JPS5939939A - Electronically controlled fuel injection device - Google Patents

Electronically controlled fuel injection device

Info

Publication number
JPS5939939A
JPS5939939A JP14920482A JP14920482A JPS5939939A JP S5939939 A JPS5939939 A JP S5939939A JP 14920482 A JP14920482 A JP 14920482A JP 14920482 A JP14920482 A JP 14920482A JP S5939939 A JPS5939939 A JP S5939939A
Authority
JP
Japan
Prior art keywords
fuel injection
time
asynchronous
electronically controlled
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14920482A
Other languages
Japanese (ja)
Other versions
JPH0447131B2 (en
Inventor
Toshimitsu Ito
利光 伊藤
Nobuyuki Kobayashi
伸行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14920482A priority Critical patent/JPS5939939A/en
Priority to DE8282111548T priority patent/DE3276383D1/en
Priority to EP82111548A priority patent/EP0104275B1/en
Priority to US06/452,095 priority patent/US4457283A/en
Publication of JPS5939939A publication Critical patent/JPS5939939A/en
Publication of JPH0447131B2 publication Critical patent/JPH0447131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve the responsiveness of a device, by performing an accelerating increment hereafter in time of exceeding a specified value B at the second specified time being shorter than the first accelerating increment when a secondary variable pertaining to pressure in a suction pipe and time for a suction air flow rate exceeds a specified value B at the first specified time. CONSTITUTION:An electronic controller 38 is inputted with detection values out of an idle switch 11, a suction pipe pressure sensor 12, an exhaust sensor 28, a water temperature sensor 29, a cylinder discrimination switch 32, a rotation angle sensor 33, etc., and controls the valve opening time of a fuel injection valve 13 by means of operation. The electronic controller 38 samples a detection value P of the suction pipe pressure sensor 12 at every specified time, then calculates a difference DELTAP between the detection value of this time and that of two time before, and performs the first unsynchronous, accelerating fuel injection when the difference between the detection value DELTAP and that of two times before exceeds the value A. Then, when the difference between the detection value DELTAP and that of the last time exceeds the value B, the controller 38 performs the unsynchronous, accelerating fuel injection in hereafter of the second time.

Description

【発明の詳細な説明】 本発明は、機関の加速時の応答性を改善する電子制御燃
料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled fuel injection system that improves the responsiveness of an engine during acceleration.

機関の吸気管圧力Pあるいは吸入空気流量Qに関係して
基本燃料噴射量を計算する従来の電子制御燃料噴射装置
では、スロットル開度θthの線形関数となる出力電圧
を発生する線形型スロツ:・ルセンサが設けられ、加速
期間の空燃比をスロットルセンサの出力と吸気管圧力P
あるいは吸入空気流量Qとに関係I7て”、補正してい
る。
Conventional electronically controlled fuel injection systems that calculate the basic fuel injection amount in relation to the engine's intake pipe pressure P or intake air flow rate Q use a linear slot that generates an output voltage that is a linear function of the throttle opening θth: The air-fuel ratio during the acceleration period is determined by the output of the throttle sensor and the intake pipe pressure P.
Alternatively, it is corrected in relation to the intake air flow rate Q.

1〜かし軽負荷域からの加速の場合、吸気管圧力Pある
いは吸入空気流量Qがスロットル開度θthのわずかの
増大に対して非常に増大するので、加速前゛間の空燃比
を加速状態に応じて適切に制御することが難しく、また
、線形型スロットルセンサの構造が接点式スロットルセ
ンサの構造に比べて複雑となってコストが増大している
When accelerating from a light load range, the intake pipe pressure P or intake air flow rate Q increases significantly with respect to a slight increase in throttle opening θth, so the air-fuel ratio before acceleration is changed to the acceleration state. It is difficult to control the linear type throttle sensor appropriately according to the current, and the structure of the linear type throttle sensor is more complicated than that of the contact type throttle sensor, resulting in an increase in cost.

本発明の目的は、線形型スロットルセンサを用いずに、
加速期間の空燃比を適切に制御することができる電子制
御燃料噴射装置を提供することである。
The object of the present invention is to
An object of the present invention is to provide an electronically controlled fuel injection device that can appropriately control an air-fuel ratio during an acceleration period.

