrogen gas, etc.) is sent into the three-layer tube 10c. At that time, the three-layer tube 10c is still soft and swells. The part that swells is the part of the bridging cylinder 40 that enters the cooling part 48, which contains high-pressure cooling water 51, so it swells to the point where the internal and external pressures are balanced. Note that by adjusting one or both of the internal and external pressures, the outer diameter when inflated can be set to a predetermined value. Further, as described above, a pipe for regulating the outer diameter or the like can also be used.

ふくらんだ3層チューブ10cは直ちに冷却されて、3
層収縮チューブ10になる。
The swollen three-layer tube 10c is immediately cooled and
It becomes a layered shrink tube 10.

なお以上の説明は、半導電層12と絶縁層14と高誘電
率層16とからなる3層収縮チューブ1θの場合につい
て行なったが、内層が高誘電率層16の代りに半導電層
の場合も同様に実施できる。
Note that the above explanation has been made for the case of a three-layer shrink tube 1θ consisting of a semiconductive layer 12, an insulating layer 14, and a high dielectric constant layer 16, but a case where the inner layer is a semiconductive layer instead of the high dielectric constant layer 16 can be implemented in the same way.

また材質がポリエチレンでなくゴムの場合も全く同様に
実施できる。
Further, when the material is not polyethylene but rubber, it can be carried out in exactly the same way.

また「第3図」の半導電層12、絶縁層14、高誘電率
層16からなる3層収縮チューブ10の内側にさらに半
導電\層を持つ’l 層の収縮チューブも、本発明を利
用して製造できる。その場合は3層押出し機30の前段
に最内層用の押出し機を設けるか、あるいは1層の押出
し機を使用する。
Further, the present invention can also be used for a 1 layer shrink tube having an additional semiconducting layer inside the three-layer shrink tube 10 consisting of a semiconducting layer 12, an insulating layer 14, and a high dielectric constant layer 16 as shown in "Fig. 3". It can be manufactured by In that case, an extruder for the innermost layer is provided upstream of the three-layer extruder 30, or a single-layer extruder is used.

発明の効果 (1)第1発明においては、高圧下で加熱架橋ならびに
冷却を行なうので、ボイドのほとんどない3層チューブ
Incを作ることができる。
Effects of the Invention (1) In the first invention, since thermal crosslinking and cooling are performed under high pressure, it is possible to produce a three-layer tube Inc with almost no voids.

ま゛た従来から使っている07機などを使用できる。You can also use the 07 aircraft that has been used for a long time.

(2)第2発明においては、心金58上にたて添えテー
プ62を連続して送り込み、その上に3層プラスチック
チューブ10cを順次押出し成形してゆくので、プラス
チックと心金58との粘着が防止される。
(2) In the second invention, since the vertical splicing tape 62 is continuously fed onto the mandrel 58 and the three-layer plastic tube 10c is sequentially extruded thereon, the adhesiveness between the plastic and the mandrel 58 is is prevented.

(3)第3発明においては、微小孔66を持つ孔あきバ
イブロ4を使用するので、心金58を付加する必要はな
く、従来のCVケーブル製造の場合とほぼ同様に実施で
きる。。
(3) In the third invention, since the perforated vibro 4 having the minute holes 66 is used, there is no need to add the mandrel 58, and the production can be carried out in substantially the same manner as conventional CV cable manufacturing. .

また孔あきバイブロ4内に高圧ガスを送って3層チュー
ブをふくらませることができる。
Moreover, high pressure gas can be sent into the perforated vibro 4 to inflate the three-layer tube.

(4’)また第を発明においそは、加熱架橋の終った直
後の3層チューブ10c内に圧縮ガスを送り込んでふく
らませ、引続いて冷却を行なうので、3層収縮チューブ
10の製造を、押出し工程に引続いて連続的に行なうこ
とができる。
(4') Also, in the second invention, compressed gas is sent into the three-layer tube 10c immediately after the heat crosslinking is completed to inflate it, and then cooling is performed. The process can be carried out continuously.

