JPS5942515A - Photoscanner - Google Patents

Photoscanner

Info

Publication number
JPS5942515A
JPS5942515A JP15362782A JP15362782A JPS5942515A JP S5942515 A JPS5942515 A JP S5942515A JP 15362782 A JP15362782 A JP 15362782A JP 15362782 A JP15362782 A JP 15362782A JP S5942515 A JPS5942515 A JP S5942515A
Authority
JP
Japan
Prior art keywords
light
scanning
scanned
mirror
polygon mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15362782A
Other languages
Japanese (ja)
Other versions
JPH052965B2 (en
Inventor
Kazuhiko Matsuoka
和彦 松岡
Masayuki Usui
臼井 正幸
Kazuo Minoura
一雄 箕浦
Takeshi Baba
健 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15362782A priority Critical patent/JPS5942515A/en
Publication of JPS5942515A publication Critical patent/JPS5942515A/en
Publication of JPH052965B2 publication Critical patent/JPH052965B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To adjust positions of scanning lines accurately by utilizing the fact that ghost light from a rotary polygon mirror becomes standstill in principle, and detecting the displacement of the scanning lines and controlling the scanning lines to specific positions. CONSTITUTION:The luminous flux L from a light source 2 after being reflected by a mirror surface 1a of the rotary polygon mirror 1 is passed through an image forming lens 3 and bent by an optical path bending mirror 6 to form its image at a point A in a scanned surface 4. Regularly deflected light L1 from the point A passes through optical paths shown by dotted lines and then forms the image at a point B on an oscillation detector 7. When the optical path bending mirror 6 rotates as shown by an arrow P by oscillations, a main scanning line moves as shown by an arrow Q, but the image formation position of the ghost light L2 also shifts as shown by an arrow R and its movement extent is detected by the oscillation detector 7. The position shift of the bending mirror 6 in the direction of the optical axis 0 of the image forming lens 3 is also detected.

Description

【発明の詳細な説明】 本発明は、偏向器として回転多面鏡を用いた装置におい
て、主走査線と被走査面との間の所定の相対走査位置関
係からの変位を補正する光走査装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scanning device that corrects displacement from a predetermined relative scanning positional relationship between a main scanning line and a surface to be scanned in an apparatus using a rotating polygon mirror as a deflector. It is something.

レーザービームプリンタ等に用いられる光走査装置にお
いては、光路の途中に光路折り曲げミラー等を用いて装
置の小型化を図る場合が多い。しかしながら、回転多面
鏡や回転ドラム等の装置内部の可動部の振動、或いは外
的要因により前記光路折り曲げミラー等の光学部品に振
動を生じ、その結果として主走査線が所定の走査位置か
ら変位する場合がある。更には、被走査面である感光体
ドラムの回転速度にむらが生じた場合も、主走査線と感
光体ドラム上の所定の走査位置との相対関係が変化する
ことになる。これらの光学部品の振動や感光体ドラムの
回転むらの周期は、回転多面鏡による光束の偏向周期に
比べて比較的遅いが、主走査線のビ・ンチが徐々に変化
し、得られる画像は著しく質の損なわれたものとなる。
In optical scanning devices used in laser beam printers and the like, miniaturization of the device is often achieved by using an optical path bending mirror or the like in the middle of the optical path. However, vibrations of movable parts inside the device, such as a rotating polygon mirror or a rotating drum, or external factors cause vibrations in optical components such as the optical path bending mirror, and as a result, the main scanning line is displaced from a predetermined scanning position. There are cases. Furthermore, if the rotational speed of the photoreceptor drum, which is the surface to be scanned, becomes uneven, the relative relationship between the main scanning line and a predetermined scanning position on the photoreceptor drum will change. The vibrations of these optical parts and the rotational irregularities of the photoreceptor drum are relatively slow compared to the deflection period of the light beam by the rotating polygon mirror, but as the main scanning line's width and width gradually change, the resulting image is The quality will be significantly impaired.

このため、従来は振動が生じ易い部品を大型化するとか
、保持手段を堅牢にするというような対策が採られてき
たが、装置の大型化・複雑化を招来する欠点があった。
For this reason, countermeasures have been taken in the past, such as increasing the size of parts that are prone to vibration or making the holding means more robust, but these have the drawback of making the device larger and more complex.