本発明の別の目的は、一連の非同期加速燃料噴射の最初
のものを速やかに行なうことができる電子側側1燃料噴
射装置を提供することである。
Another object of the present invention is to provide an electronic side 1 fuel injector that is capable of rapidly performing the first of a series of asynchronous accelerated fuel injections.

この目的を達成するために本発明によれば燃料噴射弁を
電気信号により操作l−て燃料噴射弁から燃料を吸気系
へ噴射する電子制御燃料噴射装置において、加速開始後
の所定時間tcにおける吸気管圧力あるいは吸入空気流
11計の変化量Xを検出し、所定時間taにおけるΔX
の変化量ΔΔXαを検出し、ΔΔXα〉所定値Aであれ
ば最初の非同期加速燃料噴射を行ない、taよシ短い所
定時間tbにおけるΔXの変化量ΔΔxbを所定の周期
で検出し、ΔΔpb)所定値Bであれば2回目以降の非
同期加速燃料噴射を行なう。
To achieve this object, the present invention provides an electronically controlled fuel injection device that injects fuel from the fuel injection valve into the intake system by operating the fuel injection valve using an electric signal. Detect the amount of change X in the pipe pressure or intake air flow, and calculate ΔX at a predetermined time ta.
Detect the amount of change ΔΔXα in ΔΔXα, and if ΔΔXα>predetermined value A, perform the first asynchronous acceleration fuel injection, and detect the amount of change ΔΔxb in ΔX in a predetermined time tb, which is shorter than ta, at a predetermined period, If it is B, the second and subsequent asynchronous acceleration fuel injections are performed.

X(=吸気管圧力Pあるは吸入空気流量Q)の2次の時
間微分としてのΔΔXaおよびΔΔXbに基づいて非同
期加速燃料噴射が行なわれるので、加速開始俊速やかに
非同期加速燃料噴射を行なうことができるとともに、加
速状態に関係した量の加速燃料噴射を行なうことができ
る。
Since asynchronous accelerated fuel injection is performed based on ΔΔXa and ΔΔXb as the second-order time differential of X (=intake pipe pressure P or intake air flow rate Q), asynchronous accelerated fuel injection can be performed quickly at the start of acceleration. In addition, an amount of acceleration fuel injection that is related to the acceleration state can be performed.

一連の非同期加速燃料噴射のうち最初のものをできるだ
け速やかに行なうためにはAを小さい値に選定すればよ
いが、ノイズに因る誤作動を防止するためにAの直には
限界がある。本発明ではΔΔXαは充分に長い時間ta
(ta>tb)当たりのΔXの変化量とし、とのΔΔX
IZをAと比較するので、加速開始を速やかに検出して
最初の非同期加速燃料噴射を行なうiとができる。
In order to perform the first of a series of asynchronous accelerated fuel injections as quickly as possible, A may be selected to a small value, but there is a limit to the value of A in order to prevent malfunctions due to noise. In the present invention, ΔΔXα is a sufficiently long time ta
Let the amount of change in ΔX per (ta>tb) be the amount of change in ΔΔX, and ΔΔX
Since IZ is compared with A, it is possible to quickly detect the start of acceleration and perform the first asynchronous acceleration fuel injection.

本発明の好ましい実施態様によれば、A<Bであり、最
初の非同期加速燃料噴射を行なう時にフラグFをセット
し、F=1である場合にΔΔXb ) Bであるか否か
の判定をを行なう。A〈Bの選定により最初の非同期加
速燃料噴射の実施が早められ、フラグFを設定すること
によシ、ΔΔXα>A、ΔΔXb>Bのいずれの判定を
行なうかを区別することができる。
According to a preferred embodiment of the present invention, when A<B and the first asynchronous accelerated fuel injection is performed, a flag F is set, and when F=1, it is determined whether ΔΔXb)B. Let's do it. By selecting A<B, the execution of the first asynchronous accelerated fuel injection is accelerated, and by setting the flag F, it is possible to distinguish whether to determine ΔΔXα>A or ΔΔXb>B.