また、それらの架橋、ふくらませおよび冷却の各工程の
全部を架橋筒40内において行なうので、ふくらませ用
の加熱冷却装置を別に設ける必要がない。
Further, since all of the steps of crosslinking, swelling, and cooling are performed within the crosslinking tube 40, there is no need to provide a separate heating and cooling device for inflation.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は3層収縮チューブ10aの説明図、第2図は3
層収縮チューブ10aを使って形成した補強絶縁体10
bの説明図、 第3図は3層収縮チューブ10aのもとになる3層収縮
チューブ10の説明図、 第を図は第1発明の説明図、 第S図は第2発明の説明図、 嫡乙図はめ3発明の説明図、 第7図は第グ発明の説明図。 10:3層収縮チューブ 12:半導電層 14:絶縁層 16:高誘電率層 60:3層押出し機 64:ニップル 40:架橋筒 42:加熱部 48:冷却部 58:心金 58a:心金バイブ ロ2:テープ 64:孔あきバイブ ロ8:テープ 70:圧縮ガス 85 第1頁の続き ([株]発 明 者 片岡敬一部 東京都江東区木場一丁目5番1 号藤倉電線株式会社内
FIG. 7 is an explanatory diagram of the three-layer shrink tube 10a, and FIG.
Reinforced insulator 10 formed using layered shrink tube 10a
Figure 3 is an explanatory diagram of the three-layer shrinkable tube 10 that is the basis of the three-layer shrinkable tube 10a, Figure 3 is an explanatory diagram of the first invention, Figure S is an explanatory diagram of the second invention, Figure 7 is an explanatory diagram of the third invention of the third invention. 10: Three-layer shrink tube 12: Semi-conductive layer 14: Insulating layer 16: High dielectric constant layer 60: Three-layer extruder 64: Nipple 40: Cross-linked tube 42: Heating section 48: Cooling section 58: Mandrel 58a: Mandrel Vibro 2: Tape 64: Perforated Vibro 8: Tape 70: Compressed gas 85 Continued from page 1 (Inventor Kei Kataoka, Fujikura Electric Cable Co., Ltd., 1-5-1 Kiba, Koto-ku, Tokyo)

Claims (1)

【特許請求の範囲】 未架橋のプラスチックまたは未加硫ゴムからなり、かつ
外側の半導電層と、中間の絶縁層と内側の高誘電率層(
または半導電層)とが一本になった3層チューブを押出
し成形し、 その後直ちに、加圧状態のもとて加熱架橋ならびに冷却
を行ない、 その後前記架橋プラスチッ または加硫ゴムの3層チュ
ーブを加熱軟化させ−ふくらませ、そのまま冷却するこ
と、 を特徴とする熱収縮チ=−ブの製造方法。 (り3層押出し機に架橋筒を直結しかつ架橋筒内に心金
の突出する、装置を使用し、 前記心金上にたて添えテープを連続して送り込むと同時
に、前記テープの上に未架橋のプラスチックまたは未加
硫ゴムからなり、かつ外側の半導電層と、中間の絶縁層
と内側の高誘電率層(または半導電層)とが一本になっ
た3層チューブを押出し成形し、 その直後に、前記架橋筒内において加圧状態のもとて加
熱架橋ならびに冷却を行ない、 その後前記架橋プラスチックまたは加硫ゴムの3層チュ
ーブを加熱軟化させてふくらませ、そのまま冷却するこ
と、 を特徴とする熱収縮チューブの製造方法。 (3)3層押出し機に架橋節を直結した装置を使用し、 前記3層押出し機に、微小孔を持ちがっその上にテープ
を巻くかまたはたて添えした孔あきパイプを連続的に送
り込み、 その孔あきパイプの」二に未架橋のプラスチックまたは
未加硫のゴムがらなり、がっ外側の半導電層と中間の絶
縁層と内側の高誘電率層(または半導電層)とが一体に
なった3層チューブを押出し成形し) その直後に、前記架橋筒内において、加圧状態のもとて
加熱架橋と冷却とを行なって、内部に孔あきパイプを有
する架橋プラスチックまたは加硫ゴムの3層チューブを
作り、 その後前記3層チューブを加熱軟化させるとともに前記
孔あきパイプ内に高圧ガスを送り込んでふくらませ、そ
のまま冷却すること、 を特徴とする熱収縮チューブの製造方法。 (4’) 3層押出し機に架橋筒を直結しがっ架橋筒内
6.心金バイyo突出す6装置や使用い前記、ol合金
バイブ上たて添えテープを連続して送り込むと同時に、
前記テープの上に未架橋のプラスチックまたは未加硫ゴ
ムからなり、がっ外側の半導電層と、中間の絶縁層と内
側の高誘電率層(または半導電層)とが−木になった3
層チューブを押出し成形し、 前記架橋筒内において加圧状態のもとて加熱架橋を行な
い、前記心金パイプ内に圧縮ガスを導入しも、加熱前終
端近ぼうにて心金パイプがら前記圧縮ガスを解放して前
記3層チューブを所定径までふくらまし、 引続いて冷却すること、 を特徴とする熱収縮チューブの製造方法。
[Claims] It is made of uncrosslinked plastic or unvulcanized rubber, and comprises an outer semiconductive layer, an intermediate insulating layer, and an inner high dielectric constant layer (
A three-layer tube made of cross-linked plastic or vulcanized rubber is extruded and then immediately cross-linked under pressure and cooled. A method for producing a heat-shrinkable tube, which is characterized by heating, softening, swelling, and cooling. (Using a device in which a cross-linking cylinder is directly connected to a three-layer extruder and a mandrel protrudes into the cross-linking cylinder, the vertical splicing tape is continuously fed onto the mandrel, and at the same time, the tape is placed on top of the tape. Extrusion molding of a three-layer tube made of uncrosslinked plastic or unvulcanized rubber, consisting of an outer semiconductive layer, an intermediate insulating layer, and an inner high dielectric constant layer (or semiconductive layer). Immediately thereafter, heat crosslinking and cooling are performed under pressure in the crosslinking cylinder, and then the three-layer tube of crosslinked plastic or vulcanized rubber is heated to soften and swell, and then cooled as it is. A method for manufacturing a heat-shrinkable tube characterized by: (3) Using a device in which a crosslinking node is directly connected to a three-layer extruder, the three-layer extruder has micropores and a tape is wound thereon or A perforated pipe is continuously fed into the perforated pipe, and the second part of the perforated pipe is made of uncrosslinked plastic or unvulcanized rubber. Immediately after extrusion molding a three-layer tube with an integrated conductive layer (or semi-conductive layer), heat cross-linking and cooling are performed under pressure in the cross-linking cylinder to form an internal layer. A three-layer tube of cross-linked plastic or vulcanized rubber having a perforated pipe is made, and then the three-layer tube is heated and softened, high-pressure gas is sent into the perforated pipe to inflate it, and the method is cooled as it is. How to make heat shrink tubing. (4') Directly connect the cross-linked cylinder to the 3-layer extruder and insert the inside of the cross-linked cylinder 6. At the same time as the 6 devices that protrude from the mandrel vibrator and the OL alloy vibrator tape are continuously fed in,
The tape is made of uncrosslinked plastic or unvulcanized rubber, with an outer semiconductive layer, an intermediate insulating layer, and an inner high dielectric constant layer (or semiconductive layer) made of wood. 3
Even if a layered tube is extruded and cross-linked under pressure in the cross-linking cylinder, and compressed gas is introduced into the mandrel pipe, the compressed gas is removed from the mandrel pipe near the end before heating. A method for manufacturing a heat-shrinkable tube, comprising: inflating the three-layer tube to a predetermined diameter by releasing gas, and subsequently cooling it.
JP57154341A 1982-09-03 1982-09-03 Preparation of heat shrinkable tube Granted JPS5942918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154341A JPS5942918A (en) 1982-09-03 1982-09-03 Preparation of heat shrinkable tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154341A JPS5942918A (en) 1982-09-03 1982-09-03 Preparation of heat shrinkable tube

