JPS5939908A - Operation of cold-heat power generation equipment - Google Patents

Operation of cold-heat power generation equipment

Info

Publication number
JPS5939908A
JPS5939908A JP14763782A JP14763782A JPS5939908A JP S5939908 A JPS5939908 A JP S5939908A JP 14763782 A JP14763782 A JP 14763782A JP 14763782 A JP14763782 A JP 14763782A JP S5939908 A JPS5939908 A JP S5939908A
Authority
JP
Japan
Prior art keywords
medium
evaporator
rankine
liquefied
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14763782A
Other languages
Japanese (ja)
Other versions
JPS6213488B2 (en
Inventor
Kiyoshi Ichihara
市原 潔
Yoshio Okabayashi
岡林 芳夫
Osamu Kita
喜多 修
Naoyuki Watanabe
直幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14763782A priority Critical patent/JPS5939908A/en
Publication of JPS5939908A publication Critical patent/JPS5939908A/en
Publication of JPS6213488B2 publication Critical patent/JPS6213488B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent generation of abnormal noise and vibration of a medium turbine by controlling the oil concentration in Rankine medium which stays in a medium evaporator to the concentration with which the height of splash becomes less than the interval between the liquid level of Rankine medium and the undersurface of a demister. CONSTITUTION:A Rankine-cycle type LNG cold-heat power generation equipment is equipped with an LNG evaporator 10, medium evaporator 12, medium turbine 13, and a power generator 14. A valve 60 is opened to introduce liquefied medium into an oil separator 16 from the medium evaporator 12, and said liquefied medium is heated in a heating pipe 33. Said evaporated medium is returned into the LNG evaporator 10 by opening a valve 61. The separated oil is discharged through a conduit 72 by opening a valve 62. The oil concentration in Rankine medium which stays in the medium evaporator 12 is adjusted to the concentration with which the height of splash generated during boiling becomes less than the interval between the liquid level and the undersurface of a demister. Thus entraining liquefied medium onto the medium turbine 13 can be prevented, and generation of vibration and noise can be prevented.

Description

【発明の詳細な説明】 本発明は、冷熱発電設備の運転方法に係り、特にランキ
ンサイクル式LNG冷熱発電設備を良好、かつ、長期的
に連続運転するのに好適な冷熱発電設備の運転方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a cold power generation facility, and more particularly to a method of operating a cold power generation facility suitable for smoothly and continuously operating a Rankine cycle type LNG cold power power generation facility over a long period of time. It is something.

LNG気化時に冷熱を動力として回収し発電する冷熱発
電設備としては、従来よりランキンサイクル式LNG冷
熱発電設備が慣用されている。
Rankine cycle type LNG cold power generation equipment has been conventionally used as a cold power generation equipment that recovers cold energy as motive power during LNG vaporization to generate electricity.

従来のランキンサイクル式L N、G冷熱発電設備の運
転方法を第1図により説明する。
A method of operating a conventional Rankine cycle type LN, G cold power generation equipment will be explained with reference to FIG.

第1図で、ランキンサイクル式LNG冷熱発電構成され
ている。
In FIG. 1, a Rankine cycle type LNG cold thermal power generation structure is shown.

LNG蒸発器10と媒体ポンプ11とは、導管(9)で
媒体ポンプ11と媒体蒸発器12とは導管21で、媒体
蒸発器校と媒体タービン13とは導管ηで、媒体タービ
ン13とLNG蒸発器10とは導管おで閉すイクルヲな
してそれぞれ連結され、媒体タービン13には、発電a
14が連接されている。
The LNG evaporator 10 and the medium pump 11 are connected by a conduit (9), the medium pump 11 and the medium evaporator 12 are connected by a conduit 21, the medium evaporator and the medium turbine 13 are connected by a conduit η, and the medium turbine 13 and the LNG evaporator are connected by a conduit η. The medium turbine 13 is connected to the power generation a
14 are connected.