好ましくは、最初の非同期加速燃料噴射における燃料噴
射時間は一定であり、2回目以降の非同期加速燃料噴射
における燃料噴射時間はΔΔpbの関数とする。この結
果、加速状態に関係した量の燃料噴射を行なうことがで
きる。
Preferably, the fuel injection time in the first asynchronously accelerated fuel injection is constant, and the fuel injection time in the second and subsequent asynchronously accelerated fuel injections is a function of ΔΔpb. As a result, fuel can be injected in an amount related to the acceleration state.

図面を参照して本発明を説明する。The present invention will be explained with reference to the drawings.

第1図において吸気通路1には上流から順番にエアクリ
ーナ2、スロットル弁3、サージタンク4、および吸気
管5が設けられる。バイパス通路9は、スロットル弁3
より上流とサージタンク4とを接続し、パルスモータ制
御の制御弁10により流通断面積を制御される。アイド
ルスイッチ11はスロットル弁3がアイドリング開度で
ある場合にはオンであり、スロットル弁3がアイドリン
グ開度より大きく開かれているとオフとなっている。圧
力上ンサ12はサージタンク4から導かれた吸気管圧力
Pを検出する。燃料噴射弁13は吸気ポート近傍に設け
られて燃料噴射パルス信号に関係して吸気系へ燃料を噴
射する。機関16の燃焼室17は、シリンダヘッド18
、シリンダブロック19、およびピストン20により画
定され、点火プラグ21を備える。混合気は吸気弁22
を通って燃焼室17へ導かれ、排気ガスは排気弁23を
通って燃焼室17から排気管27へ排出される。空燃比
センサとしての酸素センサあは排気管27に取付けられ
て排気管中の酸素濃度を検出する。水温センサ29はシ
リンダブロック19に取付けられて冷却水温度を検出す
る。気筒判別センサ32および回転角センサ33は配電
器34の回転i11+ 35の回転からクラク角を検出
し、クランク角がそれぞれ7200および30°変化す
るごとに1個のパルスを発生する。電子制御装置38は
各センサから入力信号を受け、電磁弁10、燃料噴射弁
13、および点火装置39へ出力信号を送る。
In FIG. 1, an air cleaner 2, a throttle valve 3, a surge tank 4, and an intake pipe 5 are provided in an intake passage 1 in this order from upstream. The bypass passage 9 is connected to the throttle valve 3
The upstream side is connected to the surge tank 4, and the flow cross-sectional area is controlled by a control valve 10 controlled by a pulse motor. The idle switch 11 is on when the throttle valve 3 is at an idling opening, and is off when the throttle valve 3 is opened more than the idling opening. The pressure sensor 12 detects the intake pipe pressure P led from the surge tank 4. The fuel injection valve 13 is provided near the intake port and injects fuel into the intake system in response to a fuel injection pulse signal. The combustion chamber 17 of the engine 16 is connected to the cylinder head 18
, a cylinder block 19, and a piston 20, and includes a spark plug 21. The air-fuel mixture is produced by the intake valve 22.
The exhaust gas passes through the exhaust valve 23 and is discharged from the combustion chamber 17 into the exhaust pipe 27 . An oxygen sensor serving as an air-fuel ratio sensor is attached to the exhaust pipe 27 to detect the oxygen concentration in the exhaust pipe. A water temperature sensor 29 is attached to the cylinder block 19 to detect the temperature of the cooling water. The cylinder discrimination sensor 32 and the rotation angle sensor 33 detect the crank angle from the rotation i11+35 of the power distributor 34, and generate one pulse every time the crank angle changes by 7200 degrees and 30 degrees, respectively. The electronic control device 38 receives input signals from each sensor and sends output signals to the electromagnetic valve 10, the fuel injection valve 13, and the ignition device 39.

点火装置39の二次点火電流は配電器34を経て各燃焼
室17の点火プラグ21へ送られる。
The secondary ignition current of the ignition device 39 is sent to the spark plug 21 of each combustion chamber 17 via the power distributor 34 .

第2図は電子制御装置38の内部のブロック図である。FIG. 2 is a block diagram of the inside of the electronic control unit 38.

