JPS5940239B2 - How to adjust the pH of an electroplating bath - Google Patents

How to adjust the pH of an electroplating bath

Info

Publication number
JPS5940239B2
JPS5940239B2 JP10291480A JP10291480A JPS5940239B2 JP S5940239 B2 JPS5940239 B2 JP S5940239B2 JP 10291480 A JP10291480 A JP 10291480A JP 10291480 A JP10291480 A JP 10291480A JP S5940239 B2 JPS5940239 B2 JP S5940239B2
Authority
JP
Japan
Prior art keywords
plating
tank
circulation tank
bath
dialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10291480A
Other languages
Japanese (ja)
Other versions
JPS5729600A (en
Inventor
和仁 倉地
照己 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10291480A priority Critical patent/JPS5940239B2/en
Publication of JPS5729600A publication Critical patent/JPS5729600A/en
Publication of JPS5940239B2 publication Critical patent/JPS5940239B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 本発明はメッキ槽の陽極に不溶性電極を用いる電気メッ
キにおいて、拡散透析を利用してメッキ浴の遊離酸を除
去する電気メッキ浴のpH調整方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the pH of an electroplating bath in which free acid in the plating bath is removed using diffusion dialysis in electroplating using an insoluble electrode as the anode of the plating bath.

近年道路の凍結防止等のために散布される各種薬剤に基
づく自動車の足まわり鋼材の腐食の防止対策として、自
動車用鋼板に耐食性にすぐれた電気Znメッキ鋼板、特
にZnとNi、Sn等とを組合せてメッキする電気合金
メッキ鋼板の使用が増加している。
In recent years, as a measure to prevent corrosion of automobile suspension steel materials caused by various agents sprayed to prevent roads from freezing, electrolytic Zn-plated steel sheets with excellent corrosion resistance, especially Zn, Ni, Sn, etc., have been added to automobile steel sheets. The use of combination plated electroalloy plated steel sheets is increasing.

例えば電気亜鉛メッキ鋼板の如き単一メッキ金属の電気
メッキはこれまで一般に、陽極自体にZnを用いメッキ
浴中のZnイオンが被メッキ物へ析出するに伴いその析
出量に見合うZnが陽極から溶け出すようにした溶解性
の陽極が用いられているが、電気合金メッキについては
被メッキ物への析出に伴う陽極からのメッキ金属のイオ
ン化で浴中のメッキ合金成分の各イオン濃度のバランス
を保つことが不可能であるところから、メッキ金属を塩
の形で浴に添加し陽極を不溶性電極で形成する電気合金
メッキ方法が採用され既に実用化の段階に至つている。
For example, in electroplating of a single plated metal such as electrogalvanized steel sheet, Zn was generally used as the anode itself, and as Zn ions in the plating bath precipitated onto the object to be plated, Zn corresponding to the amount of precipitation was dissolved from the anode. A soluble anode is used, but in the case of electroalloy plating, the concentration of each ion in the plating alloy components in the bath is maintained by ionizing the plating metal from the anode as it is deposited onto the object to be plated. Since this is impossible, an electroalloy plating method has been adopted in which the plating metal is added to the bath in the form of a salt and the anode is formed from an insoluble electrode, and has already reached the stage of practical use.

しかし上記不溶性電極を用いた電気合金メッキにおいて
、例えばZnの補給を硫酸亜鉛で行う場合における、陰
極の鋼板にZnが電着する反応は次式Znso4+H2
O→Zn(電着)+H2SO4+n02・・・1にて示
され遊離硫酸H2S0lが生成するためメッキ浴のpH
が管理範囲外に低下する欠点がある。
However, in electroalloy plating using the above-mentioned insoluble electrode, for example, when Zn is supplemented with zinc sulfate, the reaction in which Zn is electrodeposited on the steel plate of the cathode is expressed by the following formula: Znso4+H2
O → Zn (electrodeposition) + H2SO4 + n02...1, and free sulfuric acid H2S0l is generated, so the pH of the plating bath is
The disadvantage is that the value falls outside the control range.