LNG蒸発器10と媒体蒸発器ルとには、それぞれ伝熱
管30.31が内設されている。伝熱管間の入口には、
例えば、LNG貯檜(図示省略)に連結されるとともに
LNGポンプ(図示省略)が設けられた導管40が連結
され、また、出口には、伝熱管32が内設されたN(J
加熱器15に連結された導管41が連結されている。伝
熱管32の入口と出口とには、導管50.51がそれぞ
れ連結され、NG加熱器15は別途使用先、例えば、燃
焼ボイラ(図示省略)に連結された導管42が連結され
ている、1だ、伝熱管31の入口と出口には、導管52
.53がそれぞれ連結され、媒体蒸発1%1121こは
、その上方の位置でデミスタ−(図示省略)が内股され
ている。
Heat exchanger tubes 30 and 31 are installed in the LNG evaporator 10 and the medium evaporator 1, respectively. At the entrance between the heat exchanger tubes,
For example, an N(J
A conduit 41 connected to the heater 15 is connected. Conduits 50 and 51 are connected to the inlet and outlet of the heat exchanger tube 32, respectively, and the NG heater 15 is connected to a conduit 42 connected to a separate use place, for example, a combustion boiler (not shown). However, a conduit 52 is provided at the inlet and outlet of the heat transfer tube 31.
.. 53 are connected to each other, and a demister (not shown) is inserted in the upper position of the medium evaporation 1% 1121.

なお、閉サイクル内には、フロンR−22,70ノR−
13B1のようなふっ素化合物、プロパンを主成分とす
る炭化水素がランキン媒体として所定量封入されている
In addition, in the closed cycle, Freon R-22, 70 R-
A predetermined amount of a fluorine compound such as 13B1 and a hydrocarbon whose main component is propane are sealed as a Rankine medium.

LNG蒸発器10内の気化しているランキン媒体(以下
、気化媒体と略)は、LNGfR檜からLNGポンプを
介して導管40より伝熱管□□□に供給され伝熱管30
を流通するL N Gにより凝縮、液化されてLNG蒸
発a10の底部に一旦滞留する、一方、LNGは、気化
媒体を凝縮、液化することで気化し導管41を経てNG
加熱器15内に供給される。この気化したLNG (以
下、NGと略)は、導管間より伝熱管32に供給され伝
熱管32を流通した後に導管51より系外へ排出される
熱源、例えば、海水により所定温度まで加熱された後に
、導管42を経て別途使用先へ送給される。
The vaporized Rankine medium (hereinafter abbreviated as vaporized medium) in the LNG evaporator 10 is supplied from the LNGfR hinoki via the LNG pump to the heat exchanger tube □□□ from the conduit 40.
LNG is condensed and liquefied by the LNG flowing through the LNG and temporarily stagnates at the bottom of the LNG evaporator a10. On the other hand, LNG is vaporized by condensing and liquefying the vaporization medium, and is liquefied through the conduit 41.
It is supplied into the heater 15. This vaporized LNG (hereinafter abbreviated as NG) is supplied to the heat exchanger tubes 32 from between the conduits, flows through the heat exchanger tubes 32, and is then discharged to the outside of the system through the conduit 51. The LNG is heated to a predetermined temperature by a heat source such as seawater. Afterwards, it is separately sent to a user via a conduit 42.

凝縮、液化されたランキン媒体(以下、液化媒体と略)
は、LNG蒸発器10から媒体ポンプ11を介し導管加
、21を経て媒体蒸発器12に供給される。
Condensed and liquefied Rankine medium (hereinafter abbreviated as liquefied medium)
is supplied from the LNG evaporator 10 via a medium pump 11 to a medium evaporator 12 via a conduit 21.

このように媒体蒸発器12に供給され滞留している液化
媒体は、導管52により伝熱管31に供給され伝熱管3
1を流通した後に導管53より糸外へ排出される熱源、
例えば、海水により加熱される。この加熱により液化媒
体は沸騰し、その一部は蒸発、気化される。この気化媒
体は、デミスタ−を通過した後に導管nを経て媒体ター
ビン13に供給される。
The liquefied medium thus supplied to the medium evaporator 12 and retained therein is supplied to the heat exchanger tubes 31 through the conduit 52 and then transferred to the heat exchanger tubes 31.
1, the heat source is discharged to the outside of the yarn from the conduit 53,
For example, heated by seawater. This heating causes the liquefied medium to boil, and a portion of it is evaporated and vaporized. After passing through the demister, this vaporized medium is supplied to the medium turbine 13 via conduit n.