本発明の目的は、上述の欠点を解消し、ゴースト光を利
用することにより簡単な構成で、主走査線と被走査面と
の間の所定の相対位置関係からの主走査線の変位を検知
し、変位があればこれを補正して主走査線を所定のピッ
チ間隔とする光走査装置を提供することにあり、その要
旨は、光束の進行に従って、光源、主走査方向に偏向を
行う回転多面鏡、結像光学系、被走査面の順に配置され
た光走査装置において、前記回転多面鏡から発生するゴ
ースト光の変位を検出する検出器と、前記光源と回転多
面鏡の間に配置し、走査偏向面とほぼ直交する平面内で
前記検出器の出力を基に光束を副走査方向に偏向する副
走査偏向器とを具備し、主走査線と被走査面との間で所
定の相対走査位置関係を得るようにしたことを特徴とす
るものである。
An object of the present invention is to eliminate the above-mentioned drawbacks and detect displacement of a main scanning line from a predetermined relative positional relationship between the main scanning line and the scanned surface with a simple configuration by utilizing ghost light. However, the object of the present invention is to provide an optical scanning device that corrects any displacement and maintains the main scanning line at a predetermined pitch interval. In an optical scanning device in which a polygon mirror, an imaging optical system, and a surface to be scanned are arranged in this order, a detector for detecting displacement of ghost light generated from the rotating polygon mirror is arranged between the light source and the rotating polygon mirror. , a sub-scanning deflector that deflects the light beam in the sub-scanning direction based on the output of the detector in a plane substantially orthogonal to the scanning deflection plane, and a predetermined relative distance between the main scanning line and the scanned surface. This method is characterized in that a scanning positional relationship is obtained.

第り図は回転多面鏡1から発生するゴースト光の説明図
であり、主走査平面内での断面を示している。この第1
図において、光源2からの光束りは回転多面鏡1の鏡面
1aにより反射−偏向された後に、実線で示す光路を通
り結像光学系3によって被走査面4上の点Aに結像され
る。いま、被走査面4が拡散面とみなされるならば、点
Aを二次光源としてあらゆる方向に反射光は進むことに
なるが、ゴースト光の主たる成分となるのは点線で示し
た範囲を回転多面鏡1に進行する反射光L1である。即
ち、回転多面鏡1の鏡面1bに向うこの反射光L1は、
前記鏡面1aに隣接するこの鏡面1bで反射された後に
、ゴースト光し2として結像光学系3により被走査面4
上の点Bに結像される。この点Bの位置は、回転多面鏡
1の鏡面数と、回転多面鏡lへ入射する光源2からの光
束りが結像光学系3の光軸Oとなす角度αによってのみ
決定され、回転多面鏡1の回転とは無関係であり、点B
に結像されるゴースト光L2は静止像である。
The second figure is an explanatory diagram of ghost light generated from the rotating polygon mirror 1, and shows a cross section within the main scanning plane. This first
In the figure, the light beam from the light source 2 is reflected and deflected by the mirror surface 1a of the rotating polygon mirror 1, and then passes through the optical path shown by the solid line and is imaged at a point A on the scanned surface 4 by the imaging optical system 3. . Now, if the scanned surface 4 is considered to be a diffusing surface, the reflected light will travel in all directions with point A as a secondary light source, but the main component of the ghost light is the rotation within the range shown by the dotted line. This is reflected light L1 traveling to the polygon mirror 1. That is, this reflected light L1 directed toward the mirror surface 1b of the rotating polygon mirror 1 is
After being reflected by the mirror surface 1b adjacent to the mirror surface 1a, the ghost light 2 is transmitted to the scanned surface 4 by the imaging optical system 3.
The image is formed at point B above. The position of this point B is determined only by the number of mirror surfaces of the rotating polygon mirror 1 and the angle α that the light beam from the light source 2 entering the rotating polygon mirror l makes with the optical axis O of the imaging optical system 3. It is unrelated to the rotation of mirror 1, and point B
The ghost light L2 imaged in is a still image.