CPU44、A/D (アナログ/デジタル変換器)4
5、l10(入出力インタフェース)・RAM46、R
OM −Ilo 47 、およびバックアップRAM4
Bはバス49によシ互いに接続される。
CPU44, A/D (analog/digital converter) 4
5, l10 (input/output interface)/RAM46, R
OM-Ilo 47, and backup RAM4
B are connected to each other by bus 49.

バックアップRAM48はエンジンスイッチがオフの期
間も電源へ接続され記憶を保持する。圧力センサ12お
よび水温センサ29のアナログ信号ハA/D 45へ送
られる。アイドルスイッチ11、気筒判別センサ32、
および回転角センサ33の出力はIlo・RAM46の
l10部へ送られる。酸素センサあの出力は比較器50
を経て■11011RA 46のl10部へ送る。燃料
噴射弁13はCP U 44から燃料噴射パルスを送ら
れる。点火装置32はl10−RAM46のl10部か
ら制御信号を受ける。ステップモータ制御の制御弁lO
はROM・■1047のl10部から制御パルスを受け
る。
The backup RAM 48 is connected to the power source and retains memory even while the engine switch is off. Analog signals from the pressure sensor 12 and water temperature sensor 29 are sent to the A/D 45. Idle switch 11, cylinder discrimination sensor 32,
The output of the rotation angle sensor 33 is sent to the l10 section of the Ilo RAM 46. Oxygen sensor output is comparator 50
After that, send it to the l10th part of ■11011RA 46. The fuel injection valve 13 receives a fuel injection pulse from the CPU 44. The ignition device 32 receives control signals from the l10 portion of the l10-RAM 46. Control valve lO for step motor control
receives control pulses from the l10 section of the ROM 1047.

第3図は本発明のプログラムのフ1コーチヤードである
。圧力センサ12の検出値としての吸気管圧力PはIQ
77LsecごとにA/D変換され、A/D変換の終了
に伴う割込みルーチンとしてこノフログラムは実行され
る。ステップ58でハ今回の吸気管圧力P (+)  
と前々回、すなわち20m5ec前の吸気管圧力P’(
A=2)との差P(A)−P(A−2)を計算1/ 、
その差をΔP (A)へ代入する。2077Zsec当
たりのPの変化量としてのΔPは時間tに関するPの微
分dP/dtと等価である。ステップ59ではフラグF
が1か0かを判定し、F=0であればステップ61へ進
み、F−1であればステップ71へ進む。フラグFはア
イドルスイッチ11がオンからオフへ変化した時にリセ
ットされ、後述のステップ66においてセットされる。
FIG. 3 shows the first coach yard of the program of the present invention. The intake pipe pressure P as the detected value of the pressure sensor 12 is IQ
A/D conversion is performed every 77 Lsec, and this program is executed as an interrupt routine upon completion of A/D conversion. In step 58, the current intake pipe pressure P (+)
and the intake pipe pressure P'(
A=2) and calculate the difference P(A)-P(A-2)1/,
Substitute the difference into ΔP (A). ΔP as the amount of change in P per 2077 Zsec is equivalent to the differential dP/dt of P with respect to time t. In step 59, the flag F
It is determined whether F=1 or 0, and if F=0, the process proceeds to step 61, and if F-1, the process proceeds to step 71. Flag F is reset when the idle switch 11 changes from on to off, and is set in step 66, which will be described later.

しだがって最初の非同期加速燃料噴射がなお行なわれて
いない場合にはF=0であり、ステップ61へ進む。ス
テップ61では今回のΔP(渥)と前々回、すなわち2
0m5ec前のΔP(A−2)との差ΔP (A)−Δ
P(A−2)をΔΔpaに代入する。
Therefore, if the first asynchronous acceleration fuel injection has not yet been performed, F=0, and the process proceeds to step 61. In step 61, the current ΔP(渥) and the previous time, that is, 2
Difference ΔP (A) - Δ from ΔP (A-2) before 0m5ec
Substitute P(A-2) for ΔΔpa.

