JPS5942062B2 - Manufacturing method of fiber reinforced composite material - Google Patents

Manufacturing method of fiber reinforced composite material

Info

Publication number
JPS5942062B2
JPS5942062B2 JP51021184A JP2118476A JPS5942062B2 JP S5942062 B2 JPS5942062 B2 JP S5942062B2 JP 51021184 A JP51021184 A JP 51021184A JP 2118476 A JP2118476 A JP 2118476A JP S5942062 B2 JPS5942062 B2 JP S5942062B2
Authority
JP
Japan
Prior art keywords
plating
fiber
composite material
fibers
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51021184A
Other languages
Japanese (ja)
Other versions
JPS52104405A (en
Inventor
貞四郎 織田
貴 大黒
不二光 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP51021184A priority Critical patent/JPS5942062B2/en
Publication of JPS52104405A publication Critical patent/JPS52104405A/en
Publication of JPS5942062B2 publication Critical patent/JPS5942062B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は耐熱性のすぐれた非金属繊維を耐熱合金と複合
化して、耐熱性の著しくすぐれた耐熱複合材料を得る方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining a heat-resistant composite material having extremely high heat resistance by combining non-metallic fibers with high heat resistance with a heat-resistant alloy.

従来、マトリックス金属と繊維を複合させた繊維強化複
合材料の製造方法としては、メッキによる拡散接合法、
液体侵透法、溶射法、焼結法等があるが、この中ではメ
ツ牛による拡散接合法が繊維の配合率を最も高くでき、
繊維の配列状態も非常に良好なものが得られる。
Conventionally, methods for manufacturing fiber-reinforced composite materials that combine matrix metal and fibers include diffusion bonding using plating,
There are liquid penetration methods, thermal spraying methods, sintering methods, etc., but among these methods, the diffusion bonding method using Metsugyu can achieve the highest fiber blending rate.
Very good fiber alignment can also be obtained.

しかしながらメッキによる拡散接合法では繊維に付着で
きるマトリックスは殆んど純金属であつて耐熱性は一般
に低く、耐熱性の高い合金のメッキは非常に困難で、特
に繊維が非金属の場合には真空蒸着など特殊で費用のか
さむ方法以外では不可能である。このようにメッキ法に
よる拡散接合法では繊維強化複合材料のマトリックスに
耐熱金属を用いることは困難であり、また上記の他の方
法によつた場合も耐熱金属を融点以上に加熱する必要が
あり、その場合には繊維の特性を低下させることが多い
。本発明者等は、従来不可能であつた耐熱合金をマトリ
ックスとした繊維の配合率の高い、配列状態の良好な非
金属繊維との複合材料の製造法を提供すべく研究した結
果、無電解メッキによれば非金属繊維の表面にNiおよ
びCuの被膜を形成させることができるので、これらの
メッキと電気メッキを組み合わせることにより多種層か
らなるメッキを非金属繊維の表面に施すCとができ、更
にそれを拡散合金化することにより耐熱合金をマトリッ
クスとした複合材料が製造できることを見出し本発明に
到達したものである。
However, in the diffusion bonding method using plating, the matrix that can be attached to the fibers is mostly pure metal, which generally has low heat resistance, and it is extremely difficult to plate highly heat-resistant alloys, especially when the fibers are non-metallic. This is only possible by special and expensive methods such as vapor deposition. As described above, it is difficult to use a heat-resistant metal in the matrix of a fiber-reinforced composite material using the diffusion bonding method using the plating method, and when using the other methods mentioned above, it is necessary to heat the heat-resistant metal above its melting point. In that case, the properties of the fiber are often deteriorated. The present inventors conducted research to provide a method for manufacturing a composite material with non-metallic fibers that has a high blending ratio of fibers with a heat-resistant alloy matrix and well-aligned non-metallic fibers, which was previously impossible. Plating allows the formation of Ni and Cu films on the surface of non-metallic fibers, so by combining these platings with electroplating, it is possible to apply plating consisting of multiple layers to the surface of non-metallic fibers. The present invention was achieved by discovering that a composite material having a heat-resistant alloy as a matrix can be produced by further diffusion alloying it.