このゴースI・光を除去する手段しては、第2図に示す
ように主走査平面と直交する副走査平面内において、回
転多面鏡lへの入射光束りを結像光学系3の光軸Oに対
して微小量だけ傾ける手段が広く知られている。この第
2図において、光源2からの入射光束りは鏡面1aで反
射された後に、結像光学系3により被走査面4上の点A
に結像される。この点Aを二次光源とする反射光L1の
内、点線で示す光路を戻り鏡面1bで反射されたゴース
ト光L2は、被走査面4上の点Bに向うことになるが、
一般には光路の途中に例えば遮光板5を設置することに
よって被走査面4にゴースト光L2が到達することを防
止している。
As shown in FIG. 2, the means for removing this ghost I light is to direct the incident light beam to the rotating polygonal mirror l to the optical axis of the imaging optical system 3 in the sub-scanning plane orthogonal to the main scanning plane. A means of tilting the surface by a minute amount with respect to O is widely known. In FIG. 2, the incident light beam from the light source 2 is reflected by the mirror surface 1a, and then transferred to a point A on the scanned surface 4 by the imaging optical system 3.
is imaged. Of the reflected light L1 that uses this point A as a secondary light source, the ghost light L2 that returns along the optical path indicated by the dotted line and is reflected by the mirror surface 1b heads toward point B on the scanned surface 4.
Generally, the ghost light L2 is prevented from reaching the scanned surface 4 by installing, for example, a light shielding plate 5 in the middle of the optical path.

次に本発明を第3図以下に図示の実施例に基づいて詳細
に説明する。なお、第1図及び第2図と同一の符号は同
一の部材を示すものとする。
Next, the present invention will be explained in detail based on the embodiments shown in FIG. 3 and below. Note that the same reference numerals as in FIGS. 1 and 2 indicate the same members.

第3図は装置の振動に起因する主走査線の位置ずれの検
知手段の原理を副走査平面内での断面図で示している。
FIG. 3 is a cross-sectional view in the sub-scanning plane showing the principle of a means for detecting positional deviation of the main scanning line caused by vibration of the apparatus.

光源2からの光束りは、回転多面鏡1の鏡面1aで反射
された後に結像レンズ3を通過し、光路折り曲げミラー
6により光路を折り曲げられ被走査面4の点Aに結像す
るようになっている。この点Aからの正反射光Llは点
線で示す折り返し光路を経由した後に振動検出器7上の
点Bに結像する。この第3図では説明の便宜上、副走査
面内において回転多面鏡lに入射する光束りを、結像レ
ンズ3の光軸0に対して傾むけているが平行に入射させ
るようにしても支障はない。何故ならば、第1図に示す
ように主走査平面内において、回転多面鏡lの鏡面数と
主走査平面内で回転多面鏡1へ入射する光束りの結像レ
ンズ3の光軸と成す角度αを調節することにより、ゴー
スト光L2の結像する点Bを有効走査範囲外へ設定する
ことができるからである。
The light beam from the light source 2 is reflected by the mirror surface 1a of the rotating polygon mirror 1, passes through the imaging lens 3, and the optical path is bent by the optical path bending mirror 6 so that it forms an image at point A on the scanned surface 4. It has become. The specularly reflected light Ll from this point A is focused on a point B on the vibration detector 7 after passing through a folded optical path indicated by a dotted line. In FIG. 3, for convenience of explanation, the light beam incident on the rotating polygon mirror l in the sub-scanning plane is tilted with respect to the optical axis 0 of the imaging lens 3, but there is no problem even if the beam is made parallel to the optical axis 0. There isn't. This is because, as shown in FIG. 1, in the main scanning plane, the number of mirror surfaces of the rotating polygon mirror l and the angle between the optical axis of the imaging lens 3 and the beam of light incident on the rotating polygon mirror 1 in the main scanning plane. This is because by adjusting α, the point B on which the ghost light L2 is imaged can be set outside the effective scanning range.

いま、第3図において光路折り曲げミラー6が、例えば
振動により矢印Pの方向に回転するならば、主走査線は
矢印Qの方向に移動するが、同時にゴースト光L2の結
像位置も矢印Rの方向に移動し、その移動量は振動検出
器7によって検出できる。また、折り返しミラー6の結
像レンズ3の光軸O方向への位置ずれについても同様に
検知できる。
Now, in FIG. 3, if the optical path bending mirror 6 rotates in the direction of arrow P due to vibration, for example, the main scanning line moves in the direction of arrow Q, but at the same time, the imaging position of ghost light L2 also shifts to the direction of arrow R. direction, and the amount of movement can be detected by the vibration detector 7. Furthermore, a positional shift of the imaging lens 3 of the folding mirror 6 in the direction of the optical axis O can also be detected in the same manner.