このpHの低下はアルカリ添加に基づくメッキ浴の中和
により解消されることは可能であるが、メッキ浴へのア
ルカリ添加は塊状の金属水酸物ドロスの生成、不要の塩
の濃度の増加及びメッキ液の保持容量の増加によるメッ
キ成分の濃度低下等を惹起してメッキ性状に悪影響を与
えるために好ましくないので、メッキ浴を全量新しく取
替えるような甚だ面倒な対策を講じなければならず、不
溶性電極を陽極とする電気合金メッキを効率よく行う技
術は未だ確立されていないのが現状である。上記に鑑み
、本発明者らは不溶性電極を陽極として用いメッキ金属
を塩の形で浴に添加する電気合金メッキにおいて、アル
カリ中和の方法によらないでメッキ浴のpH低下を防止
する方法について鋭意実験研究の結果、電気合金メッキ
のために新ししく浴中に生成した遊離酸を拡散透析を利
用してメツキ浴外に排除する方法によつてメツキ浴のP
Hの低下を防止してPH値を管理範囲内に保持すること
に成功した。以下本発明方法を詳細に説明する。
This decrease in pH can be overcome by neutralizing the plating bath based on the addition of alkali, but adding alkali to the plating bath may result in the formation of lumpy metal hydroxide dross, an increase in the concentration of unnecessary salts, and This is undesirable because it causes a decrease in the concentration of plating components due to an increase in the holding capacity of the plating solution, which adversely affects the plating properties. At present, a technology for efficiently performing electroalloy plating using an electrode as an anode has not yet been established. In view of the above, the present inventors have proposed a method for preventing a decrease in the pH of a plating bath without using an alkali neutralization method in electroalloy plating in which an insoluble electrode is used as an anode and a plating metal is added to the bath in the form of a salt. As a result of extensive experimental research, we have found that the P of the plating bath can be reduced by using diffusion dialysis to remove the free acid newly generated in the bath from electroalloy plating.
We succeeded in preventing the decrease in H and keeping the PH value within the control range. The method of the present invention will be explained in detail below.

まず本発明方法の一例を第1図に示す。First, an example of the method of the present invention is shown in FIG.

図において、1はストリツプ、2はメツキ槽、3はメツ
キ浴、4は不溶性電極(例えば鉛合金)からなる陽極で
、ストリツプ1は陰極として浴3に浸漬され陽極4,4
間を矢引a方行に進行して電気合金メツキされる。5は
拡散透析装置で、メツキ液循環槽6と拡散透析槽7と透
析液循環槽8及びメツキ槽2とメツキ液循環槽6との間
をポンプP1によりメツキ液を循環せしめる管路9,9
′とメツキ液循環槽6と拡散透析槽7との間をポンプP
2によりメツキ液を循環せしめる管路10,10′と拡
散透析槽7と透析液循環槽8との間をポンプP3により
循環液を循環せしめる管路11,11′とから形成され
ている。
In the figure, 1 is a strip, 2 is a plating bath, 3 is a plating bath, 4 is an anode made of an insoluble electrode (for example, a lead alloy), and the strip 1 is immersed in the bath 3 as a cathode.
Electric alloy plating progresses in the direction of arrow a between the two. Reference numeral 5 designates a diffusion dialysis device, which includes pipes 9 and 9 for circulating the plating solution between the plating solution circulation tank 6, the diffusion dialysis tank 7, the dialysing solution circulation tank 8, and the plating solution circulation tank 2 and the plating solution circulation tank 6 by means of a pump P1.
', the pump P between the liquid circulation tank 6 and the diffusion dialysis tank 7.
It is formed of pipes 10 and 10' for circulating the plating solution by means of P2 and pipes 11 and 11' for circulating the circulating fluid between the diffusion dialysis tank 7 and the dialysate circulation tank 8 by means of a pump P3.

