JPS5942025A - Treating device for waste ozone - Google Patents

Treating device for waste ozone

Info

Publication number
JPS5942025A
JPS5942025A JP57152999A JP15299982A JPS5942025A JP S5942025 A JPS5942025 A JP S5942025A JP 57152999 A JP57152999 A JP 57152999A JP 15299982 A JP15299982 A JP 15299982A JP S5942025 A JPS5942025 A JP S5942025A
Authority
JP
Japan
Prior art keywords
ozone
waste
catalyst
gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57152999A
Other languages
Japanese (ja)
Inventor
Takanori Nanba
難波 敬典
Yoshitaka Kaai
河相 好孝
Masuo Sugimoto
杉本 益男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57152999A priority Critical patent/JPS5942025A/en
Publication of JPS5942025A publication Critical patent/JPS5942025A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PURPOSE:To reduce a treatment cost and to treat stably and safely gas contg. waste ozone by providing a heat exchanger on the upstream side of a catalyst for decomposing ozone, and forming a heat pump cycle with another heat exchanger thereby making the catalyst heatable. CONSTITUTION:A gas-gas type heat exchanger 5 is provided on the upstream side of a catalyst contg. iron hydroxide or iron oxide hydrate molded to granules or pellets. A heat pump cycle is formed of the exchanger 5, a compressor 7, an expansion valve 8 and another heat exchanger (refrigerator evaporator) 9. The waste heat of an ozonizer 11 is heated and recovered and the waste ozone- contg. gas is heated with the exchanger 5. Said catalyst is heated to 30-80 deg.C by the heated gas. The gas contg. waste ozone is safely and stably treated by the above-mentioned device.

Description

【発明の詳細な説明】 この発明は、オゾンを用いた水処理プロセス等から排出
される比較的高製置のオゾンを含有するガス中のオゾン
を分解除去する廃オゾン処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waste ozone treatment device that decomposes and removes ozone from gas containing relatively high levels of ozone discharged from water treatment processes using ozone.

オゾンは非常に強い酸化力を有し、かつ分解生成物が無
害の酸素であることから排水の高度処理、救国、さらに
は漂白等の目的で広く実用化されている。しかし、どの
場合でも、製造したオゾンを完全に使いきることができ
ず、供給したオゾンの一部は未使用の捷ま排出されるこ
とになる。未使用のまま排出される廃オゾンは、光化学
スモッグの原因となるため、人気汚染防止の点から、ま
た作業墳境許容濃段として0.06 ppm以下に規制
されている点から、十分な処理が必要である。
Since ozone has very strong oxidizing power and the decomposition product is harmless oxygen, it has been widely put into practical use for purposes such as advanced treatment of wastewater, national salvation, and even bleaching. However, in any case, the produced ozone cannot be used completely, and a portion of the supplied ozone ends up being unused and discharged. Waste ozone that is emitted unused causes photochemical smog, so it must be properly treated to prevent popular pollution and because the permissible concentration level for working tombs is regulated to 0.06 ppm or less. is necessary.

このような処理のため、従来から常用されている廃オゾ
ン処理方法として活性炭法がある。第1図は活性炭法を
用いた従来の反オゾン処理装置を示す垂直断面図であり
、図中(1)は中空筒状の廃オシン処理塔、(2) k
lその下部に設けられたガス入口、(3)は−E部に設
けらハ、たガス出口、(4)は上記廃オゾン処理塔<1
1の円上(〜に設けられた活性炭充填部で、活性炭が充
填3れている。
For such treatment, there is an activated carbon method as a waste ozone treatment method that has been commonly used. Figure 1 is a vertical cross-sectional view showing a conventional anti-ozone treatment device using the activated carbon method, in which (1) is a hollow cylindrical waste osin treatment tower, (2) k
l A gas inlet provided at the lower part, (3) a gas outlet provided at the -E section, and (4) a gas outlet provided at the above waste ozone treatment tower <1
Activated carbon is filled in the activated carbon filling part provided on the circle of 1.