更に詳細に説明すると、非金属繊維表面には導電性がな
いので直接には電気メッキができないため、無電解メッ
キによりまず非金属繊維表面にNiメッキを施して導電
性を与え、その後通常の電気メッキにより種種の金属を
メッキすることが可能となる。クロム、銅、亜鉛等電気
メッキの可能な金属元素であれば全て前記の第2層とし
てメッキでき、このメッキの上に更に電気メッキを重ね
ることによつて多層メッキを得ることもできるが、最終
的に得られる繊維強化材料の強度を保持するためには繊
維含有量が多い方がよいことからして、メッキ層数、メ
ッキ量は制限が必要となる。更に金属の組合せも従来合
金の組成に近い金属元素の数および化学成分が参考とな
り、脆い金属間化合物を形成するような金属元素同志を
重ねてメツキすることは避けねばならない等の理由から
メツキ金属元素の組み合わせの選択が必要である。本発
明では耐熱性のすぐれた複合材料を得るという目的から
してNi一Cr合金をマトリツクスとした非金属繊維複
合材料を対象とする。即ち、本発明は無電解メツキ法に
より非金属繊維の表面にニツケル被膜を形成させた後、
このニツケル被膜上に電気メツキ法でクロムメツキを施
し、続いてこのメツキを施した非金属繊維を束ねて加熱
してニツケルとクロムを合金化することを特徴とする、
ニツケルークロム合金を母相とする繊維強化複合材料の
製造方法に関するものである。
To explain in more detail, the surface of non-metallic fibers has no conductivity and cannot be electroplated directly. Therefore, Ni plating is first applied to the surface of non-metallic fibers using electroless plating to make it conductive, and then regular electroplating is applied. Plating allows various types of metals to be plated. All metal elements that can be electroplated, such as chromium, copper, and zinc, can be plated as the second layer, and multilayer plating can be obtained by further electroplating on top of this plating, but the final Since it is better to have a high fiber content in order to maintain the strength of the fiber-reinforced material obtained, it is necessary to limit the number of plating layers and the amount of plating. Furthermore, the number and chemical composition of metal elements that are close to the composition of conventional alloys is used as a reference for the combination of metals, and it is necessary to avoid plating metal elements on top of each other, which would form brittle intermetallic compounds. It is necessary to select a combination of elements. In order to obtain a composite material with excellent heat resistance, the present invention targets a non-metallic fiber composite material having a matrix of Ni-Cr alloy. That is, in the present invention, after forming a nickel film on the surface of a non-metallic fiber by an electroless plating method,
The method is characterized by applying chrome plating on the nickel film using an electroplating method, and then bundling the nonmetallic fibers to which this plating has been applied and heating them to alloy the nickel and chromium.
The present invention relates to a method for manufacturing a fiber-reinforced composite material using a Nickel-chromium alloy as a matrix.

本発明方法を具体的に述べると、Sl3N4あるいはS
iCなどの非金属繊維を、Ni?有塩、還元剤としての
次亜リン酸ソーダや次亜硫酸ソーダおよび緩衝剤として
の酢酸またはクエン酸を考む浴に浸漬して、非金属繊維
の表面にNi被膜を形成させた後、乾燥し、次いで電気
メツキ法によりNi被膜上にCrメツキを施し、該非金
属繊維を束ねて1200℃前後に加熱し、NiとCrと
を拡散合金化するものである。本発明方法により次のよ
うな効果が奏せられる。
To specifically describe the method of the present invention, Sl3N4 or S
Non-metallic fibers such as iC, Ni? After forming a Ni film on the surface of the nonmetallic fiber by immersing it in a bath containing salt, sodium hypophosphite or sodium hyposulfite as a reducing agent, and acetic acid or citric acid as a buffer, it is dried. Next, Cr plating is applied to the Ni film by electroplating, and the nonmetallic fibers are bundled and heated to around 1200° C. to form a diffusion alloy of Ni and Cr. The method of the present invention provides the following effects.

1)繊維の直径およびメツキ層の厚さを変えることによ
つて繊維の配合率を変えることができ、他の複合化方法
に比べ繊維の考有量を著しく高め強度の大きい材料を得
ることができる。
1) By changing the diameter of the fibers and the thickness of the plating layer, the blending ratio of fibers can be changed, and compared to other composite methods, the amount of fibers can be significantly increased and a material with greater strength can be obtained. can.

2) Niの化学メツキは比較的容易で安価である。2) Chemical plating of Ni is relatively easy and inexpensive.

3)Niメツキ量とCrメツキ量を適当に変えることに
より任意の組成のNi−Cr合金をマトリツクスとする
ことができる。
3) By appropriately changing the amount of Ni plating and the amount of Cr plating, a Ni-Cr alloy of any composition can be used as a matrix.