ステップ62ではΔΔPα〉所定値Aであるか否かを判
定し、ΔΔp、a>hである場合のみ以降のステップ進
む。ステップ63ではアイドルスイッチ11がオンかオ
フかを判定し、オフである場合のみ以降のステップ進む
。したがって減速期間に非同期加速燃料噴射を行なうこ
とは回避される。
In step 62, it is determined whether ΔΔPα>predetermined value A, and only if ΔΔp, a>h, the process proceeds to the subsequent steps. In step 63, it is determined whether the idle switch 11 is on or off, and only if it is off, the process proceeds to the subsequent steps. Therefore, performing asynchronous acceleration fuel injection during the deceleration period is avoided.

ステップ64ではΔP(A)<Oか否かを判定し、ΔP
(’)〉Oである場合のみ以降のステップを実行する。
In step 64, it is determined whether ΔP(A)<O, and ΔP
Only if (')>O, the following steps are executed.

1−たがってPが減少している期間の非同期加速燃料噴
射は回避される。ステップ65ではクランク角に同期し
ない非同期加速燃料噴射を1回行なう。この非同期加速
燃料噴射における燃料噴射時間は一定値、例えば2m5
ecに選定する。まだステップ62のAはステップ72
0Bより小さい値に選定されるので、ステップ65の実
行は加速俊速やかに行なわれる。ステップ66ではフラ
グFをセットして1にする。しだがってプログラムの次
回の実行からはステップ59ではF=1の判定が行なわ
れる。ステップ71では今回のΔP(’)と前回、すな
わち107nsec前のΔP(’−1)との差ΔP(リ
−ΔP(系−1)をΔΔpbに代入する。ステップ72
ではΔΔpb>BがくBかの判定を行ない、ΔΔPb)
Bである場合のみ以゛降のステップを実行する。ただし
B、(Aである。
1- Therefore, asynchronous acceleration fuel injection during the period when P is decreasing is avoided. In step 65, asynchronous accelerated fuel injection that is not synchronized with the crank angle is performed once. The fuel injection time in this asynchronous accelerated fuel injection is a constant value, for example 2m5
Selected as ec. A still at step 62 is step 72
Since the value is selected to be smaller than 0B, step 65 is executed with rapid acceleration. At step 66, flag F is set to 1. Therefore, from the next execution of the program, F=1 is determined in step 59. In step 71, the difference ΔP (Lee-ΔP (system-1)) between the current ΔP(') and the previous ΔP('-1) 107 nsec ago is substituted into ΔΔpb.Step 72
Then, determine whether ΔΔpb>B is ΔΔPb)
Only if it is B, execute the following steps. However, B and (A).

ステップ73ではアイドルスイッチ11がオンがオフか
の判定が行なわれ、ステップ74ではΔP’ (A)く
0か〉0かの判定が行なわれ、アイドルスイッチ11が
オフでΔP (’)〉0である場合のみ以降のステップ
へ進む。ステップ75では非同期加速燃料噴射を行なう
。この非同期加速燃料噴射における燃料噴射時間τau
は次式により表わされる。
In step 73, it is determined whether the idle switch 11 is on or off, and in step 74, it is determined whether ΔP'(A) is 0 or >0, and if the idle switch 11 is off and ΔP(')>0. Proceed to the next step only if there is. In step 75, asynchronous accelerated fuel injection is performed. Fuel injection time τau in this asynchronous accelerated fuel injection
is expressed by the following equation.

40×ΔΔpb τau=1+ この式でΔΔpbはRAM内に記憶されている2進数デ
ータであシ、ΔΔpbのLSB (最下位ビット)の1
は1.22mmHfに対応している。したがってΔΔp
bが50mmHyであ唱合はτa11は約2.6+rL
sec である。加速期間でΔΔPb>Bが維持される
期間では10m5ec ごとにス”テップ75が実行さ
れて非同期加速燃料噴射が行なわれる。第4図は加速期
間のスロットル開度θth、実際の吸気管圧力P r’
=圧カセンサ12により検出された吸気管圧力P %’
 2071sec当たりのPの変化量ΔP、2077L
secおよび10m5ec当たりのΔPの変化量ΔΔP
α、およびΔΔpbおよび燃料噴射弁13の駆動電圧の
時間変化を示している。駆動電圧が低レベルである期間
に燃料噴射弁13は開状態に維持され燃料を噴射する。
40×ΔΔpb τau=1+ In this formula, ΔΔpb is binary data stored in RAM, and the LSB (least significant bit) of ΔΔpb is 1
corresponds to 1.22 mmHf. Therefore ΔΔp
When b is 50mmHy, τa11 for chorus is approximately 2.6+rL
sec. During the period in which ΔΔPb>B is maintained during the acceleration period, step 75 is executed every 10 m5ec to perform asynchronous accelerated fuel injection. Fig. 4 shows the throttle opening θth and the actual intake pipe pressure P r during the acceleration period. '
=Intake pipe pressure P%' detected by pressure sensor 12
Change amount ΔP of P per 2071 sec, 2077L
Change amount ΔΔP of ΔP per sec and 10m5ec
It shows the time changes of α, ΔΔpb, and the drive voltage of the fuel injection valve 13. During the period when the drive voltage is at a low level, the fuel injection valve 13 is maintained in an open state and injects fuel.