θ(に動作について説明する。処理対象とする廃オゾン
含有ガスは廃オゾン処理塔(11へガス入口(2)から
入り、活性炭光」λ部(4)を通過する間に含有オゾン
が分解し、処理ガスとしてガス出口(3)から排出妊れ
る。活性炭によるオゾンの分解のメカニズムは、次の(
1)式に示すように、オゾンと活性炭の反応とともに、
(2)式のように活性炭表面でのオゾンの接触分解があ
ると言われている。
The operation will be explained in θ(.The waste ozone-containing gas to be treated enters the waste ozone treatment tower (11) from the gas inlet (2), and the ozone contained therein is decomposed while passing through the activated carbon light section (4). The process gas is discharged from the gas outlet (3).The mechanism of ozone decomposition by activated carbon is as follows (
1) As shown in the equation, along with the reaction between ozone and activated carbon,
It is said that catalytic decomposition of ozone occurs on the activated carbon surface as shown in equation (2).

2C+205→2CO2+02      (1)C+
20.→ C+302     ・ (2)(2)式の
反応では活性炭は消費され々いが、オゾン分解の主反応
と考えられる(1)式の反応による第1シン分解の進行
に伴って活性炭自材も消費される。
2C+205→2CO2+02 (1)C+
20. → C+302 ・ (2) Activated carbon is hardly consumed in the reaction of equation (2), but activated carbon itself is also consumed as the first syndecomposition proceeds by the reaction of equation (1), which is considered to be the main reaction of ozone decomposition. be done.

活性炭によるオゾン分解能力を、分解されたオゾン重鎖
と、消耗した活性炭重量の比で表わすと、4〜7の値が
種々の活性炭に対して実験的に得られている。すなわち
、1kgの活性炭で最大4〜7崎のオゾンが分解できる
わけである。実用的には、1 tcgの活性炭で4 t
cgのオゾンを分解した時点を目安に活性炭の補充ある
いはjy換が行われている。
When the ozone decomposition ability of activated carbon is expressed as the ratio of decomposed ozone heavy chains to the weight of depleted activated carbon, values of 4 to 7 have been experimentally obtained for various activated carbons. In other words, 1 kg of activated carbon can decompose up to 4 to 7 degrees of ozone. Practically speaking, 1 tcg of activated carbon produces 4 t.
Activated carbon is replenished or JY exchange is performed at the point when cg of ozone has been decomposed.

Kって廃オゾンl Jc9を処理するための費用は、消
耗した活性炭の浦光費として廃オゾンl kg当り20
0円・一度である。
K is waste ozone l The cost for processing Jc9 is 20 per kg of waste ozone as the processing fee for the consumed activated carbon.
0 yen/one time.

また活性炭自身可燃性物質であり、極端に高鑓度のオゾ
ンを含むガスが活性炭に触れた時、オゾンと活性炭の反
応熱で活性炭の@度が高くなり、最後には発火燃焼する
という事故を発生する例が見受けられる。さらに、活性
炭表面に多量の窒素酸化物、アンモニア等が蓄積すると
(空気を原料として無声放電、によりオゾンを製造する
場合、窒素酸化物も同時に生成している)、高温条件下
で爆発坊象を生ずる散瞳性がある。
Additionally, activated carbon itself is a flammable substance, and when gas containing extremely high levels of ozone comes into contact with activated carbon, the heat of the reaction between the ozone and activated carbon increases the temperature of the activated carbon, which can eventually lead to ignition and combustion. There are examples where this occurs. Furthermore, if a large amount of nitrogen oxides, ammonia, etc. accumulate on the surface of activated carbon (when ozone is produced by silent discharge using air as a raw material, nitrogen oxides are also produced at the same time), causing an explosion under high temperature conditions. There is a mydriatic effect that occurs.

このように、従来J:り使用されている活性炭を用いた
廃オゾン処理装置べでは、溌オゾン1 kgを処理する
ために200円の費用を要し、加えて定期的な活性炭の
補充、取換の必要があるとともに、安全性に対する危惧
等があり、煩雑な維持管理が要求されるなどの欠点があ
った。
In this way, the conventional waste ozone treatment equipment using activated carbon requires a cost of 200 yen to treat 1 kg of live ozone, and in addition, it requires regular replenishment and removal of activated carbon. In addition to requiring replacement, there were concerns about safety, and there were drawbacks such as the need for complicated maintenance and management.