振動き山型7としては、例えば副走査方向に受光素子列
を揃えた一部元CCD (Charge Couple
dDevice)が用いられる。このCODから成る振
動検出器7においては、第4図に示すようにゴー21・
光L2の移動により出力信号のピーク位置が例えはSO
からSlに移動するので、この出力信号を基に予め記憶
された所定の位置と比較することによりピーク位置の変
位量を検知できる。振動検出器7に二次元CODを用い
れば、主走査方向への変位量も同時に検知できることに
なる。
As the vibrating mountain type 7, for example, a partial CCD (Charge Couple) with light receiving element arrays aligned in the sub-scanning direction is used.
dDevice) is used. In the vibration detector 7 made of this COD, as shown in FIG.
By moving the light L2, the peak position of the output signal changes to, for example, SO
Since the peak position moves from to Sl, the amount of displacement of the peak position can be detected by comparing it with a predetermined position stored in advance based on this output signal. If a two-dimensional COD is used for the vibration detector 7, the amount of displacement in the main scanning direction can also be detected at the same time.

この振動検出器7の更なる一例として、第5図に示すよ
うに副走査方向に連続的に開口が変化する複スリット8
と、これら複スリット8を通過した光量に応じて出力が
変化する光電変換素子を組合わせて用いてもよい。基準
位置soにおける光電出力に比べてSlに位置ずれした
ゴースト光L2がらは、得られる出力信号が小さいこと
が理解できる。これらの複スリット8の代りに副走査方
向に連続的に透過率の変化する濃度フィルタを用いるこ
とも可能である。
As a further example of this vibration detector 7, as shown in FIG.
A photoelectric conversion element whose output changes depending on the amount of light passing through these multiple slits 8 may be used in combination. It can be seen that the output signal obtained from the ghost light L2 shifted to Sl is smaller than the photoelectric output at the reference position so. Instead of these multiple slits 8, it is also possible to use a density filter whose transmittance changes continuously in the sub-scanning direction.

上述のような手段により検知された変位量に基づいて、
光源2からの光束りを予め副走査平面内で傾むけて回転
多面鏡lへ入射させることにより、振動による主走査線
の所定の位置からのずれ量を補正することが可能となる
。第6図はより具体的な主走査線の位置ずれ補正光学系
をレーザービームプリンタに応用した構成図である。光
源2は例えば自己変調可能な半導体レーザーであり、光
束りの進行に沿って順次に音響光学素子から成る副走査
偏向器9、回転多面鏡1、結像レンズ3、光路折り曲げ
ミラー6a、6b、感光体ドラムから成る被走査面4が
配列されている。この場合、振動検出器7にはゴースト
光が入射することになり、被走査面4における走査線A
′が被走査面4の回転方向D1に位置ずれすると、その
ずれ量は振動検出器7により検出できる。従って、振動
検出器7の出力を制御回路10を介して副走査偏向器9
に送信し、この副走査偏向器9により光束りを02方向
に制御することによって走査線A′の位置ずれ補正が可
能となる。
Based on the amount of displacement detected by the means described above,
By tilting the light beam from the light source 2 in advance within the sub-scanning plane and making it incident on the rotating polygon mirror l, it becomes possible to correct the amount of deviation of the main scanning line from a predetermined position due to vibration. FIG. 6 is a more specific configuration diagram in which a main scanning line misalignment correction optical system is applied to a laser beam printer. The light source 2 is, for example, a self-modulating semiconductor laser, and sequentially includes a sub-scanning deflector 9 made of an acousto-optic element along the progress of the light beam, a rotating polygon mirror 1, an imaging lens 3, optical path bending mirrors 6a, 6b, Scanned surfaces 4 made of photoreceptor drums are arranged. In this case, ghost light is incident on the vibration detector 7, and the scanning line A on the scanned surface 4
' is displaced in the rotational direction D1 of the scanned surface 4, the amount of displacement can be detected by the vibration detector 7. Therefore, the output of the vibration detector 7 is transmitted to the sub-scanning deflector 9 via the control circuit 10.
By controlling the light flux in the 02 direction using the sub-scanning deflector 9, it becomes possible to correct the positional deviation of the scanning line A'.

以」−の説明では、振動による起因する主走査線A′の
所定の位置からの変位を補正する手段について述べてき
たが、被走査面4の移動速度のむらに起因する主走査線
A′と被走査面4との所定の相対走査位置からの変位の
検知にゴースト光L2を用いることも可能である。第7
図はゴースト光L2を用いた被走査面4の移動速度むら
を検出する速度検出器の一例を示し、前述の原因により
発生するゴースト光L2は、被走査面4上の有効走査領
域外に、没けられたコード信号21上を照射している。
In the following explanation, the means for correcting the displacement of the main scanning line A' from a predetermined position caused by vibration has been described. It is also possible to use the ghost light L2 to detect displacement from a predetermined relative scanning position with respect to the surface to be scanned 4. 7th
The figure shows an example of a speed detector that uses ghost light L2 to detect unevenness in the moving speed of the scanned surface 4. The sunken code signal 21 is irradiated.