12は透析液循環槽8に必要に応じNaOH等をポンプ
P4により送るための貯液槽であり、管路9に設けた1
3はメツキ槽2から引出したメツキ液中の異物を取除い
てメツキ液を清浄化するフイルタ一である。
12 is a liquid storage tank for sending NaOH etc. to the dialysate circulation tank 8 as needed by a pump P4;
Reference numeral 3 denotes a filter 1 for cleaning the plating liquid by removing foreign matter from the plating liquid drawn out from the plating tank 2.

また前記拡散透析槽7は内部に設けたアニオン交換膜か
らなる拡散透析膜(図示せず)にてメツキ液を拡散透析
するよう構成した公知の拡散透析槽である。次に第1図
に基いて本発明方法を説明する。
The diffusion dialysis tank 7 is a known diffusion dialysis tank configured to perform diffusion dialysis on the plating solution using a diffusion dialysis membrane (not shown) comprising an anion exchange membrane provided inside. Next, the method of the present invention will be explained based on FIG.

メツキ槽2の浴3内にて電気メツキにより遊離酸が生成
してPHが低下したメツキ液は、管路9によりメツキ槽
2から引出されてフイルタ一13にて清浄化されてメツ
キ液循環槽6に送給される。前記循環槽6内のメツキ液
はポンプP2で管路10により拡散透析槽7内部の拡散
透析膜(図示せず)内に送給されメツキ液中の遊離酸が
透析作用により透析膜外に除去され、膜内に残留しPH
が上昇したメツキ液が管路10/を経て再び循環槽6に
戻り更にポンプP1により管路9′を経て循環してメツ
キ槽2に戻される。このようにメツキ槽2のメツキ液が
メツキ液循環槽6を経て拡散透析槽7に至り拡散透析さ
れて再び循環槽6を経てメツキ槽2に戻る循環処理が繰
返し行われて、この間にメツキ槽2内の浴3中に電気メ
ツキにより生成した遊離酸は略々メツキ液外に除去され
てメツキ浴3のPHの低下は防止される。なお前記拡散
透析槽7において透析膜外に透析された遊離酸は、拡散
透析槽7の透析膜外と透析液循環槽8との間を管路11
,11′を通つてポンプP3により循環する透析側循環
槽内循環液(通常上水を使用)内に拡散混入して循環液
と共に透析液循環槽8に送給され適宜槽外に排出される
The plating liquid whose pH has been lowered due to generation of free acid by electroplating in the bath 3 of the plating tank 2 is drawn out from the plating tank 2 through a pipe 9 and purified by a filter 13 to a plating liquid circulation tank. 6. The plating solution in the circulation tank 6 is fed by a pump P2 through a pipe line 10 into a diffusion dialysis membrane (not shown) inside the diffusion dialysis tank 7, and the free acid in the plating solution is removed from the dialysis membrane by the dialysis action. remains in the membrane and the PH
The plating liquid with the increased temperature returns to the circulation tank 6 again through the pipe 10/, and is further circulated by the pump P1 through the pipe 9' and returned to the plating tank 2. In this way, the plating liquid in the plating tank 2 passes through the plating liquid circulation tank 6, reaches the diffusion dialysis tank 7, undergoes diffusion dialysis, and returns to the plating tank 2 via the circulation tank 6. The circulation process is repeated, and during this period, the plating solution in the plating tank The free acid generated in the bath 3 in the plating bath 2 by electroplating is substantially removed to the outside of the plating solution, and a decrease in the pH of the plating bath 3 is prevented. The free acid dialyzed to the outside of the dialysis membrane in the diffusion dialysis tank 7 is passed through a pipe 11 between the outside of the dialysis membrane of the diffusion dialysis tank 7 and the dialysate circulation tank 8.
, 11', into the dialysis-side circulating fluid (usually tap water is used) in the dialysis-side circulating tank, which is circulated by the pump P3, and is sent to the dialysing fluid circulating tank 8 together with the circulating fluid, where it is appropriately discharged from the tank. .