気化媒体は、媒体タービン13で大気圧まで膨張し、こ
の時生じるエネルギにより媒体タービン13を回転駆動
することで機械的エネルギに変換され、更に発電機14
を駆動することで電気的エネルギに変換されて回収され
る。媒体タービン13で大気圧まで膨張することで、温
度、圧力共に低下した気化媒体は、導管久を経てLNG
、i発器10に循環供給され、ここで、LNGの冷熱に
より再び凝縮。
The vaporized medium is expanded to atmospheric pressure in the medium turbine 13, and the energy generated at this time is converted into mechanical energy by rotationally driving the medium turbine 13.
It is converted into electrical energy and recovered by driving it. The vaporized medium, whose temperature and pressure have decreased by expanding to atmospheric pressure in the medium turbine 13, passes through the conduit and becomes LNG.
, is circulated and supplied to the generator 10, where it is condensed again by the cold heat of LNG.

液化される。liquefied.

このような冷熱発電設備の運転方法では、次のような欠
点があった。
This method of operating a cold power generation facility has the following drawbacks.

気化媒体が媒体タービンの軸封部より大気中に漏洩する
のを防止するため、媒体タービンの大気に接する軸部に
は、オイルフィルムシールやメカニカルシールのような
軸シール機構が一般に採用されている。このような軸シ
ール機構の採用により気化媒体の大気中への漏洩は防止
できるが、その反面、軸シール機構から微量の潤滑油が
気化媒体に混入することは避けられず、また、軸シール
機構の破損等のトラブルにより一時的に多量の潤滑油が
気化媒体に混入することもある。この潤滑油は、その低
い蒸気圧のために媒体蒸発器での液化媒体の蒸発、気化
時においても蒸発、気化せず、そのほとんどは液体媒体
中に蓄積される。このようにして、媒体蒸発器では、液
化媒体中の潤滑油濃度が次第に高まる。
In order to prevent the vaporized medium from leaking into the atmosphere from the shaft seal of the media turbine, a shaft seal mechanism such as an oil film seal or mechanical seal is generally employed on the shaft of the media turbine that is in contact with the atmosphere. . By adopting such a shaft seal mechanism, it is possible to prevent the vaporized medium from leaking into the atmosphere, but on the other hand, it is unavoidable that a small amount of lubricating oil from the shaft seal mechanism gets mixed into the vaporized medium. Due to problems such as damage to the lubricating oil, a large amount of lubricating oil may temporarily become mixed into the vaporizing medium. Due to its low vapor pressure, this lubricating oil does not evaporate or vaporize even when the liquefied medium is evaporated or vaporized in the medium evaporator, and most of it is accumulated in the liquid medium. In this way, the lubricating oil concentration in the liquefied medium gradually increases in the medium evaporator.

このように媒体蒸発器での液化媒体中の潤滑油濃度が高
まると、液化媒体の沸騰時に泡沫が生じ、その高さは、
潤滑油濃度が高まるに従い高くなる。
When the lubricating oil concentration in the liquefied medium in the medium evaporator increases in this way, foam is generated when the liquefied medium boils, and its height is
It increases as the lubricant concentration increases.

この沸騰面泡沫高さが高くなり泡沫がデミスタ−に達す
るようになれば媒体タービンに供給される気化媒体に液
化媒体が同伴されるようになる、この同伴される液化媒
体の量は、液化媒体中の潤滑油濃度が高まるに従って多
くなる。このため、媒体タービンに振動や異音が発生し
媒体タービンを良好に運転できなくなる。なお、このよ
うな事態は、他の低い蒸気圧を有する油が混入した場合
でも生じる。
As the boiling surface foam height increases and the foam reaches the demister, the liquefied medium will be entrained in the vaporized medium supplied to the medium turbine.The amount of entrained liquefied medium will be The amount increases as the lubricating oil concentration increases. As a result, vibrations and abnormal noises occur in the medium turbine, making it impossible to operate the medium turbine satisfactorily. Incidentally, such a situation occurs even when other oils having low vapor pressures are mixed in.