時刻L1において加速が開始されるとスロットル開度O
thがθ°から増大する。これに伴って実際の吸気管圧
力prが増大し、圧力センサ12の検出値としての吸気
管圧力Pも増大する。Pにはオーバシュートが生じてい
る。燃料噴射■aは、アイドルスイッチ11がオンから
オフへ変化した時に行なわれる。
When acceleration starts at time L1, the throttle opening degree O
th increases from θ°. Accordingly, the actual intake pipe pressure pr increases, and the intake pipe pressure P as a detected value of the pressure sensor 12 also increases. An overshoot has occurred in P. Fuel injection (a) is performed when the idle switch 11 changes from on to off.

よりはクランク角に同期して行なわれる同期燃料噴射で
あり、吸気管圧力P、したがって機関負荷の関数として
の基本燃料噴射量を冷却水温度で補正した量に相当する
噴射である。ICは、ステップ67の実行に伴って行な
われる非同期加速燃料噴射であり、時刻t1以後、ΔΔ
paが所定値Aを越えると行なわれる。Idは、ステッ
プ71の実行に伴って行なわれる非同期加速燃料噴射で
あり、ICの実施後でΔΔPb>Bが維持されている期
間は107Wsecの周期で行なわれる。
Rather, it is a synchronous fuel injection performed in synchronization with the crank angle, and is an injection corresponding to an amount obtained by correcting the basic fuel injection amount as a function of the intake pipe pressure P and therefore the engine load by the cooling water temperature. IC is an asynchronous accelerated fuel injection performed in conjunction with the execution of step 67, and after time t1, ΔΔ
This is performed when pa exceeds a predetermined value A. Id is an asynchronous accelerated fuel injection performed in conjunction with the execution of step 71, and is performed at a cycle of 107 Wsec during a period in which ΔΔPb>B is maintained after the IC is performed.

ΔΔPdおよびΔΔpbはΔPより加速開始時における
上昇が大きいので、加速開始を速やかかつ正確に検出し
て非同期加速燃料噴射を実施することができる。特にΔ
ΔPαは加速開始とともに大きく上昇するので、ステッ
プ66の実行による最初の非同期加速燃料噴射は早めら
れる。まだΔΔpbの増大はスロット開度θthの増大
をよく反映しているので、加速の状態に応じて非同期加
速燃料噴射Idを行なうことができる。
Since ΔΔPd and ΔΔpb increase more than ΔP at the start of acceleration, it is possible to promptly and accurately detect the start of acceleration and perform asynchronous accelerated fuel injection. Especially Δ
Since ΔPα increases significantly with the start of acceleration, the first asynchronous acceleration fuel injection by executing step 66 is brought forward. Since the increase in ΔΔpb still reflects the increase in the slot opening degree θth, asynchronous accelerated fuel injection Id can be performed depending on the state of acceleration.

なお実施例では吸気管圧力Pによシ基本燃料噴射量を計
算する電子制御機関を示したが、本発明は吸入空気流量
Qによシ基本燃料噴射量を計算する電子制御機関にも適
用可能であることはいうまでもない。この場合、第3図
のフローチャートおよび第4図のグラフ;におけるP、
ΔP。
Although the embodiment shows an electronically controlled engine that calculates the basic fuel injection amount based on the intake pipe pressure P, the present invention can also be applied to an electronically controlled engine that calculates the basic fuel injection amount based on the intake air flow rate Q. Needless to say, it is. In this case, P in the flowchart of FIG. 3 and the graph of FIG.
ΔP.