本発明のメツキ液の拡散透析処理においては、メツキ液
と前記透析液循環槽内循環液との塩濃度の差に基く浸透
圧に起因して、拡散透析膜を介して透析側からメツキ液
側に透析液循環槽内循環液の上水が移行するためメツキ
液循環槽の保持容量が増加する現象が見られ、この上水
の移行量が大なるとメツキ液の成分濃度が希釈されメツ
キの性状が損われるおそれがあるので、上水の移行は可
及的に抑制されることが好ましい。前記上水の移行の抑
制について種々実験研究した結果、透析側からメツキ液
側への上水の移行の抑制に対しては透析液循環槽内循環
液に塩を適当量添加することによつて透析液循環槽内循
環液の上水のメツキ液側への移行速度を低下せしめる方
法が最も効果的で簡便であることを知見した。
In the diffusion dialysis treatment of the plating solution of the present invention, due to the osmotic pressure based on the difference in salt concentration between the plating solution and the circulating fluid in the dialysate circulation tank, the dialysis side passes from the dialysis side to the plating solution through the diffusion dialysis membrane. A phenomenon has been observed in which the retention capacity of the plating solution circulation tank increases due to the migration of the clean water from the circulating fluid in the dialysate circulation tank, and as the amount of water transferred increases, the component concentration of the plating solution is diluted and the properties of the plating solution increase. Therefore, it is preferable to suppress migration of clean water as much as possible. As a result of various experimental studies on suppressing the transfer of clean water, we found that the transfer of clean water from the dialysis side to the dialysis side can be suppressed by adding an appropriate amount of salt to the circulating fluid in the dialysate circulation tank. It has been found that the most effective and simplest method is to reduce the rate of transfer of the circulating fluid in the dialysate circulation tank to the clean water side.

即ち、第2図は例えば透析液循環槽、メツキ液循環槽の
保持容量をそれぞれ各31とし、拡散透析膜面積を40
ddとした拡散透析装置を使用しPH2の電気合金メツ
キ液を循環処理した場合における透析液循環槽からメツ
キ液循環槽への水の移行速度と透析液循環槽の塩濃度と
の関係を特性曲線Pにより示した図表である。図示の如
く透析液循環槽からメツキ液循環槽への水の移行速度を
僅少とするためには透析液循環槽内循環液の塩濃度を1
0〜809/lとすることが好ましいことが判明した。
That is, in FIG. 2, for example, the holding capacity of the dialysate circulation tank and the coating liquid circulation tank are each 31, and the diffusion dialysis membrane area is 40.
A characteristic curve shows the relationship between the water transfer rate from the dialysate circulation tank to the plating liquid circulation tank and the salt concentration in the dialysate circulation tank when an electric alloy plating solution of PH2 is circulated using a diffusion dialysis device with the DD method. This is a chart shown by P. As shown in the figure, in order to minimize the transfer rate of water from the dialysate circulation tank to the dialysis liquid circulation tank, the salt concentration of the circulating fluid in the dialysate circulation tank should be reduced to 1.
It has been found that a range of 0 to 809/l is preferable.

上記透析液循環槽内循環液の塩濃度の制御は拡散透析膜
を介してメツキ液側から透析液循環槽に透析してきた遊
離硫酸とNaOHとの次式H2SO4+2Na0H→N
aSO4+2H20・・・・・・2に示される中和処理
によつて行われ、この場合透析液循環槽内循環液の塩濃
度(%)は次式透析液の塩濃度(%)=NaOH濃度(
%)×了・・・3により求められるので、所望の透析液
循環槽内循環液の塩濃度とするためのNaOH濃度は上
式3により算出され、前記算出結果に基く必要量のNa
OHを透析液循環槽内循環液に添加することによつて行
われる。
The salt concentration of the circulating fluid in the dialysate circulation tank is controlled by the following formula between free sulfuric acid and NaOH, which have been dialyzed from the dialysis fluid side to the dialysate circulation tank via the diffusion dialysis membrane: H2SO4+2Na0H→N
aSO4+2H20...2 This is carried out by the neutralization treatment shown in 2. In this case, the salt concentration (%) of the circulating fluid in the dialysate circulation tank is calculated by the following formula: Salt concentration (%) of dialysate = NaOH concentration (
%) × Completion... 3. Therefore, the NaOH concentration to achieve the desired salt concentration of the circulating fluid in the dialysate circulation tank is calculated by the above formula 3, and the necessary amount of Na based on the above calculation result is calculated.
This is done by adding OH to the circulating fluid in the dialysate circulating tank.