従来、このような事態が生じた場合は、運転を一旦停止
してランキン媒体を新規なランキン媒体と交換し対処さ
れており、したがって、冷熱発電設備を良好かつ長期的
に連続運転できなくなると共に、多量のランキン媒体が
必要となり2ンキン媒体費が増大する。
Conventionally, when such a situation occurs, it has been dealt with by temporarily stopping the operation and replacing the Rankine medium with a new Rankine medium.As a result, the cold power generation equipment cannot be operated properly and continuously for a long period of time, and A large amount of Rankine media is required, increasing the cost of the Rankine media.

本発明は、上記した従来技術の欠点を解消することで、
冷熱発電設備を良好、かつ、長期的に連続運転できる冷
熱発電設備の運転方法を提供することにるる。
The present invention solves the above-mentioned drawbacks of the prior art, and
It is an object of the present invention to provide a method for operating a cold power generation facility that allows the cold power generation facility to operate smoothly and continuously over a long period of time.

本発明の特徴は、媒体蒸発器に滞留している液化媒体中
の油濃度を、液化媒体沸騰時に生じる泡沫高さが、液化
媒体の液面とデミスタ−の下面との間隔よりも小さくな
る濃度に調節することで、冷熱発電設備の運転を一旦停
止することなしに、媒体タービンに供給される気化媒体
への液化媒体の同伴を抑制するようにしたことにある。
The feature of the present invention is to reduce the oil concentration in the liquefied medium remaining in the medium evaporator to such a level that the height of the bubbles generated when the liquefied medium boils is smaller than the distance between the liquid level of the liquefied medium and the lower surface of the demister. By adjusting the temperature, entrainment of the liquefied medium into the vaporized medium supplied to the medium turbine can be suppressed without once stopping the operation of the cold power generation equipment.

本発明の一実施例を@2図〜第4図により説明する。な
お、第2図で第1図と同−機器等は同一符号で示し説明
を省略する、 第2図で、媒体蒸発器12と、例えば、これより低位置
に設置された油分116とは、弁60が設けられた導管
70で連結されている。油分離器16と、例えば、LN
G蒸発器lOとは、弁61が設けられた導管71で連結
されている。また、油分離!a16には、弁62が設け
られた専管72が連結されるとともをこ、例えば、伝熱
管おが内股されている。伝熱管33の入口と出口には、
導管8,55がそれぞれ連結されている。
An embodiment of the present invention will be explained with reference to Figs. 2 to 4. Note that in FIG. 2, the same equipment as in FIG. 1 is denoted by the same reference numerals and explanations are omitted. They are connected by a conduit 70 in which a valve 60 is provided. Oil separator 16 and, for example, LN
It is connected to the G evaporator lO through a conduit 71 provided with a valve 61. Also, oil separation! A16 is connected to a dedicated pipe 72 provided with a valve 62, and is also connected with, for example, a heat exchanger tube. At the inlet and outlet of the heat exchanger tube 33,
Conduits 8 and 55 are connected to each other.

第3図で、媒体蒸発器12には、滞留している液化媒体
の液面と所定の間隔Hを有してその上方の位置でデミス
タ−(資)が内股されている。
In FIG. 3, a demister is installed in the medium evaporator 12 at a position above the level of the liquefied medium remaining at a predetermined distance H from the surface of the liquefied medium.

第4図は、実験を実施し得た液化媒体中の油濃度と沸騰
時に生じる泡沫高さとの関係線図で、ランキン媒体とし
てフロンR−22,フロンR−13Blおよびプロパン
を用いている。
FIG. 4 is a diagram showing the relationship between the oil concentration in the liquefied medium and the height of foam generated during boiling in which the experiment was conducted, using Freon R-22, Freon R-13Bl, and propane as Rankine media.