本発明は、このような従来法の欠点を除去するためにな
されたもので、水酸化鉄捷たは酸化鉄水化物を宮む触媒
を30〜80°Cに加温し、上記触媒に廃オゾン含有ガ
スを流通させるとともに、触媒の上流側に熱交換器を設
けて、この熱交換器とオゾン発生機冷却水回路のオゾン
発生機出口部に設けられた別の熱交換器とでヒートポン
プサイクルを形成し、オゾン発生機の廃熱全回収して廃
オゾン含有ガスを加温し、これにより触媒を所定温度に
加温することにより、低コストで、安全かつ安定した廃
オゾン処理が行える廃オゾン処理装置を提供することを
目的としている。
The present invention was made in order to eliminate the drawbacks of such conventional methods, and involves heating a catalyst containing iron hydroxide or iron oxide hydrate to 30 to 80°C, and adding waste to the catalyst. While circulating the ozone-containing gas, a heat exchanger is installed on the upstream side of the catalyst, and this heat exchanger and another heat exchanger installed at the ozone generator outlet of the ozone generator cooling water circuit operate in a heat pump cycle. By recovering all the waste heat from the ozone generator and heating the waste ozone-containing gas, and thereby heating the catalyst to a predetermined temperature, waste ozone treatment can be performed safely and stably at low cost. The purpose is to provide an ozone treatment device.

活性炭の代りに、低温でもオゾン分解活性が得られる触
媒として水酸化鉄または酸化鉄水化物を用いたオゾン分
解法を検討した結果、活性炭法に較べて処理費用が低減
する廃オゾン処理装置を実現でさることが明らかとなっ
た。
As a result of investigating an ozone decomposition method that uses iron hydroxide or iron oxide hydrate as a catalyst that can obtain ozone decomposition activity even at low temperatures instead of activated carbon, we have realized a waste ozone treatment device that costs less than the activated carbon method. It became clear that there was a monkey.

第2図は、この発明の一実施例による水酸化鉄または酸
化鉄水化物を主成分とする触媒を用いた廃オゾン処理装
置を示す系統図であり、図中、第1図と同一符号は同一
または相当部分を示す。(5)は廃オゾン処理塔(1)
のガス入口(2)側に設けられた気−気型熱交換器、(
6)はこの熱交換器とガス出口(3)との間に設けられ
た触媒充填部で、粒状もしくはペレット状に成形した水
酸化鉄または酸化鉄水化物設けられた膨張弁であり、こ
れらは閉ループの冷媒回路(IIを構成している。01
)はオゾン発生機であって、冷媒蒸発器(9)および冷
却水冷却装置t(12)とともに閉ループの冷却水回路
(1濠を構成し、冷背水回路(131を流れる冷却水が
冷媒蒸発器(9)において冷媒回路αO内の冷媒を加熱
し蒸発させるようになっている。熱交換器(5)、圧積
1機(7)、膨張弁(8)および冷却水回路Q3)のオ
ゾン発生機(]1)の出口部に設けられた熱交換器であ
る冷媒蒸発器(9)はヒートポンプサイクルを形成して
いる。
FIG. 2 is a system diagram showing a waste ozone treatment apparatus using a catalyst mainly composed of iron hydroxide or iron oxide hydrate according to an embodiment of the present invention. In the diagram, the same reference numerals as in FIG. Indicates the same or equivalent part. (5) is the waste ozone treatment tower (1)
An air-air heat exchanger installed on the gas inlet (2) side of (
6) is a catalyst filling section provided between this heat exchanger and the gas outlet (3), and is an expansion valve equipped with iron hydroxide or iron oxide hydrate formed into granules or pellets. Closed-loop refrigerant circuit (consists of II.01
) is an ozone generator, which together with the refrigerant evaporator (9) and the cooling water cooling device t (12) constitutes a closed loop cooling water circuit (1 moat), and the cooling water flowing through the cold backwater circuit (131) is connected to the refrigerant evaporator. In (9), the refrigerant in the refrigerant circuit αO is heated and evaporated. Ozone is generated in the heat exchanger (5), the compressor (7), the expansion valve (8), and the cooling water circuit Q3). A refrigerant evaporator (9), which is a heat exchanger provided at the outlet of the machine (1), forms a heat pump cycle.

