JPS5940145A - Method and system device for automatic recording of fluid concentration and dispensing said fluid with microcomputer control - Google Patents

Method and system device for automatic recording of fluid concentration and dispensing said fluid with microcomputer control

Info

Publication number
JPS5940145A
JPS5940145A JP14920582A JP14920582A JPS5940145A JP S5940145 A JPS5940145 A JP S5940145A JP 14920582 A JP14920582 A JP 14920582A JP 14920582 A JP14920582 A JP 14920582A JP S5940145 A JPS5940145 A JP S5940145A
Authority
JP
Japan
Prior art keywords
signal
microcomputer
axis
value signal
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14920582A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
政広 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTAKE SEISAKUSHO KK
Original Assignee
OOTAKE SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTAKE SEISAKUSHO KK filed Critical OOTAKE SEISAKUSHO KK
Priority to JP14920582A priority Critical patent/JPS5940145A/en
Publication of JPS5940145A publication Critical patent/JPS5940145A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To form a dispensing device which has simple mechanism parts, operates at a high speed and can obtain correct values by controlling automatically a series of operations for dispensing a constant volume of the known fluid subjected to measurement while measuring and recording the light transmittivity and absorbancy of the fluid with a microcomputer. CONSTITUTION:A signal S3 for an analogically amplified and measured light value and a signal S5 for an analogically amplified reference light value are inputted alternately to a selective transmission conversion circuit F by bringing the changeover contact SW of the analog switch 30 of said circuit into contact alternately with a terminal T1 on the measured light side and a terminal T2 on the reference light side by the command signal S6 for the selection timing outputted through a digital interface 58 by the command of a CPU60 in accordance with the program sequence stored beforehand in the ROM64 of a microcomputer B. Said signals are converted to a signal S8 for the digital measured light and a signal S9 for the digital reference light by an A/D converter 32 and are stored successively through the digital interface 58 of the microcomputer B into the prescribed assigned addresses of an RAM62. The liquid of a known concn. measured with a flow cell 14 is disposed by each prescribed amt. into each test tube vessel by a dispensing device C by repeating a series of the above-mentioned cyclic operations, and the measured value corresponding to said test tube vessel is recorded and displayed.

Description

【発明の詳細な説明】 本発明は、流体、特に液体の光透過軍および吸光度を測
定記録しつつその液体を分取して行く一連の作業をマイ
クロコンピュータで制御する流体濃度自動記録分取方法
およびその笑施に直接使用するシステム装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fluid concentration automatic recording/preparation method in which a microcomputer controls a series of operations of measuring and recording the light transmission force and absorbance of a fluid, and in particular, separating the liquid. and system equipment directly used for its implementation.

液体分取に採用された従来の分取装置は、メカニズム部
分が複雑で動作速度が遅い欠点があシ、特に−滴の誤差
も許されない4I′4密性が要求される場合には不適で
めつ/辷。
Conventional separation devices used for liquid separation have the drawbacks of complicated mechanisms and slow operating speeds, and are particularly unsuitable when 4I'4 density is required, which does not allow droplet errors. Metsu/Lock.

また有機化合物の数体測定に当り、流動比色計の検出部
においては、従来から主に紫外線域の波長で測定する為
、光源として低圧水銀燈が多く使用されているが、この
欠点として水銀燈の自己過熱による光量変化や周囲(A
A I)41変化による光量変化が太きく、従来は先山
1架化?!1−検出したら水銀燈に流れる電流を変化さ
せて一定光鎗回路を構成させるなどしてどう1−ても複
雑になった。
In addition, when measuring the number of organic compounds, low-pressure mercury lamps have traditionally been used as light sources in the detection section of flow colorimeters, since measurements are mainly performed at wavelengths in the ultraviolet range. Changes in light intensity due to self-overheating and surroundings (A
A I) The light intensity change due to the 41 change is large, and the previous one was the first one? ! 1- Once detected, the current flowing through the mercury lamp was changed to form a constant light loop, which made it extremely complicated.

その抑制策として水銀燈部分を恒温槽として一定温度を
保つ様にしていたので、恒温制御設備の付帯は不可欠と
なり、勢い大型化は免れ得なかった。
As a measure to prevent this, the mercury lamp part was kept at a constant temperature by using a constant temperature bath, so it became essential to have constant temperature control equipment, and the size of the lamp was unavoidable.

さらに水銀燈、螢光変換、干渉フィルターの組み合せを
検出部に採用する時はどうしても必要な波長のスペクト
ルにバンド幅が生じてしまい、線スペクトルで測定した
液#鹿と一致させるために測定記録データに対し1.い
ちいち人手で補正係数を乗じて補正処理する後作業を必
要とする等煩瑣に耐えなかった。
Furthermore, when a combination of mercury lamp, fluorescence conversion, and interference filter is used in the detection section, a band width will inevitably occur in the spectrum of the necessary wavelength, and in order to match the liquid #deer measured with a line spectrum, the measurement record data will be Against 1. The process required post-work to manually multiply the correction coefficients and perform correction processing, which was inconvenient.

ここにおいて本発明の主な目的は、定速流送する流体の
光透過率および吸光度を測定記録しつつその測定済の既
知流体を定量分取して行く一連o作iをマイクロコンピ
ュータで自動制御する流体濃度自MIb記録分取方法お
よびシステム装置を提供せんとするものである。
Here, the main purpose of the present invention is to automatically control a series of operations using a microcomputer to measure and record the optical transmittance and absorbance of a fluid that is being fed at a constant rate, and to quantitatively dispense a known fluid that has already been measured. The present invention aims to provide a fluid concentration self-MIb recording/separation method and system device.

本発明の他のi+的は、流体測定の光検出部に使用され
る光源の自己過熱や周囲温度変化による光量変化で検出
部H+1を損わないマイクロコンピュータ制御の流体濃
度自動記録分取方法およびシステム装置を提供せんとす
るものである。
Other i+ objects of the present invention are a microcomputer-controlled fluid concentration automatic recording and preparative method that does not damage the detection section H+1 due to self-heating of the light source used in the photodetection section for fluid measurement or changes in light amount due to changes in ambient temperature; The aim is to provide system equipment.

本発明のさらに他の目的は、測定記録データは線スペク
トルで測定した液濃鹿と一致し補正係数を乗じて補正処
理する後作業を必要としないマイクロコンピュータ制御
の流体濃度自動記録分取方法およびシステム装置を提供
せんとするものである。
Still another object of the present invention is to provide a microcomputer-controlled automatic fluid concentration recording and preparative method that does not require post-work, in which the measured recorded data matches the liquid concentration measured by line spectra and is multiplied by a correction coefficient. The aim is to provide system equipment.

本発明のさらに他の目的は、ポンプ、流動比色計9分取
装置を使用した自動流体クロマトグラフ機能を備え、各
機能を1台のマイクロコンピュータで制御処理を行うマ
イクロコンピュータ制御の流体濃度自動記録分取方法お
よびシステム装置を提供せんとするものである。
Still another object of the present invention is to provide a microcomputer-controlled fluid concentration automatic system that is equipped with an automatic fluid chromatograph function using a pump and a flow colorimeter and a 9-separator, and each function is controlled and processed by one microcomputer. The present invention aims to provide a recording/separation method and a system device.

本発明のさらに他の目的は、メカニズム部分を単純化し
、動作速度を速め、高鞘密性を有する分取装置を備える
マイクロコンピュータ制御の流体濃度自動記録分取シス
テム装置を提供せんとするものである。
Still another object of the present invention is to provide a microcomputer-controlled fluid concentration automatic recording/preparation system device that simplifies the mechanism, speeds up the operation, and has a preparative collection device with high sheath density. be.