第4図で、ランキン媒体の種類によらず、油濃度中0.
2(容量襲)で泡沫が発生し油濃度がこれ以上大きくな
るに従い泡沫高さは比例して高くなる。
In Fig. 4, the oil concentration is 0.0% regardless of the type of Rankine medium.
Foam is generated at 2 (capacity increase), and as the oil concentration increases further, the height of the foam increases proportionally.

媒体蒸発器12から導管nを経て媒体タービン13に供
給される気化媒体への液化媒体の同伴は、上記したよう
に媒体蒸発器13での液化媒体の液面とデミスタ−(資
)の下面との間隙Hと泡沫高さとの関係により決まる。
The entrainment of the liquefied medium into the vaporized medium supplied from the medium evaporator 12 to the medium turbine 13 via the conduit n is caused by the difference between the liquid level of the liquefied medium in the medium evaporator 13 and the lower surface of the demister, as described above. It is determined by the relationship between the gap H and the foam height.

つまり、気化媒体への液化媒体r市 の同伴を抑制するには、泡沫高さを間Jiff J−1
以下Iこ抑制する必要があり、このためには、油濃度を
太きくとも式(11に示す濃度に調節しなけれ汁ならな
LA。
In other words, in order to suppress the entrainment of liquefied medium into the vaporized medium, the foam height must be set between Jiff J-1
It is necessary to suppress the oil concentration below, and for this purpose, the oil concentration must be adjusted to the concentration shown in equation (11).

Q=2.7XIO−”H+0.2  ・・・・・・・・
・・・・ (1)ここに、Q:油濃度(容量%) H:媒体蒸発器での液化媒体の液面と デミスタ−の下面との間隔(1K) この場合、油濃度は、次のようにして適正に調節される
Q=2.7XIO-”H+0.2 ・・・・・・・・・
...... (1) Here, Q: Oil concentration (volume %) H: Distance between the liquid level of the liquefied medium in the medium evaporator and the bottom surface of the demister (1K) In this case, the oil concentration is as follows. In this way, it is properly adjusted.

弁60を開弁し媒体蒸発器12から導管70を経て油分
離器16に液ヘツド差を利用して液化媒体を抜出し供給
する。油分離器16で液化媒体は、導管9より伝熱管お
に供給され伝熱管おを流通した後に導管55より糸外へ
排出される熱源、例えば、海水により加熱される。この
加熱により液化媒体は蒸発。
The valve 60 is opened and the liquefied medium is extracted and supplied from the medium evaporator 12 to the oil separator 16 via the conduit 70 using the liquid head difference. In the oil separator 16, the liquefied medium is heated by a heat source, for example, seawater, which is supplied to the heat exchanger tube through the conduit 9, flows through the heat exchanger tube, and then discharged to the outside through the conduit 55. This heating causes the liquefied medium to evaporate.

気化し油と分離される。その後、気化媒体は、弁61を
開弁することで油分離器16から導管71を経てLNG
蒸発器10に戻され、ここで、LNGにより再び凝縮、
液化された後に、媒体ポンプ11を介し導管20.21
を経て媒体蒸発a12に再供給される。
It is vaporized and separated from the oil. Thereafter, by opening the valve 61, the vaporized medium is transferred from the oil separator 16 to the LNG via the conduit 71.
It is returned to the evaporator 10, where it is condensed again by LNG,
After being liquefied, via the medium pump 11 the conduit 20.21
The medium is then re-supplied to the medium evaporator a12.

一方、分離された油は、弁62を開弁することで油分S
器16から導管72を経て排出される。
On the other hand, the separated oil can be removed by opening the valve 62.
from the vessel 16 via conduit 72.

このような油濃度の調節操作は、8t4に蒸発器での液
化媒体中の油濃度に応じて定期的に、又は、随時に、又
は、連続的に行うことができる。
Such oil concentration adjustment operation can be carried out periodically, at any time, or continuously depending on the oil concentration in the liquefied medium in the evaporator.