Publications (2)

Publication Number Publication Date
JPS5942918A true JPS5942918A (en) 1984-03-09
JPH0344894B2 JPH0344894B2 (en) 1991-07-09

Family

ID=15582028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154341A Granted JPS5942918A (en) 1982-09-03 1982-09-03 Preparation of heat shrinkable tube

Country Status (1)

Country Link
JP (1) JPS5942918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760542A (en) * 2012-07-12 2012-10-31 长园集团股份有限公司 Three-layer thermal shrinkage composite tube
CN107959206A (en) * 2017-11-17 2018-04-24 佛山市集知汇科技有限公司 A kind of tail sleeve assembling device of conduction plug wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503790A (en) * 1973-05-15 1975-01-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503790A (en) * 1973-05-15 1975-01-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760542A (en) * 2012-07-12 2012-10-31 长园集团股份有限公司 Three-layer thermal shrinkage composite tube
CN107959206A (en) * 2017-11-17 2018-04-24 佛山市集知汇科技有限公司 A kind of tail sleeve assembling device of conduction plug wire

Also Published As

Publication number Publication date
JPH0344894B2 (en) 1991-07-09

Similar Documents

Publication Publication Date Title
CN111834958B (en) Single-core cross-linked power cable insulating joint of 500kV and below and manufacturing process
AU2016429081B2 (en) Process for jointing cables, apparatus for performing such a process and thermoplastic joint so manufactured
GB2030014A (en) Method of connecting cables
JPS5942918A (en) Preparation of heat shrinkable tube
US3800017A (en) Method of manufacturing electric cables in a dielectric material saturated with cable gas
US4032380A (en) Method of joining of insulated high-voltage cables
JPS5935381A (en) Method of producing thermally shrinkable sleeve for bonding electric cable and device therefor
EP0271990A2 (en) An insulated wire comprising a polytetrafluoroethylene coating
JPH11277626A (en) Method and apparatus for manufacture of heat-shrinkable tube
JP2619348B2 (en) Heat shrink tube manufacturing method
JP3012515B2 (en) CV cable insulation connection method
FI66999C (en) SAETT VIDAR SCARVES AV EN CABLE WITH ISOLERING AV TVAERBUNDEN POYETEN ELLER ANNAN TVAERBUNDEN POLYMER
JP3012514B2 (en) CV cable insulation connection method
JPH0137834B2 (en)
JP2002369365A (en) Method for manufacturing cylindrical member made of polymer material for connecting power cable
JP3067352B2 (en) Rubber insulated wire and method of manufacturing the same
JPH0530900Y2 (en)
JPH1032912A (en) Method for connecting cv cable
JPS5911223A (en) Manufacture of heat-shrinkable sleeve for joint
JPS6215985Y2 (en)
JP2510467Y2 (en) Mold block for forming connection part of rubber / plastic insulation cable
JPS586242B2 (en) Kakiyo Polyolefin Inset Cable
JPS5857278A (en) Method of producing plastic insulated power cable connector
JPH0667594B2 (en) Manufacturing method of semi-conductive heat shrinkable tube
JPH051732B2 (en)