本発明のさらに他の目的は、(M、 1llb比色計検
出部の吸光度自動零合せおよび光透過率自動100チ合
せが極めて芥易なマイクロコンピュータ制御の流体濃度
繋自動記録分取システム装置を提供せんとするものであ
る。
Still another object of the present invention is to provide a microcomputer-controlled fluid concentration connection automatic recording/preparation system device in which the absorbance automatic zero adjustment and the light transmittance automatic 100 adjustment of the 1llb colorimeter detection section are extremely easy to remove. This is what we intend to provide.

本発明のさらに他の目的は添付された明細書および図面
を参照すれば自ずと明らかとなろう。
Further objects of the present invention will become apparent upon reference to the accompanying specification and drawings.

測定対象を液体とした場合の本発明のマイクロコンピュ
ータ制御の流体濃度自動記録分取方法は、第1図に示す
よう、まず液体を各液相に分離する分離ステップと、当
該各液相に分離した液体を所定流路Pに沿って設定速度
で流す流送ステップと、流路P終端注口P′に到来した
前記液体を仮想平面直角座標位置に数多配列した試験管
容器群に所定量ずつ分取する分取ステップと、流路P途
中の所別箇所を通過する前記液体の光透過および吸光を
光電検出するに当り光臨光が前記液体を通過した測定光
の検出と前記光源光の直接検出とを同時並行して行って
なる検出ステップと、当該検出ステップで得た検出情報
に基づき、前記所定箇所通過の前記液体の光透過率およ
び吸光度を演算する一方、前記流送ステップの流速を設
定制御し、他方前記分取ステップの試験管容器群上に順
次前記流路P終端注口P′を移動制御するマイクロコン
ピュータ演算制御ステップと、前記分取ステップ各試験
管容器に分取した液体の前記マイクロコンピュータ演算
制御ステップにより算出した光透過率および吸光度を記
録する記録ステップとを順次経由してなる。
The microcomputer-controlled fluid concentration automatic recording and preparative method of the present invention when the measurement target is a liquid, as shown in Figure 1, first includes a separation step of separating the liquid into each liquid phase, and a separation step into each liquid phase. a flow step of flowing the liquid at a set speed along a predetermined flow path P, and a predetermined amount of the liquid that has arrived at the spout P' at the end of the flow path P into a group of test tube containers arranged in a number of rectangular coordinate positions on a virtual plane. A preparative separation step in which the liquid is separated in small quantities, a detection of the measurement light that has passed through the liquid in photoelectric detection of the light transmission and absorption of the liquid passing through a specific point in the middle of the flow path P, and a detection of the measurement light that has passed through the liquid and the detection of the light source light. Based on a detection step in which direct detection is performed simultaneously and the detection information obtained in the detection step, the light transmittance and absorbance of the liquid passing through the predetermined location are calculated, while the flow rate in the flow step is calculated. a microcomputer arithmetic control step for controlling the setting and controlling the flow path P to sequentially move the end spout P' onto the group of test tube containers in the preparative separation step; and a recording step of recording the light transmittance and absorbance of the liquid calculated by the microcomputer calculation control step.

しかして本発明システム装置の実施例も第2図について
説明する。
An embodiment of the system arrangement according to the invention will also be described with reference to FIG.

測定対象を液体とした本発明の流体濃度自動記録分取シ
ステム装置Aは、液体を各液相に分別沈澱等の適宜手段
で分離する分til+、 ’R/ 0を始端に連結し、
当該分離管10の直後にポンプ/λを介設した流路管/
3途中の70−セル/≠中ヲマイクロコンピユータBか
らの流速制御信号81に基づく設定速度で流通させた液
体を分取装置Cに導く流路系りと、当該流路糸りによシ
導かれた液体を数多規則位置に配列した試験管容器a群
に所定量ずつ注入分取する分取装置Cqと、内通する液
体の光透過および吸光を光電検出されるフローセルl≠
の片側−に、省該フ。
The fluid concentration automatic recording/preparation system device A of the present invention, in which the measurement target is a liquid, connects a portion til+, 'R/0 to the starting end, which separates the liquid into each liquid phase by an appropriate means such as fractional precipitation,
Immediately after the separation pipe 10, a flow pipe with a pump/λ interposed/
3. 70-Cell/≠Medium A channel system that guides the liquid that has been circulated at a set speed based on the flow rate control signal 81 from the microcomputer B to the fractionator C, and the channel string. a preparative device Cq that injects and separates a predetermined amount of the collected liquid into a group of test tube containers a arranged in a number of regular positions, and a flow cell l≠ that photoelectrically detects light transmission and absorption of the liquid passing therethrough.
On one side of the screen, there is a blank.

−セルit、t*vから光軸上に順次干渉フィルター/
A、光源it、干渉フィルター20.基準光検出器、2
2をかつフローセル/4’を中に挾んだもう片側の光軸
上に測定光検出器21I−をそれぞれ配列するとともに
、測定光検出器、2≠から発したアナログ測定光値信号
S2を受けてアナログ増巾測定光値信号SSを出力する
測定光値増巾器2乙と、基準光検出器、22から発した
アナログ基準光値信号S4を受けてアナログ増巾基準光
値信号Ssを出力する基準光値増巾器、2rとを備えた
流動比色計検出部Eと、マイクロコンピュータBからの
切換タイミング指令信号S6を受けて流動比色計検出部
Eから出力して来るアナログ増巾測定光値信+jS3と
アナログ増「1」基準光値信号S5とを交互に人力する
アナログスイッチ30と、当該アナログスイッチ30を
通過(7て来たアナログ増巾測定元値信号S3とアナロ
グ増巾基準光値信号S5を、マイクロコンピュータBか
らの動作タイミング指令信号Ehを受けてデジタル測定
元値信号Bmとデジタル基準元値信号S11に変換出力
するA / D変換器3.2とを(Iiilえた切換伝
送変換回路Fと、当該切換伝送変換回路Fからのデジタ
ル測定光値信号S8とデジタル基準光値信号S9を入力
してフローセル/lI−を通過した液体の光透過率およ
び吸光度を演賀しアナログ光透過重鎖信号S+oとアナ
ログ吸光度値信号Buを出力するとともに前記流路管/
3中を流通する液体の流速を設定制御する流速制御信号
S1と。
- Sequential interference filters on the optical axis from cells it, t*v/
A, light source it, interference filter 20. Reference photodetector, 2
A measuring photodetector 21I- is arranged on the optical axis of the other side with the flow cell 2 and the flow cell/4' sandwiched therein, and the measuring photodetector 21I- receives an analog measuring light value signal S2 emitted from the measuring photodetector 2≠. The measurement light value amplifier 2B outputs an analog amplified measurement light value signal SS, and the reference photodetector receives an analog reference light value signal S4 emitted from the reference photodetector 22 and outputs an analog amplification reference light value signal Ss. a flow colorimeter detection section E equipped with a reference light value amplification device 2r, and an analog amplifier outputted from the flow colorimeter detection section E in response to the switching timing command signal S6 from the microcomputer B. The measured light value signal +jS3 and the analog amplified "1" reference light value signal S5 are alternately manually operated by an analog switch 30, and the analog amplified measured original value signal S3 and analog amplified An A/D converter 3.2 receives the operation timing command signal Eh from the microcomputer B and converts the reference light value signal S5 into a digital measurement original value signal Bm and a digital reference original value signal S11. The switching transmission conversion circuit F and the digital measurement light value signal S8 and digital reference light value signal S9 from the switching transmission conversion circuit F are input to calculate the light transmittance and absorbance of the liquid that has passed through the flow cell/lI-. It outputs an analog light transmission heavy chain signal S+o and an analog absorbance value signal Bu, and the flow path pipe/
3, and a flow rate control signal S1 for setting and controlling the flow rate of the liquid flowing through the liquid.