本実施例のような冷熱発電設備の運転方法では、媒体蒸
発器に停留すると共に沸騰し一部蒸発、気化する液化媒
体中の油濃度を沸騰時(こ生じる泡沫高さが媒体蒸発器
での液化媒体の液面とデミスタ−の下面との間隔以下と
なるような濃度に適正に調節することで、ランキン媒体
を交換することなしに媒体タービンに供給される気化媒
体への液化媒体の同伴を抑制できるので、媒体タービン
での振動や異音の発生を防止でき媒体タービン、ひいて
は、冷熱発電設備を良好、かつ、長期的に連続運転する
ことができる。また、ランキン媒体を交換する必要もな
くなるので、ランキン媒体費を大幅に節減することがで
きる。
In the operating method of the cold energy power generation equipment as in this example, the oil concentration in the liquefied medium that remains in the medium evaporator, boils, partially evaporates, and vaporizes at the boiling point (the height of the resulting bubbles in the medium evaporator) is By properly adjusting the concentration so that the distance between the liquid level of the liquefied medium and the lower surface of the demister is less than or equal to the distance between the liquid level of the liquefied medium and the lower surface of the demister, entrainment of the liquefied medium into the vaporized medium supplied to the medium turbine can be achieved without replacing the Rankine medium. This can prevent the generation of vibrations and abnormal noises in the media turbine, allowing the media turbine and, by extension, the cold power generation equipment to operate smoothly and continuously over a long period of time.In addition, there is no need to replace the Rankine media. Therefore, Rankin media costs can be significantly reduced.

本発明は、以上説明したように、媒体蒸発器に滞留する
とともに沸騰し一部蒸発、気化する液化媒体中の油濃度
を、液化媒体沸騰時に生じる泡沫高さが媒体蒸発器での
液化媒体液面とデミスタ−の下面との間隔よりも小さく
なる濃度に調節する二とで、ランキン媒体を交換するこ
となしに媒体タービンに供給される気化媒体への液化媒
体の同伴を抑制できるので、媒体タービンでの振動や異
音の発生を防止でき媒体タービン、ひいては、冷熱発電
設備を良好、かつ、長期的に連続運転できる効果がある
As explained above, the present invention aims to reduce the oil concentration in the liquefied medium that stays in the medium evaporator, boils, partially evaporates, and vaporizes, and the height of the bubbles generated when the liquefied medium boils. By adjusting the concentration to be smaller than the distance between the surface and the lower surface of the demister, entrainment of the liquefied medium into the vaporized medium supplied to the medium turbine can be suppressed without replacing the Rankine medium. This has the effect of preventing the generation of vibrations and abnormal noises in the media turbine, and by extension, allowing the cold and thermal power generation equipment to operate smoothly and continuously over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

if図は、従来のランキンサイクル式LNG冷熱発電設
備の系統図、第2図ないし第4図は、本発明の一実施例
を説明するもので、第2図は、本発明を実施したランキ
ンサイクル式LNG冷熱発電設備の一例を示す系統図、
第3図は、媒体蒸発器の縦断面図、第4図は、油濃度と
泡沫高さとの関係図である。 lO・・・・・・LNG蒸発器、11・・・・・・媒体
ポンプ、12・・・媒体蒸発器、13・・・・・・媒体
タービン、14・・・・・・発電機、16・・・・・・
油分離器、80・・・・・・デミスタ−代理人 弁理士
  薄 1)利 幸7 オ1図 才2I21 才3図
IF diagram is a system diagram of a conventional Rankine cycle type LNG cold thermal power generation facility, Figures 2 to 4 are for explaining an embodiment of the present invention, and Figure 2 is a diagram of a Rankine cycle system implementing the present invention. A system diagram showing an example of LNG cold power generation equipment,
FIG. 3 is a longitudinal sectional view of the medium evaporator, and FIG. 4 is a diagram showing the relationship between oil concentration and foam height. lO... LNG evaporator, 11... Medium pump, 12... Medium evaporator, 13... Medium turbine, 14... Generator, 16・・・・・・
Oil separator, 80... Demister agent Patent attorney Usui 1) Toshiyuki 7 O1 figure 2 I21 year 3 figure

Claims (1)