ΔΔPa、ΔΔpbはそれぞれQ、ΔQ、ΔΔQa、Δ
ΔQbに置き換えられる。
ΔΔPa and ΔΔpb are Q, ΔQ, ΔΔQa, and Δ, respectively.
Replaced by ΔQb.

このように本発明によれば、時間tに関する吸気管圧力
および吸入空気流量の2次微分としてのΔΔXa、ΔΔ
xbに関係して非同期加速燃料噴射を行なうので、加速
期間の燃料噴射を速やかかつ加速状態に関係して行なう
ことができる。
Thus, according to the present invention, ΔΔXa, ΔΔ
Since the asynchronous acceleration fuel injection is performed in relation to xb, fuel injection during the acceleration period can be performed promptly and in relation to the acceleration state.

ΔΔX(Zは充分に長い時間(a当たりのΔXの変化量
であり、とのΔΔXaがAと比較されて最初の非同期加
速燃料噴射が行なわれるので、最初の非同期加速燃料噴
射を早めることができる。
ΔΔX (Z is the amount of change in ΔX per a sufficiently long time (a), and ΔΔXa is compared with A and the first asynchronous accelerated fuel injection is performed, so the first asynchronous accelerated fuel injection can be accelerated. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電子制御機関の全体の概略
図、第2図は電子制御装置のブロック図、第3図は本発
明のプログラムのフローチャート、第4図は加速期間の
燃料噴射弁の駆動電圧等の時間変化を示すグラフである
。 1・・・吸気通路、12・・・圧力センサ、13・・・
燃料噴射弁、38・・・電子制御装置。
Fig. 1 is an overall schematic diagram of an electronically controlled engine to which the present invention is applied, Fig. 2 is a block diagram of the electronic control device, Fig. 3 is a flowchart of the program of the present invention, and Fig. 4 is a fuel injection during the acceleration period. It is a graph showing temporal changes in the drive voltage of the valve, etc. 1... Intake passage, 12... Pressure sensor, 13...
Fuel injection valve, 38... electronic control device.

Claims (1)

【特許請求の範囲】 一1 燃料噴射弁を電気信号により操作して燃料噴射弁
から燃料を吸気系へ噴射する電子制御燃料噴射装置にお
いて、加速開始後の所定時間tcにおける吸気管圧力あ
るいは吸入空気流量の変化量ΔXを検出し、所定時間t
αにおけるΔXの変化量ΔΔXaを検出]7、ΔΔXa
 >所定値Aであれば最初の非同期加速燃料噴射を行な
い、taより短い所定時間tbにおけるΔXの変化量Δ
Δxbを所定の周期で検出1−1ΔΔpb>所定値Bで
あれば2回目以降の非同期加速燃料噴射を行なうことを
特徴とする、電子制御燃料噴射装置。 2、最初の非同期加速燃料噴射を行なう時にフラグFを
セットし、F=1である場合にΔΔXb)Bであるか否
かの判定を行なうことを特徴とする特許請求の範囲第1
項記載の電子制御燃料噴射装置。 3、A(Bであることを特徴とする特許請求の範囲第1
項あるいは第2項記載の電子制御燃料噴射装置。 4、最初の非同期加速燃料噴射における燃料噴射時間は
一定でアシ、2回目以降の非同期加速燃料噴射における
燃料噴射時間はΔΔXbの関数であることを特徴とする
特許請求の範囲第1項ない1〜第3項のいずれかに記載
の電子制御燃料噴射装置。 5’、  tc=taであることを特徴とする特許請求
の範囲第1項ないし第4項のいずれかに記載の電子制御
燃料噴射装置。
[Scope of Claims] 11 In an electronically controlled fuel injection device that injects fuel from the fuel injection valve into the intake system by operating the fuel injection valve using an electric signal, intake pipe pressure or intake air at a predetermined time tc after the start of acceleration. The amount of change ΔX in the flow rate is detected, and the predetermined time t
Detecting the amount of change ΔΔXa in ΔX at α] 7. ΔΔXa
> If the predetermined value A, the first asynchronous accelerated fuel injection is performed, and the change amount Δ of ΔX in the predetermined time tb shorter than ta
An electronically controlled fuel injection device characterized in that if Δxb is detected at a predetermined period and 1-1ΔΔpb>predetermined value B, a second or subsequent asynchronous accelerated fuel injection is performed. 2. When performing the first asynchronous acceleration fuel injection, a flag F is set, and if F=1, it is determined whether ΔΔXb)B.
The electronically controlled fuel injection device as described in . 3. The first claim characterized in that A (B)
The electronically controlled fuel injection device according to item 1 or 2. 4. The fuel injection time in the first asynchronous accelerated fuel injection is constant, and the fuel injection time in the second and subsequent asynchronous accelerated fuel injections is a function of ΔΔXb. The electronically controlled fuel injection device according to any one of Item 3. 5', tc=ta, The electronically controlled fuel injection device according to any one of claims 1 to 4.
JP14920482A 1982-08-30 1982-08-30 Electronically controlled fuel injection device Granted JPS5939939A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14920482A JPS5939939A (en) 1982-08-30 1982-08-30 Electronically controlled fuel injection device
DE8282111548T DE3276383D1 (en) 1982-08-30 1982-12-13 Electronically controlled fuel injection apparatus
EP82111548A EP0104275B1 (en) 1982-08-30 1982-12-13 Electronically controlled fuel injection apparatus
US06/452,095 US4457283A (en) 1982-08-30 1982-12-22 Electronically controlled fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14920482A JPS5939939A (en) 1982-08-30 1982-08-30 Electronically controlled fuel injection device