このコード信号21は例えば被走査面4の外膜に沿って
設けられ、反射率が交互に変化するバーコード列であり
、コード読取り用光学系22を介してコード信号21が
結像される位置に複スリント23が設置されている。複
スリット23には光学系22の結像倍率に応じてコード
信号21のピッチと光学的に等価なピッチの開口部24
が設けられている。この開口部24を通過した光は光電
変換素子25に入射し、光電変換素子25では入射光量
に応じた出力信号を発生するようになっている。
This code signal 21 is, for example, a barcode array provided along the outer film of the surface to be scanned 4 and whose reflectance changes alternately, and the position where the code signal 21 is imaged via the code reading optical system 22. A multiple slint 23 is installed in the. The multiple slit 23 has an aperture 24 having a pitch optically equivalent to the pitch of the code signal 21 according to the imaging magnification of the optical system 22.
is provided. The light passing through this opening 24 is incident on a photoelectric conversion element 25, and the photoelectric conversion element 25 generates an output signal according to the amount of incident light.

被走査面4が所定の等速移動をするならば、光電変換素
子25から得られる出力波形は等周期的に変化する波形
となるが、移動速度にむらが生じた場合には周期が一定
でない出力波形が得られる。この波形の変動を把えるこ
とにより、被走査面4の移動速度のむらを定量化するこ
とが可能となる。移動速度のむらを更に良好に検知する
ためには、ゴースト光L2が被走査面4上に結像する直
前に拡散板26を設置して、コード信号を21を成る程
度の面積をもって被走査面4上をほぼ均一な照度で照明
することが考えられる。これにより、振動によるゴース
ト光L2の結像位置が、被走査面4−ヒで副走査方向D
Iに振動しても、その影響を受けることなく被走査面4
の移動速度むらを正確に検知できることになる。
If the scanned surface 4 moves at a predetermined constant speed, the output waveform obtained from the photoelectric conversion element 25 will be a waveform that changes periodically, but if the moving speed is uneven, the period will not be constant. Output waveform is obtained. By understanding this waveform variation, it becomes possible to quantify the unevenness of the moving speed of the scanned surface 4. In order to better detect unevenness in the moving speed, a diffuser plate 26 is installed just before the ghost light L2 forms an image on the scanned surface 4, and the code signal is spread over the scanned surface 4 with an area of about 21. It is conceivable to illuminate the upper part with almost uniform illuminance. As a result, the imaging position of the ghost light L2 due to the vibration is shifted to the sub-scanning direction D on the scanned surface 4-H.
Even if it vibrates to I, the scanned surface 4 is not affected by it.
This means that it is possible to accurately detect unevenness in movement speed.

第8図は上述の説明に基づくゴースト光L2を用いた振
動検出器7と被走査面4の移動速度検出器を兼ね備えた
光走査装置をレーザービームプリンタに用いた場合を示
している。光源2がら発光された光束りは、音響光学素
子である副走査偏向器9を通過した後に回転多面鏡1の
鏡面1aによって主走査方向に偏向され、結像光学系3
により被走査面4上に結像される。途中の光路は装置の
小型化を計るために光路折り曲げミラー6a、6bによ
り折り曲げられる。被走査面4」−の走査光の結像点A
を二次光源とする光束Llは、折り曲げミラー6b、6
a及び結像光学系3を通過した後に一部は回転多面鏡1
の鏡面1bにより折り返され、ゴースト光L2として再
び被走査面4に向う。
FIG. 8 shows a case where the optical scanning device equipped with the vibration detector 7 using the ghost light L2 and the movement speed detector of the surface to be scanned 4 based on the above explanation is used in a laser beam printer. The light beam emitted from the light source 2 passes through the sub-scanning deflector 9, which is an acousto-optic element, and then is deflected in the main scanning direction by the mirror surface 1a of the rotating polygon mirror 1, and is then sent to the imaging optical system 3.
An image is formed on the surface to be scanned 4. The optical path along the way is bent by optical path bending mirrors 6a and 6b in order to downsize the device. Image point A of the scanning light on the scanned surface 4''
The light beam Ll with the secondary light source is the bending mirror 6b, 6
After passing through a and the imaging optical system 3, a part of the rotating polygon mirror 1
The light is reflected by the mirror surface 1b and heads toward the scanned surface 4 again as ghost light L2.