【特許請求の範囲】 1、 ランキンサイクル式LNG冷熱発電設備において
、媒体蒸発器に滞留しているランキン媒体中の油濃度を
、ランキン媒体沸騰時に生じる泡沫高さがランキン媒体
の液面と、前記媒体蒸発器に内設したデミ反ターの下面
との間隔よりも小さくなる濃度に調節することを特徴と
する冷熱発電設備の運転方法。 2、前記ランキン媒体中の油濃度を、大きくとも2.7
 X 10−” l(+ 0.2 (容量%) (ここ
で、H:前記媒体蒸発器でのランキン媒体の液面と、前
記デミスタ−の下面との間隔)に調節する特許請求の範
囲第1項記載の冷熱発電設備の運転方法。
[Claims] 1. In a Rankine cycle type LNG cryothermal power generation facility, the oil concentration in the Rankine medium stagnant in the medium evaporator is determined by the height of the bubbles generated when the Rankine medium boils and the liquid level of the Rankine medium. A method for operating a cold power generation facility, characterized by adjusting the concentration to be smaller than the distance from the lower surface of a demi-turbine installed in a medium evaporator. 2. The oil concentration in the Rankine medium should be at most 2.7.
According to the claim A method of operating the cold power generation equipment according to item 1.
JP14763782A 1982-08-27 1982-08-27 Operation of cold-heat power generation equipment Granted JPS5939908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14763782A JPS5939908A (en) 1982-08-27 1982-08-27 Operation of cold-heat power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14763782A JPS5939908A (en) 1982-08-27 1982-08-27 Operation of cold-heat power generation equipment

Publications (2)

Publication Number Publication Date
JPS5939908A true JPS5939908A (en) 1984-03-05
JPS6213488B2 JPS6213488B2 (en) 1987-03-26

Family

ID=15434833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14763782A Granted JPS5939908A (en) 1982-08-27 1982-08-27 Operation of cold-heat power generation equipment

Country Status (1)

Country Link
JP (1) JPS5939908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119003A (en) * 1982-12-24 1984-07-10 Hitachi Ltd Operation of cryogenic power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119003A (en) * 1982-12-24 1984-07-10 Hitachi Ltd Operation of cryogenic power plant
JPH0143124B2 (en) * 1982-12-24 1989-09-19 Hitachi Seisakusho Kk

Also Published As

Publication number Publication date
JPS6213488B2 (en) 1987-03-26

Similar Documents

Publication Publication Date Title
RU2140545C1 (en) Modular power plant
US4191021A (en) Small power plant utilizing waste heat
JP4523948B2 (en) Method and apparatus for converting heat into effective energy
RU2502880C2 (en) Organic rankine cycle of direct heating
US4471621A (en) Method and apparatus for draining liquid working fluid from turbine cannister of a closed cycle power plant
JP7251225B2 (en) power generation system
US6052997A (en) Reheat cycle for a sub-ambient turbine system
JPS6316668B2 (en)
CA1162802A (en) Installation for generating superheated process steam from salt-containing raw water
SA521422249B1 (en) Heat pump apparatus and district heating network
JPS597862A (en) Absorption type heat pump system
JPS5939908A (en) Operation of cold-heat power generation equipment
JP7079151B2 (en) Evaporation and concentration equipment and methods for power generation equipment and power generation equipment
US3167928A (en) Method of and apparatus for venting fixed gas from absorption refrigeration system
JPS59119003A (en) Operation of cryogenic power plant
JP3169441B2 (en) Oil absorption type heat cycle
JPS5838678B2 (en) Liquefied natural gas cold recovery equipment
JPS5832908A (en) Oil separator of rankine engine
JPH09151707A (en) Cryogenic power generating device using liquid natural gas
US4350015A (en) Machine for converting thermal energy into work
JP2001349631A (en) Absorption type freezer machine
RU2078950C1 (en) Rankine-cycle power plant and its operation
US606326A (en) Absorption refrige-rating-machine
JPH08100608A (en) Mixed medium binary generating system
JPS6035105A (en) Lng based generating equipment by rankine cycle