分取装置Cを動作制御するX軸用およびY軸側駆動制御
信号S+t、Brsと、当該分取装置Cにおける前記各
試験管容器aにχ路光り終端注口P′を移動臨ませて液
体を注入分取するタイミングを取るマーカー信号814
とをそれぞれ発するマイクロコンピュータBと、当該マ
イクロコンピュータBから出力したアナログ光逍過重鎖
信号S1oとアナログ吸光度値信号S11とマーカー信
号814とを経時記録するレコーダーqとからなる。
The X-axis and Y-axis drive control signals S+t, Brs that control the operation of the fractionator C are used to move the χ path light terminal spout P' to each of the test tube containers a in the fractionator C to liquidate the liquid. Marker signal 814 that determines the timing for injecting and dispensing
and a recorder q that records over time the analog photoexchange heavy chain signal S1o, the analog absorbance value signal S11, and the marker signal 814 output from the microcomputer B.

第3図に示すよう前記分取装置Cは、仮想座標のX軸に
平行に並架し、た左右一対の並行ガイドロッド3II−
、31,に左右両端部を滑摺自在に貫通渡架し右端部に
X軸片ステッピングモータ3fと直結するX軸周送り蝶
棒4!0を螺合貫通したX軸沿動体弘2を設ける一方、
前記X軸に直角を力してX軸沿動体≠コの長手方向に亘
り案内溝≠≠を穿設延在するとともにY動用ステッピン
グモータlA乙と直結するY軸周送り蝶棒≠rをX軸沿
動体4’、2の左端を空転自在に貫通し案内溝′tA≠
中心を経て先端を案内溝≠≠右端側内面に空転自在に挿
入支承し、他方案内溝≠≠内を滑摺しかつY軸周送り蝶
棒弘gに螺合貫通したY軸スライダーjOに基端を固設
し、て片持突設した支持腕よ2の先端に垂直支持する流
路管/3終端注口P′を前記X軸とY軸から規定される
各仮想座槓位随に相互等ピツチ間隔に配列する各試験管
容器a直上に順次臨ませ司能としである。
As shown in FIG. 3, the sorting device C has a pair of left and right parallel guide rods 3II-
, 31, is provided with an X-axis sliding body 2 which is slidably passed through both the left and right ends, and which is screwed and passed through the X-axis circumferential feed pin 4!0 which is directly connected to the X-axis single stepping motor 3f at the right end. on the other hand,
A force perpendicular to the X-axis is applied to drill and extend a guide groove ≠≠ over the longitudinal direction of the X-axis driven body ≠, and the Y-axis circumferential feed insert pin ≠r directly connected to the Y-movement stepping motor lA B is A guide groove 'tA≠ passes through the left end of the shaft follower 4', 2 so as to freely rotate.
Based on the Y-axis slider jO, whose tip is inserted and supported in the guide groove≠≠ right-end inner surface through the center so that it can freely rotate, and which slides inside the other guide groove≠≠ and is screwed through the Y-axis circumferential feed insert pin hirog. A flow path pipe/3 which is vertically supported at the tip of the support arm 2 whose end is fixedly fixed and cantilevered and whose end spout P' is positioned at each virtual seat position defined from the X-axis and the Y-axis. The test tube containers A are placed in sequence directly above each of the test tube containers A arranged at equal pitch intervals.

第2図に示すよう前記マイクロコンピュータBは、流路
系りのポンプ/コに流速制御信号E11を、切換伝送変
換回路Fのアナログスイッチ30およびA/D変換器3
2にそれぞれ切換タイミング指令信号s6と動作タイミ
ング指令信号s7を、レコーダーGにマーカー信号81
4を、別設すζ表示器よ弘に液体のデジタル光透力率値
信号8111およびデジタル吸光度値信号S+aをそれ
ぞれd力するとともに、切換伝送変換回路Fがらのデジ
タル測定元値信号Sδとデジタル基準光値信号S9を交
互に、別設するデジタルスイッチj6からのデジタル設
定値信号E117をそれぞれ入力するデジタルインター
フェースjにと、Crty(中央演算処理装置)60と
、RAM (読出し書き込みメモリー)乙コと、ROM
 (胱出し専用メモ’)−)、44tと、分取装置aの
X軸周乃至Y軸周ステッピングモータ3♂、4’!;に
それぞれX軸周駆動制御信号S1tとY動用駆動制御信
号aInを出力するX軸周ステッピングモータドライバ
66とY軸周ステッピングモータドライバ6gと、0P
UI、Qで対数演算し予めuoMAII−に記憶しであ
る補正係数値をCPU 60の命令で読み出しそれに乗
算して得た前記液体のデジタル光透力率値信号EIII
およびデジタル吸光度値信号S+aをさらにCPU1s
Oの命令でアナログ光透過重鎖信号8soおよびアナロ
グ吸光度値信号sllに変換出力するD / A変換器
7Qとを備えてなる。
As shown in FIG. 2, the microcomputer B sends a flow rate control signal E11 to the pump/co in the flow path system to the analog switch 30 and A/D converter 3 of the switching transmission conversion circuit F.
2, a switching timing command signal s6 and an operation timing command signal s7, and a marker signal 81 to the recorder G.
4, the digital light transmittance value signal 8111 and the digital absorbance value signal S+a of the liquid are respectively inputted to the separately installed ζ display, and the digital measurement original value signal Sδ from the switching transmission conversion circuit F is inputted. A digital interface j that alternately inputs the reference light value signal S9 and a digital setting value signal E117 from a separately provided digital switch j6, a Crty (central processing unit) 60, and a RAM (read/write memory) and ROM
(Memo for bladder extraction only')-), 44t, and stepping motors 3♂, 4' around the X-axis and Y-axis of the fractionator a! ; an X-axis circumferential stepping motor driver 66 and a Y-axis circumferential stepping motor driver 6g, which respectively output an X-axis circumferential drive control signal S1t and a Y-axis circumferential drive control signal aIn, and 0P.
A digital optical transmittance value signal EIII of the liquid obtained by reading out the correction coefficient value which is logarithmically calculated using UI and Q and stored in advance in uoMAII- by a command from the CPU 60 and multiplying it.
And the digital absorbance value signal S+a is further processed by CPU1s.
It is equipped with a D/A converter 7Q which converts and outputs an analog light transmission heavy chain signal 8so and an analog absorbance value signal sll in response to a command from O.

本発明は前記のように構成し、流体濃度自動記録分取作
業に先立って全自動化のために流動比色計検出部Eにお
ける吸光度自動零合せおよび光透過率自動loom合せ
を行って置く。
The present invention is constructed as described above, and prior to automatic fluid concentration recording and fractionation work, automatic zero adjustment of absorbance and automatic room adjustment of light transmittance in flow colorimeter detection section E are performed for full automation.