また上記により透析液循環槽内循環液の塩濃度が高くな
ると一般にメツキ液内の遊離酸の拡散透析膜での透析速
度が低下する現象が生じるが、この遊離酸の透析速度の
低下が大なるとメツキ液のPH制御に悪影響を与えるお
それがあるので前記透析速度の低下は適当範囲に抑制さ
れることが好ましい。
Furthermore, due to the above, when the salt concentration of the circulating fluid in the dialysing fluid circulation tank increases, a phenomenon generally occurs in which the dialysis rate of the free acid in the dialysis membrane decreases. Since it may adversely affect the pH control of the plating solution, it is preferable that the decrease in the dialysis rate be suppressed within an appropriate range.

上記透析速度の低下の抑制について種々実験研究の結果
、透析液循環槽内循環液のPHの調整によつて透析速度
の低下を抑制する方法が最も簡便で効果的であることを
知見した。即ち第3図はメツキ液のPHを2とし、透析
液循環槽内循環液の塩濃度を409/lとした場合、透
析液循環液のPHとメツキ液の遊離酸の透析速度の関係
を曲線Qにて示した図表で、図示の如く透析液循環槽内
循環液のPHを低下せしめるとメツキ液の遊離酸の透析
速度は低下する。
As a result of various experimental studies on suppressing the decrease in the dialysis rate, it has been found that the method of suppressing the decrease in the dialysis rate by adjusting the pH of the circulating fluid in the dialysate circulation tank is the simplest and most effective method. In other words, Fig. 3 shows the relationship between the pH of the dialysate circulating fluid and the dialysis rate of free acid in the dialysate solution when the pH of the dialysate solution is 2 and the salt concentration of the circulating fluid in the dialysate circulation tank is 409/l. In the chart shown in Q, when the pH of the circulating fluid in the dialysing fluid circulation tank is lowered as shown in the diagram, the dialysis rate of free acid in the plating solution is reduced.

そこで透析液循環槽内循環液のPHをあまり低くすると
遊離酸の透析が妨げられるため少くとも透析液循環槽内
循環液のPHとメツキ循環槽内メツキ液のPH(管理範
囲は1.75〜2.0)との差が1以上あることが必要
であることと、透析液循環槽内循環液のPHを65以上
とすると金属の水酸化物の沈澱が生成し透析液循環槽の
出入口を閉塞するおそれがあることから透析液循環槽内
循環液のPHは3〜6.5とすることが好ましいことが
判明した。次に実施例により本発明の効果を説明する。
Therefore, if the pH of the circulating fluid in the dialysing fluid circulation tank is too low, the dialysis of the free acid will be hindered, so at least the pH of the circulating fluid in the dialysing fluid circulating tank and the pH of the plating fluid in the dialysis tank (the control range is 1.75 to 2.0), and if the pH of the circulating fluid in the dialysate circulation tank is set to 65 or higher, metal hydroxide precipitates will form, and the entrance and exit of the dialysate circulation tank will be blocked. It has been found that the pH of the circulating fluid in the dialysing fluid circulation tank is preferably 3 to 6.5 since there is a risk of blockage. Next, the effects of the present invention will be explained with reference to Examples.