コノコ’−スト光L2は被走査面4の直前でビームスプ
リ・ンタ27により分離され、一部は拡散板26に直進
し、一部は反射されて振動検出器7に入射するようにな
っている。
The conocost light L2 is separated by a beam splitter 27 just before the scanned surface 4, and part of it goes straight to the diffuser plate 26, and part of it is reflected and enters the vibration detector 7. There is.

従って、光電変検素−1−25からの出力波形の変動を
検知すれば、被走査面4の回転速度むらを検出すること
が可能となる。一方、ビームスプリッタ27により分離
されたゴースト光L2は、被走査面4上のコード信号2
1と光学的に等価な位置に配置された振動検出器7」二
に結像される。このようにして検知された被走査面4の
回転むら、折り曲げミラー6a、6b等の振動による主
走査線と被走査面4との間の所定の相対走査位置からの
変位は、これらの検知量に基づき副走査偏向器9によっ
て回転多面鏡1へ入射する光束りを副走査平面内で偏向
することにより補正が可能となる。
Therefore, by detecting fluctuations in the output waveform from the photoelectric conversion sensor-1-25, it is possible to detect rotational speed unevenness of the scanned surface 4. On the other hand, the ghost light L2 separated by the beam splitter 27 is transmitted to the code signal 2 on the scanned surface 4.
The image is formed on a vibration detector 7'' placed at a position optically equivalent to 1. Displacement from a predetermined relative scanning position between the main scanning line and the scanned surface 4 due to rotational unevenness of the scanned surface 4 detected in this way and vibrations of the bending mirrors 6a, 6b, etc. is the detected amount. Based on this, correction can be made by deflecting the light beam incident on the rotating polygon mirror 1 within the sub-scanning plane using the sub-scanning deflector 9.

第8図ではゴースト光L2を用いて振動と被走査面4の
移動速度むらを別々に検知する手段を示したが、これら
を一つの検出器で検知することも可能である。第9図に
はこの同時検知手段を搭載したレーザービームプリンタ
の例を示している。ゴースト光L2は被走査面4上のコ
ード信号21上に結像されており、コード信号21から
の反則光はコード読取り光学系22により光電変換素子
25の受光面に結像される。被走査面4の所定の回転速
度をvlとし、折り曲げミラー27.28等に振動が無
い状態ならば、光電変換素子25がらの電気信号はVl
に応じた等周期の波形となる。しかし、被走査面4の回
転速度が(Vl+ΔVl)に変化し、かつ振動の影響で
ゴースト光L2の結像スポットが副走査方向DIにΔv
2の速度で移動するならば、光電変換素子25からの出
力信号は速度(Vl+ΔVl+ΔV2)に応じた周期の
波形となり、所定の速度V1との比較により、振動と被
走査面4の移動速度むらの双方の影響による変化量(Δ
Vl+ΔV2)を同時に検知し定量化することが可能で
ある。従って、副走査偏向器9によってこの変化量を補
正することができる。
Although FIG. 8 shows means for separately detecting vibrations and uneven movement speed of the scanned surface 4 using the ghost light L2, it is also possible to detect these with a single detector. FIG. 9 shows an example of a laser beam printer equipped with this simultaneous detection means. The ghost light L2 is imaged on the code signal 21 on the scanned surface 4, and the repulsive light from the code signal 21 is imaged on the light receiving surface of the photoelectric conversion element 25 by the code reading optical system 22. If the predetermined rotational speed of the scanned surface 4 is vl, and there is no vibration in the bending mirrors 27, 28, etc., the electrical signal from the photoelectric conversion element 25 is Vl.
It becomes a waveform with equal period according to . However, the rotational speed of the scanned surface 4 changes to (Vl + ΔVl), and the imaging spot of the ghost light L2 changes by Δv in the sub-scanning direction DI due to the influence of vibration.
2, the output signal from the photoelectric conversion element 25 has a waveform with a period corresponding to the speed (Vl+ΔVl+ΔV2), and by comparing it with a predetermined speed V1, vibrations and unevenness in the moving speed of the scanned surface 4 are determined. The amount of change due to the influence of both (Δ
Vl+ΔV2) can be detected and quantified simultaneously. Therefore, this amount of change can be corrected by the sub-scanning deflector 9.