次に動作について述べる。廃オゾン含有ガスは、廃オゾ
ン処理塔(1)にガス入口(2)から送入され、熱交換
器(5)で所定温m“(30〜80−07まで加温され
て触媒充填部(6)を通過する。この触媒充填部(6)
中f通過する間に、廃オゾン含有ガスは触媒充填8・ 1jli i61所定++rA 匿に加温し、含有きれ
ているオゾンは、触媒の作用によって接触分解する。こ
のようにして含有されているオゾンが完全に分解したガ
スは処理ガスとしてガス出口(3)から排出される。
Next, we will discuss the operation. The waste ozone-containing gas is fed into the waste ozone treatment tower (1) from the gas inlet (2), heated to a predetermined temperature m" (30 to 80-07) in the heat exchanger (5), and then sent to the catalyst filling section ( 6).This catalyst filling section (6)
While passing through the gas, the waste ozone-containing gas is heated to a predetermined value with a catalyst filling, and the ozone that is completely contained is catalytically decomposed by the action of the catalyst. The gas in which the ozone contained therein has been completely decomposed is discharged from the gas outlet (3) as a processing gas.

一方熱交換器(5)Fi、、圧縮機(7)、膨張弁(8
)、冷媒蒸発器(9)で冷媒回路(10を構成しており
、また冷媒、−6発器(9)は、オゾン発生機0])の
冷却を行う冷却水回路0漕のオゾノウ色生機to>と冷
却水冷却装置u21の中間に設けられているので、冷媒
回路01中に封入されている冷媒(例えばフレオン12
. 21.114゜142など)は圧縮機(7)で加圧
されて熱交換器(5)内で放熱し液化する。この熱交換
器(5)で放出された熱が廃オゾン含有ガスの加温熱源
となる。液化した冷媒は膨張弁(8)で減圧され、冷媒
蒸発器(9)の中で外部より熱を取り込み、気体となっ
て再び圧縮機(7)へ戻る。冷媒蒸発器(9)には、冷
却水回路0■からオゾン発生機01)を冷却1〜て廃熱
を回収した冷却水が流れており、冷媒の蒸発に必要な熱
は冷却水から与えられる。これにより冷却水中の廃熱が
昇温回収てれ、熱交換器(5)において廃オゾン含有ガ
ス中に放出きれ、触媒充填部(6)の加温熱源となる。
On the other hand, heat exchanger (5) Fi, compressor (7), expansion valve (8)
), the refrigerant evaporator (9) constitutes the refrigerant circuit (10, and the refrigerant -6 generator (9) is the ozone generator 0). to> and the cooling water cooling device u21, the refrigerant sealed in the refrigerant circuit 01 (for example, Freon 12
.. 21, 114° 142, etc.) is pressurized by the compressor (7), releases heat and liquefies in the heat exchanger (5). The heat released by this heat exchanger (5) becomes a heat source for heating the waste ozone-containing gas. The liquefied refrigerant is depressurized by the expansion valve (8), takes in heat from the outside in the refrigerant evaporator (9), becomes a gas, and returns to the compressor (7) again. In the refrigerant evaporator (9), cooling water that has recovered waste heat by cooling the ozone generator 01) flows from the cooling water circuit 0■, and the heat necessary for evaporation of the refrigerant is provided from the cooling water. . As a result, the waste heat in the cooling water is raised in temperature and recovered, and released into the waste ozone-containing gas in the heat exchanger (5), which serves as a heating heat source for the catalyst filling section (6).