実施例 1内容積1ri?のメツキ槽にNi−Znメツ
キ浴(硫酸浴)を満たし、Pb−Ag(1%)の不溶性
電極にて陽極を形成せしめ、巾300TfLmのストリ
ツプを陰極としてライン速度25m/Hrで浴中を通し
てNi−Zn合金メツキを施す電気メツキにおいて、メ
ツキ浴から60dの拡散透析膜を備えた拡散透析槽とメ
ツキ液循環槽及び上水を循環液とする透析液循環槽から
なる第1図に示した拡散透析装置に、1.5rr1′/
Hrの割合でメツキ槽からメツキ液を引き出して拡散透
析により、種々の条件で脱遊離硫酸の処理を施した。
Example: 1 internal volume 1ri? A plating tank was filled with a Ni-Zn plating bath (sulfuric acid bath), a Pb-Ag (1%) insoluble electrode was used as an anode, and a strip with a width of 300 TfLm was used as a cathode to pass Ni through the bath at a line speed of 25 m/Hr. - In electroplating for Zn alloy plating, the diffusion method shown in Figure 1 consists of a diffusion dialysis tank equipped with a diffusion dialysis membrane 60 d from the plating bath, a plating liquid circulation tank, and a dialysate circulation tank using tap water as the circulating fluid. For the dialysis machine, 1.5rr1'/
The plating liquid was drawn out from the plating tank at a rate of Hr and treated to remove free sulfuric acid by diffusion dialysis under various conditions.

結果を第1表に示す。この表より明らかなように、透析
液のPHを4.0と一定にすると共に透析液循環槽内循
環液の塩濃度を0,5,10,30,80,1609/
lと変化させた場合、透析液循環槽内循環液の塩濃度が
Oの場合はメツキ浴のPHは1.8に保でたが、メツキ
液循環槽のメツキ液保持容量増加速度が2851/Hr
と増大しでメツキ液の成分濃度に悪影響が生じ、また前
記塩濃度を1609/lとすると前記メツキ液の保持容
量が逆に低下すると共にメツキ液の透析速度も低下しメ
ツキ浴のPHを1.8に保つことができなかつだ。これ
に対し塩濃度を109/1,309/l及び80g/l
とした場合はメツキ浴のPHをそれぞれ1.8に保つこ
とができると共にメツキ液循環槽のメツキ液保持容量増
加速度も781/Hr,48!/Hr,6l/Hrと極
めて僅少であり、メツキ液の成分濃度に悪影響を生じる
ことはなかつた。又透析液循環槽内循環液の塩濃度を4
09/lと一定にし、かつ循環槽内透析液のPHを3,
4,5,6,8と変化させた場合、透析液循環槽内循環
液のPHを4,5,6とした場合はいづれもメツキ浴の
PHを1.8に保つことができたが、透析液循環槽内循
環液のPHが8の場合は透析液循環槽内に金属の水酸化
物の沈澱が生成し、このため透析液循環槽内が閉塞され
て拡散透析処理を行うことが困難となつた〇PHを3.
0にした場合もメツキ浴のPHは1.8に保てるが、透
析速度が少し低下する。
The results are shown in Table 1. As is clear from this table, the pH of the dialysate is kept constant at 4.0, and the salt concentration of the circulating fluid in the dialysate circulation tank is set to 0, 5, 10, 30, 80, 1609/
When the salt concentration of the circulating fluid in the dialysate circulation tank was O, the pH of the plating bath could be maintained at 1.8, but the rate of increase in the plating solution holding capacity of the plating solution circulation tank was 2851/1. Hr
If the salt concentration increases to 1609/l, the retention capacity of the plating solution decreases, and the dialysis rate of the plating solution also decreases, causing the pH of the plating bath to decrease to 1. I couldn't keep it at .8. In contrast, the salt concentration was 109/1,309/l and 80g/l.
In this case, the pH of the plating bath can be maintained at 1.8, and the plating liquid holding capacity increase rate of the plating liquid circulation tank is also 781/Hr, 48! /Hr, 6l/Hr, which was extremely small, and did not have any adverse effect on the component concentration of the plating solution. In addition, the salt concentration of the circulating fluid in the dialysate circulation tank was set to 4.
09/l, and the pH of the dialysate in the circulation tank was set to 3,
When the pH of the circulating fluid in the dialysate circulation tank was changed to 4, 5, 6, and 8, the pH of the plating bath could be maintained at 1.8 in all cases. If the pH of the circulating fluid in the dialysate circulation tank is 8, metal hydroxide precipitates will form in the dialysate circulation tank, which will block the dialysate circulation tank and make it difficult to perform diffusion dialysis treatment. 3.
Even if it is set to 0, the pH of the plating bath can be maintained at 1.8, but the dialysis rate will decrease a little.