即ち光源/♂を点灯し、干渉フィルター/6゜フローセ
ル/≠を通過した測定光L+を測定光検出器、2≠で受
けて光電変換出力したアナログ測定光値伯号日2をA 
/ D変換に必要な値まで測定光値増巾器2乙で増巾出
力されたアナログ増巾測定光値信号S8と、干渉フィル
ター20を通過した基準光Lltを基準光検出器2−で
受けて光電変換出力したアナログ基準光値信号S4をA
 / D変換に必要な値まで基準光値増巾器2どで増巾
出力されたアナロク増巾基準光値(m号s5とを、マイ
クロコンピュータBのROM 7!;≠に予め記憶され
であるプログラム手順に則りapu A O命令でデジ
タルインターフェース3Fを通シ出カされた切換タイミ
ング指令信号s6により切換伝送変換回路Fのアナログ
スイッチ3oの切換接点SWを測定光側端子TIと基準
光側端子T2に亘り交互に接触してアナログ増巾測定元
値信号83とアナログ増巾基準光値信号Ssとを交互入
力してA/D変換器3.2によりデジタル測定光値信号
s8とデジタル基準光値信号s9に変換出力し、マイク
ロコンピュータBのデジタルインターフェース!ざを通
りRAM 6.2の所定指定番地に1−次記憶して行く
。以上の動作を一定回数繰シ返すのと同時にCPU 4
0で積分演算しデジタル測友光値信号SSおよびデジタ
ル基準元値信号s9の雑音成分を、除去する。
That is, the light source /♂ is turned on, and the measurement light L+ that has passed through the interference filter /6° flow cell /≠ is received by the measurement photodetector, 2≠, and the analog measured light value 2≠ is photoelectrically converted and outputted as A.
/ The analog amplified measurement light value signal S8 amplified by the measurement light value amplifier 2B to the value required for D conversion and the reference light Llt passed through the interference filter 20 are received by the reference photodetector 2-. The analog reference light value signal S4 photoelectrically converted and outputted is A.
/ The analog amplified reference light value (m s5) amplified and outputted by the reference light value amplifier 2 to the value required for D conversion is stored in advance in the ROM 7!;≠ of the microcomputer B. According to the program procedure, the switching timing command signal s6, which is output through the digital interface 3F with the apu A O command, connects the switching contact SW of the analog switch 3o of the switching transmission conversion circuit F to the measurement light side terminal TI and the reference light side terminal T2. The analog amplified measurement original value signal 83 and the analog amplified reference light value signal Ss are alternately input by contacting the two terminals alternately over the range, and the A/D converter 3.2 outputs the digital measurement light value signal s8 and the digital reference light value. It is converted into a signal s9 and stored in a predetermined designated address of RAM 6.2 through the digital interface of microcomputer B.The above operation is repeated a certain number of times, and at the same time CPU 4
Integral calculation is performed at 0 to remove noise components of the digital measurement light value signal SS and the digital standard original value signal s9.

そして吸光度自−動零合せの場合における手順は、フロ
ーセルiitと測定光検出器21I−間に図示しない不
透光完全遮断物を介在した時にマイクロコンピユータB
に入力したデジタル測定光値信号S8をSAMPとし、
デジタル基準光値信号S9をRBIとすると吸光度値A
BSは、予めデジタルスイッチタtでデジタル設定値信
号S1?を介し入力しROM l、≠の所定指定番地に
記憶しである次式 によりCPU A Oの対数演算で求まる。この値を初
期値としてRAM 62内の所定指定番地に格納記憶す
る。
The procedure for automatically zeroing the absorbance is that when an opaque complete blocker (not shown) is interposed between the flow cell IIT and the measurement photodetector 21I, the microcomputer B
Let SAMP be the digital measurement light value signal S8 input to
If the digital reference light value signal S9 is RBI, the absorbance value A
BS is a digital set value signal S1? using a digital switch t in advance. It is inputted via the ROM l,≠ and stored at a predetermined designated address, and is determined by the logarithmic operation of the CPU A0 according to the following equation. This value is stored as an initial value at a predetermined designated address in the RAM 62.

次に先のA/D変換、対数演算の一連動作を実行して新
しい吸光度値ABSAをcpty A Oで求める。引
続き吸光度値の変化分を予めデジタルスイツ・チj6で
デジタル設定値信号S+yを介し入力しRoM6≠の所
定指定番地に記憶しである次式か%0PU40の引算処
理で求めると吸光度値の変化分= ABSA−ABSつ
まり両者に差がなければ答は零値になり自動的に零合せ
を予めROM is≠に記憶されたプログラミング手順
に則シCPU A Oで自動調整処理される。
Next, the series of A/D conversion and logarithmic operations described above are executed to obtain a new absorbance value ABSA using cpty A O. Subsequently, the change in absorbance value is inputted in advance via the digital set value signal S+y in the digital switch chip j6, stored in a predetermined designated address of RoM6≠, and calculated by the following formula or the subtraction process of %0PU40, the change in absorbance value is calculated. Minutes=ABSA-ABS In other words, if there is no difference between the two, the answer will be a zero value, and the zero adjustment will be automatically adjusted by the CPU AO in accordance with the programming procedure previously stored in the ROM is≠.

光透過率の自動10096合わせの場合における演算手
順は、70−セル/lとiJ+++庫光検出器211−
間の図示しない前記不透光完全遮断物を除去した時にマ
イクロコンピュータBに人力したデジタル測定元値信号
S8をSAMPとし、デジタル基準光値信号S9をRF
!FBとすると、光・透過率の値TAは予めデジタルス
イッチj6でデジタル設定値信号Sl?を介し入力しR
OM A≠の所定指定番地に記憶しである次式 によp CPU A Oの比較演算で求まる。この値を
初期値としてRAM & 2内の所定指定番地に格納記
憶する。
The calculation procedure for automatic 10096 light transmittance adjustment is 70-cell/l and iJ+++ optical detector 211-
The digital measurement original value signal S8 manually entered into the microcomputer B when the non-transparent complete blocker (not shown) in between is removed is set as SAMP, and the digital reference light value signal S9 is set as RF.
! Assuming FB, the light/transmittance value TA is set in advance by the digital switch j6 using the digital set value signal Sl? Enter via R
It is stored in a predetermined designated address of OM A≠ and is determined by the comparison operation of p CPU A O according to the following equation. This value is stored as an initial value at a predetermined designated address in RAM&2.

次に先のA / D変換、演算の一連動作を実行して新
しい測定光透過率値TBを求める。
Next, the series of A/D conversion and calculation operations described above are executed to obtain a new measured light transmittance value TB.

引続き光透過重鎖の変化分を予めデジタルスイッチj6
でデジタル設定値信号st7を介しRoM、4≠の所定
指定番地に記憶しである次式がCPU 乙Qの比較演算
で求めると、 となシ、この場合も両者に差が無ければ答は100チに
なり自動100%合わせを予めROM A≠に記憶され
たプログラミング手順に則り0PUAOで自動調整処理
される。
Continue to adjust the change in the light-transmitting heavy chain using the digital switch j6.
The following equation is stored in a predetermined designated address of RoM, 4≠ via the digital setting value signal st7, and is obtained by the comparison calculation of the CPU Otsu Q. In this case, if there is no difference between the two, the answer is 100. automatic 100% adjustment is performed at 0 PUAO according to the programming procedure stored in advance in ROM A≠.

まず分離管IO内で各液相に分離した液体を、予めデジ
タルスイッチ!乙でデジタル設定値信号BITによりR
OM4’G’の所定指定番地に記憶格納しである流速制
御値をCPU A Oの命令でデジタルインターフェー
スjrから出力した流速制御信号S+によりポンプ12
を駆動して流路管/3内に送通する。
First, the liquid is separated into each liquid phase in the separation tube IO using a digital switch! R by digital setting value signal BIT
The flow rate control value stored in a predetermined designated address of OM4'G' is controlled by the pump 12 by the flow rate control signal S+ outputted from the digital interface jr under the command of CPU A0.
is driven to pass through the flow path pipe /3.