冷媒ID 56器(9)において熱交換し、冷媒を蒸発
させた冷却水は冷却水冷却装置0渇においてさらに冷却
され、オゾン発生機Qt)に循環し、オゾン発生機(1
υを冷却する。
The cooling water that has undergone heat exchange and evaporated the refrigerant in the refrigerant ID 56 unit (9) is further cooled in the cooling water cooling device 0, circulates to the ozone generator (Qt), and is circulated to the ozone generator (Qt).
Cool υ.

続いて、触媒のオゾン分解能力について詳細に説、明す
る。水酸化鉄にアルミナシリケートを混ぜ成形後50〜
60°Cで1時間乾燥し調整した触媒(酸化鉄として5
0飴台刊)のオゾン分解能力は触媒温度により大きく影
響を受ける。第1表は、廃オゾン含有ガスの触媒層にお
ける滞留時間を1秒としたときのオゾン分解率を示す。
Next, the ozone decomposition ability of the catalyst will be explained in detail. After mixing alumina silicate with iron hydroxide and molding, 50~
Catalyst prepared by drying at 60°C for 1 hour (5% as iron oxide)
The ozone decomposition ability of 0 Amedai Publishing) is greatly affected by the catalyst temperature. Table 1 shows the ozone decomposition rate when the residence time of the waste ozone-containing gas in the catalyst layer is 1 second.

第1表から明らかなように、触媒温度を50°Cに保て
ば、触媒の充填量を涌留時間1砂金変とすることによ、
す、はとんど完全にオゾンを分解できる。この時に要邸
1表触媒滉変とオゾン分解率 (flu ?イ(1留時間を1秒とする。
As is clear from Table 1, if the catalyst temperature is maintained at 50°C, by setting the loading amount of the catalyst to 1 gold dust change for the boiling time,
can almost completely decompose ozone. At this time, Table 1 shows catalyst conversion and ozone decomposition rate (flu?i) (one residence time is assumed to be 1 second).

する処理費用は、廃オゾン含有ガスの加熱だけであり、
発側シンの譲邸が1000 ppm、触媒温度が50“
Cでおれ(−1゛、加熱を電気ヒーターで行なっても、
j介オゾン1に、g当りICl0円程度占位米の活性炭
法の1/2に低減できる。
The only processing cost involved is heating the waste ozone-containing gas.
The source Shin's residence is 1000 ppm, and the catalyst temperature is 50"
C (-1゛, even if heating is done with an electric heater,
It is possible to reduce the amount of ozone to 1/g by about 0 yen per gram compared to the activated carbon method used by Shiraimai.

本発明では、屏オゾン含有ガスの加温にオゾン発生機の
廃熱をヒートポンプで再利用するため、加温に要する費
用はさらに低減できる。−例として、オゾン発生機旧)
出口の冷却水温度を30”C1廃オゾンガスの加熱温度
を50℃とすると、廃オゾン(オゾン濃度1000 p
pm l 1 kgに対して、25〜35円の処理費用
となり、従来法の1/6〜1/8でよい。−また、オゾ
ン発生機はオゾン発生効率を高めるため、必ず冷却設備
を具備しているが、本発明のように、オゾン発生機の冷
却水から熱回収を行うことにより、触媒の加温と同時に
冷却設備の9+荷好瀦が達成できる利点を有する。
In the present invention, the waste heat of the ozone generator is reused by the heat pump to heat the ozone-containing gas, so the cost required for heating can be further reduced. -For example, old ozone generator)
If the cooling water temperature at the outlet is 30" and the heating temperature of C1 waste ozone gas is 50°C, then the waste ozone (ozone concentration 1000p)
The processing cost is 25 to 35 yen per pm l 1 kg, which is 1/6 to 1/8 of the conventional method. -Also, ozone generators are always equipped with cooling equipment in order to increase ozone generation efficiency, but as in the present invention, by recovering heat from the cooling water of the ozone generator, the catalyst can be heated at the same time. It has the advantage of achieving 9+ shipping capacity for cooling equipment.

