JPS593954A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS593954A
JPS593954A JP57114252A JP11425282A JPS593954A JP S593954 A JPS593954 A JP S593954A JP 57114252 A JP57114252 A JP 57114252A JP 11425282 A JP11425282 A JP 11425282A JP S593954 A JPS593954 A JP S593954A
Authority
JP
Japan
Prior art keywords
layer
electrode metal
solder
metal layer
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57114252A
Other languages
Japanese (ja)
Inventor
Shigeru Kitabi
北陽 滋
Hideo Matsumoto
松本 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57114252A priority Critical patent/JPS593954A/en
Publication of JPS593954A publication Critical patent/JPS593954A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To prevent the titled device from deterioration according to thermal strain when soldering is to be performed by a method wherein a solder layer is formed as to make the circumferential part of the solder layer to be positioned at the inner side than the circumferential part of a surface electrode layer. CONSTITUTION:When preliminary soldering is to be performed on an electrode metal layer, by providing the solder layer as not to extend up to the circumferential edge of the electrode metal layer, and by providing a region not to be soldered preliminarily at the circumferential part of the electrode metal layer, the position to concentrate thermal stress according to the electrode metal layer, and the position to concentrate thermal stress according to the solder layer are made as to take respectively the different positions. For example, to a semiconductor substrate 110 having size of the main surface of 2cmX2cm, size of the ohmic electrode metal layer 120 on the P type face side is made to 1.9cmX0.1cm, size of the preliminary solder layer 140 on the P type face side is to 1.8cmX0.05cm, size of the electrode metal layer 130 on the N type face side is to 1.9cmX1.9cm, and size of the preliminary solder layer 150 on the N type face side is made to 1.8cmX1.8cm. When soldering is to be performed, thicknesses of the respective electrode metal layers are made to 4+ or -1mum, and after solder printing is performed on the electrode metal layers using solder cream [325 mesh], and using a 150 mesh stainless screen, by melting solder in air, the preliminary solder layers of 50+ or -20mum thickness are formed.

Description

【発明の詳細な説明】 不発明は、熱歪による素子の破壊ll1lt斂を高めた
半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device in which the damage of elements due to thermal strain is increased.

半導体基板上に電極金属層に肘し、端子接続のだめのハ
ンダ層を予め形成(予備ハンダ)する場合、特に大面槓
素子に於てけ電極金属ノー厚みやノ・シダ層厚みが大き
くなると、熱ショック、温度サイクル等により、電極金
属層周辺部より半導体基板のセン断破壊が発する事があ
り、これを防止する為電極金属J−厚み及びハンダ厚み
の精密な制御が必要であった。第2図(b)に示すよう
にこのセ。
When forming a solder layer in advance (preliminary soldering) on a semiconductor substrate to connect the electrode metal layer to the electrode metal layer, heat may be generated when the thickness of the electrode metal layer or the fern layer becomes large, especially in a large-surface solder element. Shocks, temperature cycles, etc. may cause shear failure of the semiconductor substrate from the periphery of the electrode metal layer, and in order to prevent this, precise control of the electrode metal J-thickness and solder thickness is required. This section is shown in FIG. 2(b).

断破壊は、半導体基板(110)と、電極金属層(13
0)及びハンダ層(150)との熱膨張係数の差により
発生する半導体基板(110>の主面にほぼ平行な方向
のセン断応力が、電極金@# (130)及びノ・シダ
層(15(J)の周辺部に集中し、この部分で半導体基
板(110)のセン断破壊が発生するものである。これ
を防止するためには、電極金属層(130)厚み及びハ
ンダ層(150)厚みを薄くすれば良いが、電極金属層
(130)が薄い場合は、ハンダ食われ等の問題があり
、又ハンダ層(150)を薄くしすぎると端子のハンダ
付強度が低下する等の不具合があり、その厚み制御1g
1n1度を上げるため、複雑な工程が必要であった。
The fracture occurs in the semiconductor substrate (110) and the electrode metal layer (13).
The shear stress in the direction almost parallel to the main surface of the semiconductor substrate (110) caused by the difference in thermal expansion coefficient between the electrode gold@# (130) and the solder layer (150) 15(J), and shear failure of the semiconductor substrate (110) occurs in this area.In order to prevent this, the thickness of the electrode metal layer (130) and the solder layer (150 ) If the electrode metal layer (130) is thin, there will be problems such as solder erosion, and if the solder layer (150) is made too thin, the soldering strength of the terminal will decrease. There was a problem and the thickness control was 1g.
In order to raise the temperature by 1n1, a complicated process was required.