液体は流路管/3の途中にあるフローセル14tを通過
し、前記吸光度自動寄合せおよび光透退出自動100 
%合せで述べたように、流動比色計検出部Eおよび切換
伝送変換回路Fを動作してその時のデジタル測定光値信
号S8およびデジタル基準光値信号s9を交互にデジタ
ルインターフェースjざを介して入力し、1<hM62
の所定指定番地へ格納して前記吸光度値と光透過重鎖を
cpu g oで演算処理し、最終的に千渉フィルター
it、、zoに係る線スペクトルでdllJ定した液体
濃度と一致させるため、予めデジタルスイッチ!乙でデ
ジタル設定値信号R+tヶ介してROM61I−の所定
指定番地に記憶しである補正係数を読み出しCPU60
にて運算して得たデジタル光透過重鎖信号Stsおよび
デジタル吸光度値信号S+eをRAM A 2に記憶格
納する。引続きCPU乙0はフローセル/lI−から分
取装置Cまでの流路管/3終端注口P′の長さとポンプ
/2に出力される流速制御信号Elから測定された液体
が実際に流路管/3終端注口P′に到来する時間差を算
出して、その分だけRAM l、 2に記憶したデジタ
ル光透過重鎖信号S’gおよびデジタル吸光度値信号8
16の読出し時間を遅延して最初の試験管容器aに所定
量分取充填した時点でRAM 62からCPU 60の
命令で読出し発光ダイオードLEDからなる表示器jl
Aに表示するとともに、D/A変換器70によシアナロ
グ光透過重鎖信号S+。
The liquid passes through the flow cell 14t located in the middle of the flow pipe /3, and the absorbance automatic alignment and light transmission exit automatic 100
As described in the % adjustment section, the flow colorimeter detection unit E and the switching transmission conversion circuit F are operated to alternately send the digital measurement light value signal S8 and the digital reference light value signal s9 through the digital interface. Enter, 1<hM62
The absorbance value and the light transmission heavy chain are stored in a predetermined address, and the absorbance value and the light transmission heavy chain are arithmetic processed by the CPU GO, and finally, in order to match the liquid concentration determined by the line spectrum related to the Senshita filters it, , and zo, Digital switch in advance! Then, the CPU 60 reads out the correction coefficient stored in a predetermined address of the ROM 61I- via the digital setting value signal R+t.
The digital light transmission heavy chain signal Sts and digital absorbance value signal S+e obtained by calculation are stored in RAM A2. Next, the CPU Otsu0 determines whether the measured liquid is actually in the flow path based on the length of the flow path pipe/3 end spout P' from the flow cell/lI- to the fractionator C and the flow rate control signal El output to the pump/2. The time difference between arriving at the end spout P' of pipe/3 is calculated, and the digital light transmission heavy chain signal S'g and the digital absorbance value signal 8 are stored in RAM 1 and 2 accordingly.
After delaying the readout time of step 16 and filling the first test tube container a with a predetermined amount, the CPU 60 reads out the data from the RAM 62 and displays an indicator jl consisting of a light emitting diode LED.
At the same time, the D/A converter 70 displays the analog optically transmitted heavy chain signal S+.

およびアナログ吸光度値信号S++に変換出力して別設
接続するレコーダーGのチャートにピークを作図する。
Then, it is converted into an analog absorbance value signal S++ and outputted, and a peak is plotted on a chart of a recorder G which is connected separately.

決められた一定t1毎の液体が最初の試験管容器a内に
注入完了すると、CPU60が命令演算動作して試験管
容器a群が配列する仮想座榛位置を規定するX軸、Y軸
上のピッチ目盛に係る次の試験管容器aまでのそれぞれ
X軸用乃至Y軸層ステッピングモータドライバ66.6
gに対応するパルス数と回転方向を算出するか、予めR
OMg<’内にシーケンスデータを格納してCpUAO
によシその都度絖み出してX軸用乃至Y軸層ステッピン
グモータドライバ66.6にを動作しX軸周駆動制御信
号S+tおよびY軸用駆動制御信号8+sを分取装置c
のX軸用乃至Y軸周ステッピングモータ3に、≠6に送
信する。
When the liquid is injected into the first test tube container a at a predetermined constant time t1, the CPU 60 performs a command calculation operation to determine the virtual position on the X-axis and Y-axis where the test tube container a group is arranged. X-axis to Y-axis layer stepping motor driver 66.6 up to the next test tube container a on the pitch scale
Calculate the number of pulses and rotation direction corresponding to g, or calculate R in advance.
Store sequence data in OMg<' and write CpUAO
Each time, the stepping motor driver 66.6 for the X-axis or Y-axis layer is operated to send the X-axis circumferential drive control signal S+t and the Y-axis drive control signal 8+s to the fractionator c.
The signal is sent to the X-axis to Y-axis circumferential stepping motor 3 at ≠6.

X軸用駆動制御信号81tを受けたX軸片ステッピング
モータ3gは指令された回転方向とパルス数に応じた位
相角回転することによpx軸動用シ螺蝶棒10を回転し
X軸沿動体弘コ全体を矢印X軸方向に並行ガイドロッド
3≠、36に案内規制されて寸動位置決め停止する。
The X-axis single stepping motor 3g that receives the X-axis drive control signal 81t rotates the px-axis screw pin 10 by rotating the phase angle according to the commanded rotation direction and number of pulses, thereby causing the X-axis follower to rotate. The entire Hiroko is guided and regulated by the parallel guide rod 3≠, 36 in the direction of the arrow X axis, and the position is inched and stopped.

これと平行してY軸用駆動制御信号813を受けたY軸
周ステッピングモータ1I−6は指令された回転方向と
パルス数に応じた位相角回転することによりY動用送シ
蝶棒ll−にを回転し、Y軸スライダーjOを矢印Y軸
方向に案内溝≠≠に案内規制されて寸動位置決め停止し
、次の試験管容器a直上に流路管13の終端注口P′を
臨ませ、所定量の液体を充填注入して行く。
In parallel with this, the Y-axis circumferential stepping motor 1I-6 receives the Y-axis drive control signal 813 and rotates through the commanded rotation direction and phase angle according to the number of pulses, thereby turning the Y-axis feeder pin ll-. , the Y-axis slider jO is guided in the direction of the arrow Y-axis by the guide groove ≠≠, and stops at an inching position, so that the end spout P' of the flow path pipe 13 faces directly above the next test tube container a. , fill and inject a predetermined amount of liquid.

その際CPU 40の命令動作により、試験管容器a直
上への分取装置Cの送シ動作毎にデジタルインターフェ
ースjざを介してレコーダーGにマーカー信号814を
送出してアナログ光透過重鎖信号Shoおよびアナログ
吸光度値信号Bitのピーク作図とは別に同期したマー
カー信号814を作図して行く。
At this time, according to the command operation of the CPU 40, a marker signal 814 is sent to the recorder G via the digital interface every time the fractionator C sends a sample directly above the test tube container a, and an analog light-transmitting heavy chain signal Sho is sent to the recorder G via the digital interface. A synchronized marker signal 814 is plotted separately from the peak plot of the analog absorbance value signal Bit.

かくしてこのような一連のサイクル動作を繰9返してフ
ローセル/lI−で測定した既知濃度の液体を分取装置
Cで各試験管容器aに所定量ずつ分取して当該試験管容
器aに対応するその測定値を記録及び表示することとな
る。
In this way, such a series of cycle operations is repeated nine times, and a predetermined amount of the liquid measured by the flow cell/lI- is dispensed into each test tube container a using the preparator C to correspond to the test tube container a. The measured values will be recorded and displayed.

しかもcpUAOは外部からの何等の信号なしで決めら
れた一定量を各試験管容器に分取する命令を発するし、
本発明に採用する分取装置Cは機構部分が単純で動作速
度が早く、特に−滴の誤差も許されないような用途に有
効である。
Moreover, the cpUAO issues a command to dispense a fixed amount into each test tube container without any external signal.
The fractionator C adopted in the present invention has a simple mechanical part and a high operating speed, and is particularly effective in applications where errors in droplets cannot be tolerated.

また本発明では同時に同一光源から測定光と基準光を検
出するので、稼動中光源の先着変化に対しても測定上悪
影響を受けず、正しい値を求めることが出来る等優れた
効果を発揮する。
In addition, since the present invention simultaneously detects the measurement light and the reference light from the same light source, the measurement is not adversely affected by changes in the light source during operation, and it exhibits excellent effects such as being able to obtain correct values.