検知用のゴースト光L2を得るためには、被走査面4」
二の有効走査領域外を各主走査ごとに照射してもよい。
In order to obtain the ghost light L2 for detection, the surface to be scanned 4.
The area outside the second effective scanning area may be irradiated for each main scanning.

また、被走査面4の外部の主走査線A′の延長線上に拡
散板26を設けて、これを各主走査ごとに照射してゴー
スト光L2を発生させることも可能である。折り曲げミ
ラー6a、6bの振動の周期、被走査面4の回転速度む
らの周期は、主走査の行われる周期に比べて充分に緩や
かであるから、各主走査ごとの補正で実用」−充分であ
る。
Further, it is also possible to provide a diffuser plate 26 on the extension line of the main scanning line A' outside the scanned surface 4 and to irradiate the diffuser plate 26 for each main scanning to generate the ghost light L2. The period of vibration of the bending mirrors 6a, 6b and the period of rotational speed unevenness of the scanned surface 4 are sufficiently gentle compared to the period of main scanning, so correction for each main scanning is sufficient. be.

第8図、第9図に示す光走査装置においては、音響光学
素子を副走査偏向器9、回転多面鏡1を主走査偏向器と
して二次元走査を行い、更に被走査面4の回転による副
走査で走査速度の高速化を図ることも可能である。これ
らの装置においては、副走査偏向器9の駆動中心周波数
を前記検出信号の書き出しタイミングを変化させる手段
と組み合わせることによってもよい。
In the optical scanning device shown in FIGS. 8 and 9, two-dimensional scanning is performed using an acousto-optic element as a sub-scanning deflector 9 and a rotating polygon mirror 1 as a main-scanning deflector. It is also possible to increase the scanning speed by scanning. In these devices, the driving center frequency of the sub-scanning deflector 9 may be combined with means for changing the writing timing of the detection signal.

以上説明したように本発明に係る光走査装置は、回転多
面鏡からのゴースト光が原理的に静止することを利用し
て走査線の変位を検出し、走査線を所定の位置に制御す
るものであり、極めて簡便な構造で走査線位置を正確に
調整することが可能となる
As explained above, the optical scanning device according to the present invention detects the displacement of the scanning line by utilizing the principle that the ghost light from the rotating polygon mirror remains stationary, and controls the scanning line to a predetermined position. This makes it possible to accurately adjust the scanning line position with an extremely simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第3図以下は本発明に係る光走査装置の実施例を示すも
のであり、第1図、第2図は回転多面鏡によるゴースト
光発生の説明図、第3図以下は本発明に係る光走査装置
の実施例を示すものであリ、第3図は振動検知の説明図
、第4図及び第5図はそれぞれ振動検出器の説明図、第
6図は振動検出器を設置した構成図、第7図は被走査面
の移動速度むら検出器の構成図、第8図は振動検出器、
移動速度むら検出器を設置した構成図、第9図は振動“
、移動速度むらを同時に検出する検出器を設置した構成
図である。 符号1は回転多面鏡、1a、■bは鏡面、2は光源、3
は結像光学系、4は被走査面、5は遮光板、6a、6b
は光路折り曲げミラー、7は振動検出器、9は副走査偏
向器、Lは光束、Llは反射光、L2はゴースト光であ
る。 特許出願人   キャノン株式会社 第1図 第2図 113図 I ずに童     115rIj 第8図 第9図
Figure 3 and subsequent figures show an embodiment of the optical scanning device according to the present invention, Figures 1 and 2 are explanatory diagrams of ghost light generation by a rotating polygon mirror, and Figures 3 and subsequent figures show examples of the optical scanning device according to the present invention. This shows an embodiment of the scanning device. Fig. 3 is an explanatory diagram of vibration detection, Figs. 4 and 5 are explanatory diagrams of the vibration detector, and Fig. 6 is a configuration diagram in which the vibration detector is installed. , Fig. 7 is a configuration diagram of a moving speed unevenness detector of the scanned surface, Fig. 8 is a vibration detector,
A configuration diagram with a moving speed unevenness detector installed, Figure 9 is a vibration “
, is a configuration diagram in which detectors for simultaneously detecting movement speed unevenness are installed. 1 is a rotating polygon mirror, 1a and b are mirror surfaces, 2 is a light source, 3
is an imaging optical system, 4 is a scanned surface, 5 is a light shielding plate, 6a, 6b
is an optical path bending mirror, 7 is a vibration detector, 9 is a sub-scanning deflector, L is a light beam, Ll is reflected light, and L2 is ghost light. Patent applicant: Canon Co., Ltd. Figure 1 Figure 2 Figure 113 Figure I Zunido 115rIj Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1、光束の進行に従って、光源、主走査方向に偏向を行
う回転多面鏡、結像光学系、被走査面の順に配置された
光走査装置において、前記回転多面鏡から発生するゴー
スト光の変位を検出する検出器と、前記光源と回転多面
鏡の間に配置し、走査偏向面とほぼ直交する平面内で前
記検出器の出力を基に光束を副走査方向に偏向する副走
査偏向器とを具備し、主走査線と被走査面との間で所定
の相対走査位置関係を得るようにしたことを特徴とする
光走査装置。 2、 前記被走査面上に被走査面と一体となって移動す
るように設けられたコード信号を、前記ゴースト光が照
射するように配置して、前記コード信号からの反射光の
光量変化を検知して被走査面の移動速度を検出するよう
にした特許請求の範囲第1項記載の光走査装置。
[Scope of Claims] 1. In an optical scanning device in which a light source, a rotating polygon mirror that deflects in the main scanning direction, an imaging optical system, and a surface to be scanned are arranged in this order according to the progress of the light beam, the light emitted from the rotating polygon mirror a detector that detects the displacement of the ghost light, and is placed between the light source and the rotating polygon mirror, and deflects the light beam in the sub-scanning direction based on the output of the detector in a plane substantially perpendicular to the scanning deflection plane. 1. An optical scanning device comprising a sub-scanning deflector and configured to obtain a predetermined relative scanning positional relationship between a main scanning line and a surface to be scanned. 2. A code signal provided on the surface to be scanned so as to move together with the surface to be scanned is arranged so as to be irradiated with the ghost light, and a change in the amount of light reflected from the code signal is detected. The optical scanning device according to claim 1, wherein the moving speed of the surface to be scanned is detected.
JP15362782A 1982-09-02 1982-09-02 Photoscanner Granted JPS5942515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15362782A JPS5942515A (en) 1982-09-02 1982-09-02 Photoscanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15362782A JPS5942515A (en) 1982-09-02 1982-09-02 Photoscanner