々お上記の説明に」?いて、熱交換器(5)としてはフ
ィンチューブ型その他の気−置型の熱9.(し9に適し
たものが使用できる。また冷媒蒸発器(9)の構造も特
に制限はない。さらに、本発明は水処理プラント〃)ら
排出される廃オゾン含有ガスに眠ラス、他の廃オゾンを
含むガスの処理にも同様に適用可能である。
What about the above explanation? As the heat exchanger (5), a fin-tube type or other air-type heat exchanger (9) is used. In addition, there are no particular restrictions on the structure of the refrigerant evaporator (9).Furthermore, the present invention is applicable to waste ozone-containing gas discharged from a water treatment plant (water treatment plant). It is similarly applicable to the treatment of gas containing waste ozone.

歩、上のとおり、本発明に」、71ば、水酸化鉄または
酸化飲水化物をもむ触媒の上流側に熱又換器を設゛け、
このヤ;交1り!器とオゾン発生機の昂却水回路のオゾ
ンづ、(5生戟出口部に設けられん2別の熱交換器とで
ヒートボンプザイクルを形成するように構成したので、
廃オゾン処理費用を大幅に低減できるとともに、安全力
)つ安定した廃オゾン処理を行うことができ、さらにオ
ゾン発生機の冷却負荷を軽減できるなどの効果がある。
As mentioned above, in the present invention, a heat exchanger is provided upstream of the catalyst that massages iron hydroxide or oxidized drinking water,
This ya; it’s a cross! The ozone generator and the ozone generator's agitation water circuit (5) are configured to form a heat bomb cycle with a separate heat exchanger (not provided at the generator outlet).
This method not only significantly reduces waste ozone treatment costs, but also provides safe and stable waste ozone treatment, as well as reducing the cooling load on the ozone generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の廃オゾン処理装置を示す垂直前面図、
第2図は本発明の一実施例による廃オゾン処理−#ct
iを示す系統図である。 図中、(1)は廃オゾン処理塔、(2)はガス入口、(
3)はガス出口、(5)は熱交換器、(6)は触媒充填
部、(7)は圧縮機、(8)は膨張弁、(9)は冷媒蒸
発器、at>けオゾン発生機、0りは冷却水冷171装
置である。 なお、各図中、同一符号は同一または相当部分を示す。 代理人  葛 野 信 −(ほか1名)第1図 ブマ処理l゛久
FIG. 1 is a vertical front view showing a conventional waste ozone treatment device;
Figure 2 shows waste ozone treatment according to an embodiment of the present invention - #ct
It is a system diagram showing i. In the figure, (1) is the waste ozone treatment tower, (2) is the gas inlet, (
3) is a gas outlet, (5) is a heat exchanger, (6) is a catalyst filling section, (7) is a compressor, (8) is an expansion valve, (9) is a refrigerant evaporator, and an ozone generator. , 0 is a cooling water cooling 171 device. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno - (1 other person) Figure 1 Buma processing l゛ku

Claims (2)

【特許請求の範囲】[Claims] (1)粒状もしくはRレット状に成形した水酸化鉄また
は、酸化鉄水化物を含む触媒を30〜80°Cに加温し
、その触媒中に廃オゾン含有ガスを流通させて、オゾン
を分解除去する溌オゾン処理装置において、廃オゾン含
有ガスに対して、触媒の上流側に気−置型熱交換器を設
け、この熱交換器と圧縮器、膨張弁、およびオゾン発生
機冷却水回路のオゾン発生機出口部に設けられた別の熱
交換器でヒートポンプサイクルを形成し、オゾン発生機
の廃熱を昇温回収して、−F記溌オゾン含有ガスを加温
し、この加温された屏オゾン含有ガスで触媒を加温する
ようにしたことを特徴とする廃オゾン処理装+1゜
(1) A catalyst containing iron hydroxide or iron oxide hydrate shaped into granules or R-lets is heated to 30 to 80°C, and waste ozone-containing gas is passed through the catalyst to decompose ozone. In the live ozone treatment equipment that removes waste ozone, an air-type heat exchanger is installed upstream of the catalyst, and the ozone in the heat exchanger, compressor, expansion valve, and ozone generator cooling water circuit is removed. A heat pump cycle is formed with another heat exchanger installed at the generator outlet, and the waste heat of the ozone generator is heated and recovered to heat the ozone-containing gas. Waste ozone treatment equipment +1゜ characterized by heating the catalyst with ozone-containing gas
(2)ヒートポンプサイクルにおける冷媒回路の冷媒を
蒸発させた冷却水をさらに冷却してオゾン発生機に循環
するようにしたことを特徴とする特許請求の範囲第1項
記載の廃オゾン処理装置。
(2) The waste ozone treatment device according to claim 1, characterized in that the cooling water obtained by evaporating the refrigerant in the refrigerant circuit in the heat pump cycle is further cooled and circulated to the ozone generator.
JP57152999A 1982-09-02 1982-09-02 Treating device for waste ozone Pending JPS5942025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152999A JPS5942025A (en) 1982-09-02 1982-09-02 Treating device for waste ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152999A JPS5942025A (en) 1982-09-02 1982-09-02 Treating device for waste ozone