なお本発明では、測定対象を液体とするも流体であるな
らば気体でも適用可能である。
In the present invention, although the object to be measured is a liquid, it can also be applied to a gas as long as it is a fluid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法の施工手順を示す70−チャート図法
によるブロックダイヤグラム、第2図は本発明システム
装置の実施例の全体構成を示すフローチャート図法によ
るブロックダイヤグラム、第3図は本発明システム装置
に採用する分取装置の一部省略した斜面図である。 A・・・流体濃度自動記録分取システノ、装置B・・・
マイクロコンピュータ  C・・・分取装置D・・・流
路系  E・・・流動比色計検出部F・・・切換伝送変
換回路  G・・・レコーダーP・・・流路  P′・
・・終端注口  a・・・試験管容器L+・・・測定光
  L2・・・基準光  10・・・分離管/2・・・
ポンプ  /3・・・流路管/4’・・・70−セル 
 /l、、2θ・・・干渉フィルター/r・・・光源 
 、22・・・基準光検出器21I−・・・測定光検出
器  、26・・・測定光値増巾器2r・・・基準光値
増巾器 30・・・アナログスイッチ 3.2・・・A / D
変換器3≠、36・・・並行ガイドロンド 3t・・・X軸周ステッピングモータ ≠O・・・X動用送シ蝶棒  ≠λ・・・X軸沿動体≠
弘・・・案内溝  1I−6・・・Y軸用ステッピング
モータ  ≠r・・・Y動用送シ蝶棒 、5″O・・・Y軸スライダー  、5′コ・・−支持
腕j乙・・・デジタルスイッチ j♂・・・デジタルインターフェース 60・apU7!1.2・RAM   1ll−・・R
oy66・・・X軸周ステッピングモータドライバ6g
・・・Y +fl+用ステッピングモータトライバ70
・・・D / A変換器 Ell・・・流速制御信号 S2・・・アナログ測定光
値信号S3・・・アナログ増1j測定光値信号S4・・
・アナログ基準光値信号 S+・・・アナログ増巾基準光値信号 S6・・・切換タイミング指令信号 S7・・・動作タイミング指令信号 S8・・・デジタル測定光値信号 S9・・・デジタル基準光値信号 S+o・・・アナログ光透過重鎖信号 S■・・・アナログ吸光度値信号 812・・・Y軸用駆動制御信号 S+a・・・Y軸用駆動制御信号 814・・・マーカー信号 815・・・デジタル光透過重鎖信号 8+a・・・デジタル吸光度値信号 81?・・・デジタル設定値信号
FIG. 1 is a block diagram using a 70-chart diagram showing the construction procedure of the method of the present invention, FIG. 2 is a block diagram using a flowchart diagram showing the overall configuration of an embodiment of the system device of the present invention, and FIG. 3 is a block diagram using the system device of the present invention. FIG. A... Fluid concentration automatic recording preparative system system, device B...
Microcomputer C...Preparation device D...Flow path system E...Flow colorimeter detection section F...Switching transmission conversion circuit G...Recorder P...Flow path P'
...Terminal spout a...Test tube container L+...Measurement light L2...Reference light 10...Separation tube/2...
Pump /3...Flow pipe/4'...70-cell
/l,,2θ...Interference filter /r...Light source
, 22...Reference photodetector 21I-...Measurement photodetector, 26...Measurement light value amplifier 2r...Reference light value amplifier 30...Analog switch 3.2...・A/D
Converter 3≠, 36...Parallel guide Rond 3t...X-axis circumferential stepping motor≠O...X-motion feeder insert ≠λ...X-axis following body≠
Hiroshi...Guide groove 1I-6...Y-axis stepping motor ≠r...Y-movement feed pin, 5''O...Y-axis slider, 5'...-Support arm j-・・Digital switch j♂・・Digital interface 60・apU7!1.2・RAM 1ll-・・R
oy66...X-axis circumferential stepping motor driver 6g
...Stepping motor driver 70 for Y +fl+
...D/A converter Ell...Flow rate control signal S2...Analog measurement light value signal S3...Analog increase 1j measurement light value signal S4...
・Analog reference light value signal S+...Analog amplified reference light value signal S6...Switching timing command signal S7...Operation timing command signal S8...Digital measurement light value signal S9...Digital reference light value Signal S+o...Analog light transmission heavy chain signal S■...Analog absorbance value signal 812...Y-axis drive control signal S+a...Y-axis drive control signal 814...Marker signal 815... Digital light transmission heavy chain signal 8+a...Digital absorbance value signal 81? ...Digital set value signal

Claims (1)