4) Niメツキ層とCrメツキ層の合金化は両者の溶
融温度Nll455℃、Crl9O5℃以下で拡散する
ことによつて達成できるので成形体の大きな寸法変化は
ない。
4) Since the Ni plating layer and the Cr plating layer can be alloyed by diffusion at a melting temperature of N11 of 455° C. and Cr19O of 5° C. or less, there is no major dimensional change in the molded product.

5)繊維が常温から約1300℃まで約200k9/M
7iと高い引張り強さを有し、マトリツクスのNi−C
r合金は耐熱性がくずれたものであるので、得られた複
合材料は高温ですぐれた機械的性質を有し、ガスタービ
ンのブレード、各種原動機の超高温部材、熱交換器材と
して応用できる。
5) Fiber is approximately 200k9/M from room temperature to approximately 1300℃
It has a high tensile strength of 7i, and the Ni-C matrix
Since the R-alloy has poor heat resistance, the resulting composite material has excellent mechanical properties at high temperatures and can be applied to gas turbine blades, ultra-high temperature components for various types of motors, and heat exchange equipment.

実施例 塩化ニツケル3009、次亜リン酸ソーダ3009およ
び酢酸ソーダ1009を101の水に溶解し、その中に
、Si3N4の繊維を浸漬した。
Example Nickel chloride 3009, sodium hypophosphite 3009 and sodium acetate 1009 were dissolved in 101 ml of water, and Si3N4 fibers were immersed therein.

この繊維を乾燥器で乾燥し、その一部を切断して樹脂に
埋め繊維の横断面から繊維の直径およびNiメツキ層の
厚さを測定したとこへ直径約15μ、メツキ層の厚さ約
2μであつた。したがつて、このとき繊維とNiの比率
は約78.6:21.4であつた。次にこのNiメツキ
した繊維を十分乾燥した後、これを無水クロム酸250
9/11フツ化アンモニウム4〜69/lおよび硫酸0
〜0.49/lからなる電気Crメツキ浴中に入れ、鉛
を陽極としてCrメツキを行なつた。このときメツキ条
件としては、浴温30℃、電流密度17A/Dm2とし
、メツキ厚さは約1μになるように制御した。その結果
Niメツキ層の表面に約1μのCrメツキ層が形成され
、金属層の比率はNi:Crが2:1となつた。このよ
うなメツキを施したSi3N4繊維を約200mmの長
さに切断し、それを207n1L×10關×200m7
nの直方体に束ね1200℃で焼結した。次にこれを2
0mm×200mmの穴を有する黒鉛製の型の中に入れ
、黒鉛型とも約1200℃に加熱して0.3トン/CT
lの圧力で加圧成型した。その結果6m1L×20mm
x200m1の板状成形体が得られた。次にこの板状成
形体について常温800゜C、120『Cで曲げ破断試
験を行なつた。この試5験の方法は、加熱炉に入れた試
験片の表面に熱電対を接着させて温度を測定し、試1験
渦度よりも30℃高い温度に30分間保持した後、炉か
ら収り出して直ちに試,験機に乗せ試験に供した。その
結果は以下の通りであつた。また試,験のための試験片
の加熱は大気中で行なつたが、試験片表面の酸化程度は
僅かであつた。
This fiber was dried in a dryer, a part of it was cut, and it was buried in resin.The diameter of the fiber and the thickness of the Ni plating layer were measured from the cross section of the fiber.The diameter was about 15μ, and the thickness of the plating layer was about 2μ. It was hot. Therefore, at this time, the ratio of fiber to Ni was about 78.6:21.4. Next, after sufficiently drying this Ni-plated fiber, it was mixed with chromic anhydride 250
9/11 Ammonium fluoride 4-69/l and sulfuric acid 0
The sample was placed in an electric Cr plating bath consisting of ~0.49/l, and Cr plating was performed using lead as an anode. At this time, the plating conditions were a bath temperature of 30 DEG C., a current density of 17 A/Dm2, and a plating thickness of about 1 .mu.m. As a result, a Cr plating layer having a thickness of about 1 μm was formed on the surface of the Ni plating layer, and the ratio of the metal layers was 2:1 (Ni:Cr). The plated Si3N4 fiber was cut into a length of about 200mm, and it was made into a 207n1L x 10cm x 200m7
It was bundled into a rectangular parallelepiped of size n and sintered at 1200°C. Next, add this 2
Place it in a graphite mold with a hole of 0 mm x 200 mm, and heat both graphite molds to about 1200°C to produce 0.3 tons/CT.
Pressure molding was carried out at a pressure of 1 liter. As a result, 6m1L x 20mm
A plate-shaped molded body of x200 m1 was obtained. Next, bending and breaking tests were conducted on this plate-shaped molded product at room temperature of 800°C and 120°C. The method for this 5th test was to measure the temperature by gluing a thermocouple to the surface of the test piece placed in a heating furnace, hold it at a temperature 30°C higher than the vorticity of test 1 for 30 minutes, and then collect it from the furnace. Immediately after taking it out, it was put on a testing machine and subjected to testing. The results were as follows. Furthermore, although the test pieces were heated in the atmosphere, the degree of oxidation on the test piece surface was slight.