本発明は上記従来のものの欠点を取除くため(てなされ
たものであり、ハンダ層の周6縁部を表面電極層の周縁
部よりも内側に位置するようにハンダ層を形成し耐熱シ
ョック性、及び耐温度サイクル性を高めた半導体装置を
提供するものである。すなわち電極金属層上に予備ハン
ダを実施する1祭、ハンダ層が電極金属層周辺端までひ
ろげ−r、改ム金属層周辺部に予備/・ンダされない領
域を設ける事1てより、電極金属j−による熱応力の集
中する位置と、ノ・シダ層による熱応力の集中する位置
が大々別昭の位置になるようにする事により、応力を分
¥!、させ、より大きな温度メ化に耐え得る半導体装置
を実現せんとするものである。
The present invention was developed in order to eliminate the drawbacks of the conventional methods described above, and the solder layer is formed so that the peripheral edge of the solder layer is located inside the peripheral edge of the surface electrode layer, thereby improving heat shock resistance. , and provides a semiconductor device with improved temperature cycle resistance.In other words, in the first step of pre-soldering on the electrode metal layer, the solder layer spreads to the edge of the electrode metal layer, and the solder layer spreads to the edge of the electrode metal layer, and the solder layer spreads to the edge of the periphery of the modified metal layer. By providing a spare area in the area that is not subjected to soldering, the position where thermal stress is concentrated due to the electrode metal j- and the position where thermal stress is concentrated due to the fern layer are located at largely different positions. By doing so, we aim to reduce stress by a fraction of a second and realize a semiconductor device that can withstand even greater changes in temperature.

以下、AlGaAs/GaAs太陽電池を例にとり、本
発明D−笑施例を説明する。
Hereinafter, embodiments of the present invention will be described using an AlGaAs/GaAs solar cell as an example.

筐ず第1図にAn()a−As/GaAs太1場電池セ
ルの概略断面図を示す。
FIG. 1 shows a schematic cross-sectional view of an An()a-As/GaAs 1-field battery cell.

■形GaAS基板(11]) −41K P形GaAs
層(n2)を形成しさらttr F形()aAe層(1
12)上K P j影Alda−As 層(]]3) 
&、ljg次杉収形成。P形AlGaAs層(113)
上にSi3N4、Ta205又けT]02等の反射防止
膜(114)を形成する。P形電1企金pJK 層(1
2(J) d、P形GaAs層(112)又はP形Al
GaAs層(:11.3) i K 設けられ、n1則
電極今属層(130)はn形GaAs基板(111)に
ノヒ成される。P形電極金属層(120)としてけ、i
sU/Zn 、Ag/Zn 等Znをき有する金属層け
C(1、Hg等を合釘する金属を用い、n +1111
電極金’4r r1+:;o)としては、寵u/」e/
N t 寺G eを含有する金属を主に用いる。
-41K P-type GaAs substrate (11)
Form layer (n2) and form ttr F type ()aAe layer (1
12) Upper K P j shadow Alda-As layer (]] 3)
&, ljg next cedar harvest formation. P-type AlGaAs layer (113)
An antireflection film (114) made of Si3N4, Ta205, T]02, etc. is formed thereon. P type electric 1 company pJK layer (1
2(J) d, P-type GaAs layer (112) or P-type Al
A GaAs layer (11.3) i K is provided, and the n1 electrode layer (130) is formed on the n-type GaAs substrate (111). As a P-type electrode metal layer (120), i
sU/Zn, Ag/Zn, etc. Metal layer C (1, using metal doweling Hg etc., n + 1111
As for the electrode gold '4r r1+:;o), it is like u/'e/
Metals containing NtGe are mainly used.