【特許請求の範囲】 1、流体を所定流路に沿って設定速度で流す流送子テッ
プと、前記流路終端注口に到来した前記流体を数多配列
した容器群に所定量ずつ分取する分取ステップと、前記
流路の所定箇所を通過する前記流体の光透過および吸光
を検出する検出ステップと、当該検出ステップで得た検
出情報に基づき前記所定箇所通過の前記流体の光透過率
および吸光度を演算する一方、前記流送ステップの流速
を設定制御(7、他方前記分取ステップの容器群上に順
次前記流路終端注口を移動制御するマイクロコンピュー
タ演算制御ステップと、前記分取ステップで各容器に分
取した流体の前記マイクロコンピュータ演算制御ステッ
プによりs出した光透過率および吸光度を記録する記録
ステツプとを順次経由してなるマイクロコンピュータ制
御の流体濃度自動記録分取方法 2 流送ステップは、流体を各相に分離する分離ステッ
プを前置してなる特許請求の範囲第1項記載のマイクロ
コンピュータ制御の流体濃度自動記録分取方法 3、検出ステップは、光源光が流体を通過[−だ測定光
の検出と、前記光源光の直接検出とを同時並行して行っ
てなる特許請求の範囲第1項又は第2項記載のマイクロ
コンピュータ制御の流体濃度自動記録分取方法 4、分取ステップの容器群は、仮想平面直角座標位置に
等間隔配列されてなる特許請求の範囲第1項、第2項又
は第3項記載のマイクロコンピュータ制御の流体濃度自
動記録分取方法 5、流路管途中のフローセル中を設定速度で楓流通させ
た流体を分取装置に導く流路系と、当該流路系により導
かれた流体を数多配列した容器群に所定量ずつ注入分取
する前記分取装置と、前記フローセル中を通過した流体
の光透過および吸光を光電検出(7てアナログ増巾測定
光値信号およびアナログ増巾基準光値信号を出力する流
動比色計検出部と、前記アナログ増巾測定値信号とアナ
ログ増巾基準光値信号とを交互入力変換【−てデジタル
測定光値信号とデジタル基準光値信号を出力する切換伝
送変換回路と、当該切換伝送変換回路からのデジタル測
定光値信号とデジタル基準光値信号を入力して前記フロ
ーセルを通過した流体の光透過率および吸光度を演算し
アナログ光透過率値信号とアナログ吸光度値信号を出力
するとともに前記流路管中を流通する流体の流速を設定
制御する流速制御信号と、前・記分取装置を動作制御す
る駆動制御信号′と。 当該分取装置における前記各容器に前記流路系終端注口
を移動臨ませ流体を注入分取するタイミングを取るマー
カー信号とをそれぞれ発fるマイクロコンピュータと、
当該マイクロコンピュータから出力した前記アナログ光
透過率値信号と前記アナログ吸光度値信号と前記マーカ
ー信号とを経時記録するレコーダーとからなるマイクロ
コンピュータ制御の流体濃度自動記録分取システム装置 6、流路系は、流体を各相に分離する分離管を始端に連
結シフ、当該分離管の直後にマイクロコンピュータから
の流速制御信号を受けて動作するポンプを介設してなる
特rr MN求の範囲第5項記載のマイクロコンピュー
タ制御の流体濃度自動記録分取システム装(1〆1゜7
、 分取装置は、仮想直角平面P1〜標のX軸に平行に
並架した並行ガイドロッドに両端部を滑摺自在に貫通渡
架しその一端部にX軸周ステッピングモータと直結する
X軸用送り蝶棒を螺合貫通したX軸沿動体を設ける一方
、前記X軸に直角をな(〜て当該X軸沿動体の長手方向
に亘9案内溝を穿設延在するとともにY@用ステッピン
グモータと直結するY軸用送シ蝶棒を前記X軸沿動体の
他端を空転自在に貫通し前記案内溝中心を経て先端を前
記案内溝の一端側に空転自在に挿入支承し、他方前記案
内溝内を滑摺しかつY軸用送り蝶棒に螺合貫通したY軸
スライダーに基端を固設して片持突設した支持腕の先端
に垂直支持する流路管終端注口を前記X軸とY軸から規
定される前記各座標位置に配列する各容器直上に順次臨
ませるようにしてなる特許請求の範囲第5項又は纂6項
記載のマイクロコンピュータ制御の流体濃度自動記録分
取システム装置8、 流動比色計検出部は、フローセル
の片側に、当該フローセル寄りから光軸上にflit次
干渉フィルター、光源、干渉フィルター、基準光検出器
をかつ前記フローセルのもう片側の前記光軸上に測定光
検出器をそれぞれ配列するとともに、当該測定光検出器
から発したアナログ測定光値信号を受けてアナログ増巾
測定光値信号を出力う′る測定光値増巾器と、前記基準
光検出器から発したアナログ基準光値信号を受けてアナ
ログ増巾基準光値信号を出力する基準光値増lJ器とを
備えてなる特許請求の範囲第5項、第6項又は第7項記
載のマイクロコンピュータ制御の流体濃度自動記録分取
システム装置 9、切換伝送変換回路は、マイクロコンピュータからの
切換タイミング指令信号を受けて流動比色計検出部から
出力して来るアナログ増巾測定光値信号とアナログ増巾
基準元値信号とを交互に切換入力するアナログスイッチ
と、当該アナログスイッチを通過して来た前記アナログ
増巾測定光値信号とアナログ増巾基準光値信号を前記マ
イクロコンピュータからの動作タイミング指令信号を受
けてデジタル測定光値信号とデジタル基準光値(M号に
変換出力するA/D変換器とを備えてなる特許請求の範
囲第5項、第6項、第7項又は第8項記載のマイクロコ
ンピュータ制御の流体濃度自動記録分取システム装置 10、マイクロコンピュータは、流路系のポンプに流速
制御信号を、切換伝送変換回路のアナログスイッチおよ
びA / D変換器にそれぞれ切換タイミング指令信号
と動作タイミング指令信号を、レコーダーにマーカー信
号を、表示器に流体の光透過重鎖信号および吸光度値信
号をそれぞれ出力するとともに、前記切換伝送変換回路
からのデジタル測定元値信号とデジタル基準光値信号を
交互に、デジタルスイッチからのデジタル設定値信号を
それぞれ入力するデジタルインターフェースと、CPU
ト、RAMと、R,oMと、分取装置のX軸側乃至Y軸
層ステッピングモータにそれぞれX軸用駆動制御信号と
Y軸用駆動制御信号を出力するX軸周ステッピングモー
タドライバとY軸用ステッピングモータドライバと、前
記CPUで演算して得た前記液体のデジタル基準光値信
号およびデジタル吸光度値信号をアナログ光透過重鎖信
号およびアナログ吸光度値(M号に変換出力するD /
 A変換器とを備えてなる特許請求の範囲第5項、第6
項、第7項、第8項又は第9項記載のマイクロコンピュ
ータ制御の流体濃度自動記録分取システム装置
[Scope of Claims] 1. A streamer tip that allows fluid to flow at a set speed along a predetermined flow path, and a predetermined amount of the fluid that has arrived at the spout at the end of the flow path is dispensed into a number of arranged containers. a detection step of detecting light transmission and light absorption of the fluid passing through a predetermined portion of the flow path; and a detection step of detecting the light transmittance of the fluid passing through the predetermined portion based on the detection information obtained in the detection step. and absorbance, while setting and controlling the flow rate of the feeding step (7); on the other hand, a microcomputer calculation control step of sequentially controlling the movement of the flow path end spout onto the container group of the preparative separation step; and a recording step of recording the light transmittance and absorbance of the fluid dispensed into each container by the microcomputer arithmetic control step. The microcomputer-controlled fluid concentration automatic recording/preparation method 3 according to claim 1, wherein the feeding step is preceded by a separation step of separating the fluid into each phase; A microcomputer-controlled fluid concentration automatic recording and fractionation method 4 according to claim 1 or 2, wherein the detection of the passing [-] measurement light and the direct detection of the light source light are performed simultaneously in parallel. The microcomputer-controlled automatic fluid concentration recording and sorting method 5 according to claim 1, 2, or 3, wherein the containers in the sorting step are arranged at regular intervals at rectangular coordinate positions on a virtual plane. , a flow path system that guides the fluid flowing through the flow cell at a set speed to the preparative separation device, and a predetermined amount of the fluid guided by the flow path system to be injected into a group of containers arranged in large numbers. and a flow colorimeter detection unit that outputs an analog amplification measurement light value signal and an analog amplification reference light value signal. a switching transmission conversion circuit that alternately inputs and converts the analog amplified measurement value signal and the analog amplified reference light value signal to output a digital measurement light value signal and a digital reference light value signal, and the switching transmission conversion circuit A digital measurement light value signal and a digital reference light value signal from the flow cell are inputted to calculate the light transmittance and absorbance of the fluid that has passed through the flow cell, and an analog light transmittance value signal and an analog absorbance value signal are outputted. a flow rate control signal for setting and controlling the flow rate of the fluid flowing through the pipe; and a drive control signal' for controlling the operation of the preparative device. a microcomputer that generates a marker signal that determines the timing for injecting and dispensing the moving fluid;
A microcomputer-controlled fluid concentration automatic recording/preparation system device 6 comprising a recorder that records over time the analog light transmittance value signal, the analog absorbance value signal, and the marker signal output from the microcomputer; , a separation tube that separates the fluid into each phase is connected to the starting end, and a pump that operates in response to a flow rate control signal from a microcomputer is inserted immediately after the separation tube. The microcomputer-controlled automatic fluid concentration recording and preparative system equipment described (1〆1゜7
, The sorting device has both ends slidably passed through parallel guide rods that are parallel to the X-axis of the virtual orthogonal plane P1 and the target, and an X-axis that is directly connected to an X-axis circumferential stepping motor at one end. An X-axis follower is provided, which is threaded through the feed insert pin, and nine guide grooves are bored and extended in the longitudinal direction of the X-axis follower perpendicular to the X-axis. A Y-axis feed butterfly directly connected to the stepping motor is passed through the other end of the X-axis follower so that it can freely rotate, passes through the center of the guide groove, and its tip is inserted and supported at one end of the guide groove, and the other end is freely rotatable. a flow pipe end spout that slides in the guide groove and is vertically supported at the tip of a support arm that is fixed to the Y-axis slider and screwed through the Y-axis feed insert and protruded in a cantilever manner; The microcomputer-controlled automatic recording of fluid concentration according to claim 5 or 6, wherein the microcomputer-controlled fluid concentration automatic recording device is configured to sequentially face directly above each container arranged at each coordinate position defined by the X-axis and the Y-axis. The preparative separation system device 8, the flow colorimeter detection unit, includes a flit-order interference filter, a light source, an interference filter, and a reference photodetector on the optical axis from the flow cell side on one side of the flow cell, and a flit-order interference filter, a light source, an interference filter, and a reference photodetector on the other side of the flow cell. a measurement light value amplifier which arranges measurement light detectors on the optical axis and receives analog measurement light value signals emitted from the measurement light detectors and outputs an analog amplified measurement light value signal; Claims 5, 6 or 6 further comprising a reference light value intensifier that receives an analog reference light value signal emitted from the reference photodetector and outputs an analog amplified reference light value signal. In the microcomputer-controlled fluid concentration automatic recording preparative separation system device 9 described in item 7, the switching transmission conversion circuit receives the switching timing command signal from the microcomputer and outputs the analog amplification measurement from the flow colorimeter detection section. An analog switch that alternately switches and inputs a light value signal and an analog amplification reference original value signal; Claims 5, 6, and 6, comprising an A/D converter that receives an operation timing command signal from a computer and converts and outputs a digital measurement light value signal and a digital reference light value (M number). In the microcomputer-controlled fluid concentration automatic recording/preparation system device 10 described in item 7 or 8, the microcomputer transmits a flow rate control signal to the pump in the flow path system, and an analog switch and an A/D converter in the switching transmission conversion circuit. It outputs a switching timing command signal and an operation timing command signal to the switch, a marker signal to the recorder, a fluid light transmission heavy chain signal and an absorbance value signal to the display, and also outputs the digital measurement original value from the switching transmission conversion circuit. A digital interface that alternately inputs signals and digital reference light value signals and a digital set value signal from a digital switch, and a CPU.
G, RAM, R, oM, an X-axis peripheral stepping motor driver and a Y-axis that output an X-axis drive control signal and a Y-axis drive control signal to the X-axis side or Y-axis layer stepping motor of the sorting device, respectively. D / which converts and outputs the digital reference light value signal and digital absorbance value signal of the liquid obtained by calculation by the stepping motor driver and the CPU into an analog light transmission heavy chain signal and an analog absorbance value (M number).
Claims 5 and 6 comprising an A converter.
Microcomputer-controlled fluid concentration automatic recording/preparation system device according to paragraph 7, paragraph 8, or paragraph 9.
JP14920582A 1982-08-30 1982-08-30 Method and system device for automatic recording of fluid concentration and dispensing said fluid with microcomputer control Pending JPS5940145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14920582A JPS5940145A (en) 1982-08-30 1982-08-30 Method and system device for automatic recording of fluid concentration and dispensing said fluid with microcomputer control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14920582A JPS5940145A (en) 1982-08-30 1982-08-30 Method and system device for automatic recording of fluid concentration and dispensing said fluid with microcomputer control