上記した如くに、本発明は不溶性電極を陽極として使用
した電気合金メツキにおいて、メツキ浴を拡散透析によ
り循環処理することによつてメツキ浴のPH低下を防止
できたので、不溶性電極を陽極としメツキ金属を塩の形
で浴に添加して行う電気合金メツキの製造能率の向上に
極めて有効である。
As described above, in the present invention, in electric alloy plating using an insoluble electrode as an anode, a decrease in the pH of the plating bath can be prevented by circulating the plating bath by diffusion dialysis. This method is extremely effective in improving the production efficiency of electric alloy plating, which is performed by adding metals in the form of salts to the bath.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するフローチヤートの一例を
示す説明図、第2図はメツキ浴循環槽への水の移行速度
と透析液循環槽内循環液の塩濃度の関係を示した図表、
第3図は透析液循環槽内循環液のPHとメツキ液の遊離
酸の透析速度の関係を示した図表である。 1・・・・・・ストリツプ、2・・・・・・メツキ槽、
3・・・・・・メツキ浴、4・・・・・・陽極、5・・
・・・・拡散透析装置、6・・・・・・メツキ液循環槽
、7・・・・・・拡散透析槽、8・・・・・・透析液循
環槽、9,9′,10,10′,11,11′・・・・
・・管路、12・・・・・・貯液槽、13・・・・・・
フイルタ一。
Fig. 1 is an explanatory diagram showing an example of a flowchart for carrying out the method of the present invention, and Fig. 2 is a diagram showing the relationship between the transfer rate of water to the bath circulation tank and the salt concentration of the circulating fluid in the dialysate circulation tank. ,
FIG. 3 is a chart showing the relationship between the PH of the circulating fluid in the dialysing fluid circulation tank and the dialysis rate of free acid in the plating solution. 1... Strip, 2... Plating tank,
3...Metallic bath, 4...Anode, 5...
... Diffusion dialysis device, 6 ... Metsuki liquid circulation tank, 7 ... Diffusion dialysis tank, 8 ... Dialysate circulation tank, 9, 9', 10, 10', 11, 11'...
...Pipe line, 12...Liquid storage tank, 13...
Filter one.

Claims (1)

【特許請求の範囲】 1 メッキ槽の陽極に不溶性電極を用いる電気メッキに
おいて、メッキ槽に使用したメッキ浴を拡散透析により
循環処理してメッキ浴から遊離酸を除去することを特徴
とする電気メッキ浴のpH調整方法。 2 拡散透析装置内の透析液循環槽内循環液の塩濃度を
10〜80g/lとすると共にpH6.5以下とするこ
とを特徴とする特許請求の範囲第1項記載の電気メッキ
浴のpH調整方法。
[Claims] 1. Electroplating using an insoluble electrode as the anode of the plating tank, characterized in that the plating bath used in the plating tank is circulated by diffusion dialysis to remove free acid from the plating bath. How to adjust the pH of the bath. 2. The pH of the electroplating bath according to claim 1, wherein the salt concentration of the circulating fluid in the dialysate circulation tank in the diffusion dialysis device is 10 to 80 g/l and the pH is 6.5 or less. Adjustment method.
JP10291480A 1980-07-26 1980-07-26 How to adjust the pH of an electroplating bath Expired JPS5940239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291480A JPS5940239B2 (en) 1980-07-26 1980-07-26 How to adjust the pH of an electroplating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291480A JPS5940239B2 (en) 1980-07-26 1980-07-26 How to adjust the pH of an electroplating bath