Publications (2)

Publication Number Publication Date
JPS5939939A true JPS5939939A (en) 1984-03-05
JPH0447131B2 JPH0447131B2 (en) 1992-08-03

Family

ID=15470095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14920482A Granted JPS5939939A (en) 1982-08-30 1982-08-30 Electronically controlled fuel injection device

Country Status (1)

Country Link
JP (1) JPS5939939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212652A (en) * 1984-04-07 1985-10-24 Nissan Motor Co Ltd Accelerating fuel supply apparatus for internal- combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212652A (en) * 1984-04-07 1985-10-24 Nissan Motor Co Ltd Accelerating fuel supply apparatus for internal- combustion engine
JPH0660586B2 (en) * 1984-04-07 1994-08-10 日産自動車株式会社 Acceleration fuel supply system for internal combustion engine

Also Published As

Publication number Publication date
JPH0447131B2 (en) 1992-08-03

Similar Documents

Publication Publication Date Title
JPH0363654B2 (en)
US4721082A (en) Method of controlling an air/fuel ratio of a vehicle mounted internal combustion engine
US4457283A (en) Electronically controlled fuel injection system
JP3314294B2 (en) Control device for internal combustion engine
JP2564990B2 (en) Engine fuel control device
JP2004108268A (en) Control device of internal combustion engine
JPH0833117B2 (en) Fuel injector
US6763806B2 (en) Combustion control apparatus and combustion control method of internal combustion engine
US4480621A (en) Control apparatus for a fuel metering system in an internal combustion engine
JPH0119057B2 (en)
JP3908385B2 (en) Control device for internal combustion engine
JPS5939939A (en) Electronically controlled fuel injection device
JPS63113137A (en) Fuel supply controlling method for internal combustion engine
US4607603A (en) Fuel injection system employing the second time differential of pressure or air flow rate
JPH0718357B2 (en) Fuel injection control device for internal combustion engine
KR900000149B1 (en) Fuel injection control method for internal combustion engine
JP2002070612A (en) Engine air-fuel ratio controller
US4987889A (en) Method for controlling fuel at an acceleration time of an electronically-controlled fuel engine
JPS5939938A (en) Electronically controlled fuel injection device
JPH03217632A (en) Fuel injection device of engine
JPH07103013A (en) Accumulator fuel injector
JP2575450B2 (en) Fuel control device for internal combustion engine
JP2533106B2 (en) Fuel control device for automobile engine
JP2518669B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS6035156A (en) Fuel injection device for internal-combustion engine