Claims (1)

【特許請求の範囲】[Claims] 1 無電解メッキ法により非金属繊維の表面にニッケル
被膜を形成させた後、このニッケル被膜上に電気メッキ
法でクロムメッキを施し、続いてこのメッキを施した非
金属繊維を束ねて加熱することによつてニッケルとクロ
ムを合金化することを特徴とする、ニッケル−クロム合
金を母相とした繊維強化複合材料の製造方法。
1. After forming a nickel film on the surface of non-metallic fibers by electroless plating, chromium plating is applied on this nickel film by electroplating, and then the plated non-metallic fibers are bundled and heated. A method for producing a fiber-reinforced composite material using a nickel-chromium alloy as a matrix, the method comprising alloying nickel and chromium.
JP51021184A 1976-03-01 1976-03-01 Manufacturing method of fiber reinforced composite material Expired JPS5942062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51021184A JPS5942062B2 (en) 1976-03-01 1976-03-01 Manufacturing method of fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51021184A JPS5942062B2 (en) 1976-03-01 1976-03-01 Manufacturing method of fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPS52104405A JPS52104405A (en) 1977-09-01
JPS5942062B2 true JPS5942062B2 (en) 1984-10-12

Family

ID=12047844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51021184A Expired JPS5942062B2 (en) 1976-03-01 1976-03-01 Manufacturing method of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPS5942062B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953640A (en) * 1982-09-20 1984-03-28 Toyo Electric Mfg Co Ltd Production of composite prepreg material of inorganic fiber-metallic matrix
US4711665A (en) * 1985-07-26 1987-12-08 Pennsylvania Research Corporation Oxidation resistant alloy

Also Published As

Publication number Publication date
JPS52104405A (en) 1977-09-01

Similar Documents

Publication Publication Date Title
US4341823A (en) Method of fabricating a fiber reinforced metal composite
US3622283A (en) Tin-carbon fiber composites
US3535093A (en) Aluminum composite containing carbon fibers coated with silver
JPS5983757A (en) Formation of protective diffusion layer
US10428437B2 (en) Wear-resistant coating produced by electrodeposition and process therefor
Volkov et al. Structure and properties of Cu/Mg composites produced by hydrostatic extrusion
JPS5942062B2 (en) Manufacturing method of fiber reinforced composite material
Ishikawa et al. Preparation of thin film resistors with low resistivity and low TCR by heat treatment of multilayered Cu/Ni deposits
US7150924B2 (en) Metal based resistance heating element and method for preparation therefor
JP2005068516A (en) Magnesium alloy having excellent corrosion resistance and wear resistance, and its production method
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
Wearmouth Nickel alloy electrodeposits for non-decorative applications
Ciovati et al. Thermal conductivity of electroplated Copper onto bulk Niobium at cryogenic temperatures
US4996118A (en) Composite metal plated article excellent in mold-releasability
JPS6141760A (en) Heat and corrosion resisting covered steel and its formation
US4357985A (en) Method of isothermally forming a copper base alloy fiber reinforced composite
US3635801A (en) Nickel electrodeposition process for improving high-temperature ductility
Dhakal et al. Thermal Conductivity of Electroplated Copper Onto Bulk Niobium at Cryogenic Temperatures
JP4662877B2 (en) Composite material and method for producing the same
JPS62120447A (en) Manufacture of metallic matrix-fiber composite material
JPH02112192A (en) Foil heater
JPS6342393A (en) Method for tin or tin alloy plating copper or copper alloy wire
JPS59140338A (en) Copper alloy for lead frame
Tuscher et al. Adhesion of Galvanic Coatings Under Thermal Stress
JPS5878312A (en) Silver-coated wire and method of producing same