Publications (2)

Publication Number Publication Date
JPS5729600A JPS5729600A (en) 1982-02-17
JPS5940239B2 true JPS5940239B2 (en) 1984-09-28

Family

ID=14340115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291480A Expired JPS5940239B2 (en) 1980-07-26 1980-07-26 How to adjust the pH of an electroplating bath

Country Status (1)

Country Link
JP (1) JPS5940239B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160540A (en) * 1984-08-28 1986-03-28 Fuji Xerox Co Ltd Cabinet for copying machine
CN105149610A (en) * 2015-09-10 2015-12-16 苏州联科纳米净化科技有限公司 Process for treating chemical nickel-plating ageing solution

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559935B2 (en) * 1991-12-20 1996-12-04 日本リーロナール株式会社 Method and apparatus for tin or tin-lead alloy electroplating using insoluble anode
JP5876767B2 (en) * 2012-05-15 2016-03-02 株式会社荏原製作所 Plating apparatus and plating solution management method
JP2014034691A (en) * 2012-08-07 2014-02-24 Mitsubishi Materials Corp Recycling method and apparatus of plating solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160540A (en) * 1984-08-28 1986-03-28 Fuji Xerox Co Ltd Cabinet for copying machine
CN105149610A (en) * 2015-09-10 2015-12-16 苏州联科纳米净化科技有限公司 Process for treating chemical nickel-plating ageing solution

Also Published As

Publication number Publication date
JPS5729600A (en) 1982-02-17

Similar Documents

Publication Publication Date Title
US4111772A (en) Process for electrodialytically controlling the alkali metal ions in a metal plating process
JP5158634B2 (en) Treatment method of electroless nickel plating solution
US6846416B2 (en) Process for treating chromate waste liquid
JPS61119699A (en) System and method for producing foil of metal or metal alloy
US6821323B1 (en) Process for the non-galvanic tin plating of copper or copper alloys
JPS5940239B2 (en) How to adjust the pH of an electroplating bath
US4229280A (en) Process for electrodialytically controlling the alkali metal ions in a metal plating process
EP1230034B1 (en) Process for the non-galvanic tin plating of copper or copper alloys
JP2943484B2 (en) Method and apparatus for hot-dip plating of aluminum
US5372683A (en) Method and apparatus for the electrolytic extraction of metals from a solution containing metal ions
US4923573A (en) Method for the electro-deposition of a zinc-nickel alloy coating on a steel band
US2200987A (en) Electrogalvanizing process
JPS5854200B2 (en) Method of supplying metal ions in electroplating bath
JP4517177B2 (en) Treatment method of electroless nickel plating solution
JP3201269B2 (en) Regeneration method of electroless plating bath
KR100244641B1 (en) Selective recovering method for cr, sn and ethylenedaiminetetra acetic acid from waste of sn-cr alloy plating process
JPS60138079A (en) Regenerating method of black chromate bath
TW585932B (en) Method of reducing defects caused by conductor roll surface anomalies using high volume bottom sprays
GB1574988A (en) Process for the control of the alkali metal hydroxide in metal plating baths
JP3339386B2 (en) Treatment method of electroless plating bath
JPS6289880A (en) Treatment of tin removing solution
JP2519425B2 (en) Treatment method for non-plated surface of steel plate with one side
KR20150008084A (en) Method for regenerating solution for nitric acid activation treatment of zinc-plated metal member surface, and regeneration treatment apparatus using same
JPH06136594A (en) Production of electrogalvanized steel sheet
JPS62270800A (en) Method for regenerating electrolytic solution