Publications (2)

Publication Number Publication Date
JPS5942515A true JPS5942515A (en) 1984-03-09
JPH052965B2 JPH052965B2 (en) 1993-01-13

Family

ID=15566629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15362782A Granted JPS5942515A (en) 1982-09-02 1982-09-02 Photoscanner

Country Status (1)

Country Link
JP (1) JPS5942515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022041A (en) * 2013-07-17 2015-02-02 国立大学法人信州大学 Method and mechanism of detecting scanning speed of optical beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022041A (en) * 2013-07-17 2015-02-02 国立大学法人信州大学 Method and mechanism of detecting scanning speed of optical beam

Also Published As

Publication number Publication date
JPH052965B2 (en) 1993-01-13

Similar Documents

Publication Publication Date Title
US5844591A (en) Multibeam laser recording apparatus
JPH0527086B2 (en)
US7450287B2 (en) Optical scanning device and method for detecting synchronization signal
JP3679490B2 (en) Optical scanning device
JP4136616B2 (en) Multi-beam scanning optical apparatus and image forming apparatus using the same
JPS5942515A (en) Photoscanner
JP2000028944A (en) Optical device
JP2574419B2 (en) Laser beam scanning device
US6628444B2 (en) Scanning optical device and image forming apparatus having the same
US7466332B2 (en) Light scanning unit
JP4006208B2 (en) Multi-beam scanning device and image forming apparatus using the same
JP2007283690A (en) Image-forming apparatus
JP4197806B2 (en) Scanning optical system and focus position adjusting method thereof
JP2721386B2 (en) Scanning optical device
JPH06160746A (en) Laser scanner
JPS6120849B2 (en)
JPH04181913A (en) Scanning optical device
JPH0519204A (en) Scanning optical device
JP4425543B2 (en) Division scan writing device
JP2954697B2 (en) Optical scanning device
JP2570176B2 (en) Electrophotographic recording device
JP3526375B2 (en) Light spot interval detecting method / scanning line pitch setting method / light spot interval detecting device / scanning line pitch setting device and multi-beam scanning device
JP2004246137A (en) Laser scanning device
JPH032715A (en) Laser light scanner
JPH04223421A (en) Optical scanner