Publications (1)

Publication Number Publication Date
JPS5942025A true JPS5942025A (en) 1984-03-08

Family

ID=15552734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152999A Pending JPS5942025A (en) 1982-09-02 1982-09-02 Treating device for waste ozone

Country Status (1)

Country Link
JP (1) JPS5942025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180502A (en) * 1988-05-11 1993-01-19 Permelec Electrode Ltd. Electrolytic ozonizer and method of decomposing ozone-containing waste gas using said ozonizer
ITUD20120123A1 (en) * 2012-07-06 2014-01-07 Martik S R L PLANT AND METHOD FOR OXIDATION THROUGH OZONE AND KILLING OF THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180502A (en) * 1988-05-11 1993-01-19 Permelec Electrode Ltd. Electrolytic ozonizer and method of decomposing ozone-containing waste gas using said ozonizer
ITUD20120123A1 (en) * 2012-07-06 2014-01-07 Martik S R L PLANT AND METHOD FOR OXIDATION THROUGH OZONE AND KILLING OF THE SAME
EP2682175A1 (en) 2012-07-06 2014-01-08 Martik SRL Plant and method for oxidization using ozone and abatement thereof

Similar Documents

Publication Publication Date Title
CN105854542B (en) A method of purification nitrogen-containing oxide tail gas
KR20170118213A (en) Gas denitrification process and equipment
US7381389B2 (en) Wet gas purification method and system for practicing the same
CN104528659A (en) Sulfur recycling process for circularly treating low-concentration acidy gas by utilizing liquid sulfur
PL194720B1 (en) Process for treating flue gas
CN106823717A (en) A kind of coke oven flue gas comprehensive treatment system
CN111006226A (en) Incineration treatment system and incineration treatment method for chlorine-containing waste gas and waste liquid
CN102964017A (en) Method for treatment of high salinity organic wastewater through microwave electrocatalytic oxidation
JPH07144186A (en) Breakage of molten salt of alkali metal and alkali earth metal
JP2000506062A (en) Desulfurization method and apparatus by electron beam irradiation
JPS5942025A (en) Treating device for waste ozone
CN211837168U (en) Active material generating device containing plasma generating equipment and flue gas denitration device
KR20200069286A (en) Production method of nitric acid
JPH09323088A (en) Treatment of waste water containing ammonia
JPS5942024A (en) Treating device for waste ozone
JPS5942023A (en) Treating device for waste ozone
JPS5942022A (en) Treatment of waste ozone
CN111167278A (en) Flue gas denitration device and method containing plasma generation equipment
JPS63241877A (en) Processing method for waste gas from fuel cell
JPS61157539A (en) Decomposition treatment of ion exchange resin
CN211781134U (en) Incineration disposal system for waste gas and liquid containing chlorine
US3864192A (en) Apparatus for producing ammonia-base pulping liquor from spent liquor
CN113488220B (en) Method for treating radioactive anion exchange resin by combination of persulfuric acid compound and Fenton-like oxidation
CN218909894U (en) Reaction heat utilization device in aluminum trichloride production
GB2220200A (en) Recovering nitrogen oxides from industrial plant emissions