Publications (1)

Publication Number Publication Date
JPS5940145A true JPS5940145A (en) 1984-03-05

Family

ID=15470117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14920582A Pending JPS5940145A (en) 1982-08-30 1982-08-30 Method and system device for automatic recording of fluid concentration and dispensing said fluid with microcomputer control

Country Status (1)

Country Link
JP (1) JPS5940145A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4029262A1 (en) * 1989-09-16 1991-03-28 Aisin Seiki POWER SUPPLY DEVICE FOR AN ULTRASONIC VIBRATOR AND VEHICLE MIRROR
DE4027170A1 (en) * 1989-08-31 1991-04-04 Aisin Seiki Rear view wing mirror for motor vehicle - has vibrator and heating element at rear of mirror element for removing water, ice or snow
US5007238A (en) * 1988-06-23 1991-04-16 Aisin Seiki Kabushiki Kaisha Apparatus for evaporating condensed liquid
US5013888A (en) * 1988-09-27 1991-05-07 Aisin Seiki Kabushiki Kaisha Self-cleaning plate shaped device
US5148312A (en) * 1989-02-09 1992-09-15 Aisin Seiki Kabushiki Kaisha Cleaning apparatus for removing foreign substances from a surface variously including a curved member, expanding-contracting vibrator means, and spacer means including a through hole or a depressed region
US5170288A (en) * 1988-11-09 1992-12-08 Aisin Seiki Kabushiki Kaisha Self-cleaning apparatus for removal of foreign substances from a plate-like device
US5475530A (en) * 1989-08-13 1995-12-12 Aisin Seiki Kabushiki Kaisha Outside mirror for a vehicle
JP2008542750A (en) * 2005-06-03 2008-11-27 アルファ ワッサーマン インコーポレイテッド Fraction collector
US7582262B2 (en) 2004-06-18 2009-09-01 Roche Diagnostics Operations, Inc. Dispenser for flattened articles
JP2012123015A (en) * 2012-02-24 2012-06-28 Alfa Wassermann Inc Fraction collector
JP2020519907A (en) * 2017-05-11 2020-07-02 ロード ドイチュラント ゲーエムベーハーRoad Deutschland Gmbh Inferential fluid state sensor and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105195A (en) * 1974-01-28 1975-08-19
JPS5123360A (en) * 1974-08-15 1976-02-24 Teijin Ltd YOKOITO TANCHISOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105195A (en) * 1974-01-28 1975-08-19
JPS5123360A (en) * 1974-08-15 1976-02-24 Teijin Ltd YOKOITO TANCHISOCHI

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007238A (en) * 1988-06-23 1991-04-16 Aisin Seiki Kabushiki Kaisha Apparatus for evaporating condensed liquid
US5013888A (en) * 1988-09-27 1991-05-07 Aisin Seiki Kabushiki Kaisha Self-cleaning plate shaped device
US5170288A (en) * 1988-11-09 1992-12-08 Aisin Seiki Kabushiki Kaisha Self-cleaning apparatus for removal of foreign substances from a plate-like device
US5148312A (en) * 1989-02-09 1992-09-15 Aisin Seiki Kabushiki Kaisha Cleaning apparatus for removing foreign substances from a surface variously including a curved member, expanding-contracting vibrator means, and spacer means including a through hole or a depressed region
US5475530A (en) * 1989-08-13 1995-12-12 Aisin Seiki Kabushiki Kaisha Outside mirror for a vehicle
DE4027170A1 (en) * 1989-08-31 1991-04-04 Aisin Seiki Rear view wing mirror for motor vehicle - has vibrator and heating element at rear of mirror element for removing water, ice or snow
DE4029262A1 (en) * 1989-09-16 1991-03-28 Aisin Seiki POWER SUPPLY DEVICE FOR AN ULTRASONIC VIBRATOR AND VEHICLE MIRROR
US7582262B2 (en) 2004-06-18 2009-09-01 Roche Diagnostics Operations, Inc. Dispenser for flattened articles
JP2008542750A (en) * 2005-06-03 2008-11-27 アルファ ワッサーマン インコーポレイテッド Fraction collector
US8245740B2 (en) 2005-06-03 2012-08-21 Alfa Wassermann, Inc. Fraction collector
JP2012123015A (en) * 2012-02-24 2012-06-28 Alfa Wassermann Inc Fraction collector
JP2020519907A (en) * 2017-05-11 2020-07-02 ロード ドイチュラント ゲーエムベーハーRoad Deutschland Gmbh Inferential fluid state sensor and method thereof

Similar Documents

Publication Publication Date Title
US6320662B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
JPS5940145A (en) Method and system device for automatic recording of fluid concentration and dispensing said fluid with microcomputer control
US2834247A (en) Optical density analyzing apparatus
GB1589450A (en) Automatic blood analysis apparatus and method
US3968367A (en) Filter system for infrared analysis
US20180321200A1 (en) Preparative separation chromatograph system
JPS5960323A (en) Photometric device
EP0250029A2 (en) Method of and apparatus for spectroscopically analysing samples
JP5181650B2 (en) Analysis system
JPS61204546A (en) Photometer for analyzing fluid substance
EP0771417B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US4279511A (en) Photometric absorption detector
US3969626A (en) Method and apparatus for detecting total reduced sulfur
Kaye Far ultraviolet spectroscopy. I. Modification of the Beckman DK spectrophotometer for automatic transmittance recording in the region 1700-2000 A
JP2016161455A (en) Far-ultraviolet absorbance detector for liquid chromatograph
JP2016003914A (en) Spectrometry apparatus, liquid chromatograph, wavelength calibration method for spectrometer
JP2001516016A (en) NDIR photometer for measuring multiple components
US4836673A (en) Wavelength accuracy test solution and method
Thome et al. Direct coupling of glass capillary columns to a mass spectrometer
KR100295693B1 (en) One-touch type spectrophotometer for analyzing component of soil
JPH10104215A (en) Absorbance detector, chromatographic device, absorbance detecting method, and chromatographic analyzing method
Malmstadt et al. Rapid and accurate titrations with a convenient and compact automatic derivative spectrophotometric titrator
Thacker et al. Miniature photometers for liquid chromatography
JP6278865B2 (en) Liquid analyzer
JP2003185498A (en) Spectrophotometer