さらにP側電極金属層(12(3)及びn狽1 ’電極
金属層(130)上に予備ハンダ層(140) 、(1
50)を設ける。
Furthermore, a preliminary solder layer (140), (1
50).

第2図(a)に従来の予備ハンダを施したAl()aA
s/()aAs太陽電池のn膨面側から見た斜視図を示
すっ第2図(+))は第2図(a)の太1場電池に一1
60’C〜140℃の熱サイクルを加えることにより破
壊したAIC)aAS/GaA3太陽電池の1極表面の
状暢を示す図である。第2図(b)に示すように、電極
金属1−(130)及びこの半導体基板(110) V
inGaAs基板上K nGaAs 7m、P形AJC
)aAs層を順次、形成することにより作られる。(2
00)は破壊箇所を示す。
Figure 2(a) shows Al()aA with conventional preliminary soldering.
Figure 2 (+) shows a perspective view of an s/()aAs solar cell seen from the n-bulk surface side.
It is a figure which shows the condition of the single pole surface of the AIC) aAS/GaA3 solar cell destroyed by applying the heat cycle of 60'C - 140 degreeC. As shown in FIG. 2(b), the electrode metal 1-(130) and this semiconductor substrate (110) V
K nGaAs 7m, P type AJC on inGaAs substrate
) is made by sequentially forming aAs layers. (2
00) indicates the location of destruction.

粥3図(a)は本発明になるA、b)aAe/GaAs
太1場奄池のP形受光面側から見た斜視図を示し、第3
図(b)は同太陽電池のn膨面側から見た斜視図?示す
Porridge 3 (a) A according to the present invention, b) aAe/GaAs
This is a perspective view of the P-type light-receiving surface of Taichiba Amike, and the third
Is figure (b) a perspective view of the same solar cell as seen from the n-expansion side? show.

すなわち、主面の寸法が2 tx X 2 txtの半
4体基板(1]0)K肘しP形面側オーミック電極金属
層(: ] 2L))の寸法を1.9zX0.1礪、P
形Ifi側予備ハシダ層(14O八5D寸法を18mX
0.05cm、 n形面側電極金属層(130)の寸法
を1.9cmX1.9υ、n形部側予備ノ・シダ層(1
50)の寸法の寸法(!l−1,8(MXl、8cmと
する。本発明の実施に当っては、各電極金属層厚みは4
±1μであり、電極金属層厚に、ハンダクリーム(32
5メソシ)ヲ用い、150メツシユステンレスクリーン
を用いてプリント麦空 、ハンダを!気中で溶融する事により50±20μ 厚
みの予備ハンダ層を形成した。
That is, the dimensions of the half-quad substrate (1]0) K-edge P-shaped surface side ohmic electrode metal layer (: ] 2L)) whose main surface dimensions are 2 tx x 2 txt are 1.9z x 0.1 txt, P
Spare hashidah layer on the Ifi side (14O85D dimensions 18mX
0.05cm, the dimensions of the n-type side electrode metal layer (130) are 1.9cm x 1.9υ, and the n-type part side preliminary fern layer (1
50) dimensions (!l-1,8 (MXl, 8 cm). In carrying out the present invention, the thickness of each electrode metal layer is 4 cm.
±1μ, and solder cream (32μ) is applied to the electrode metal layer thickness.
Using 5 mesh), print and solder using 150 mesh stainless clean! A preliminary solder layer with a thickness of 50±20 μm was formed by melting in air.

本発明になるAlGaA3/GaAs太陽電池に、予備
ノ・ンダg−’196°C〜160℃の熱ショックを用
サイクル実施したところ、試料載20グに対し、セル破
壊等の不良は発生しなかった。
When the AlGaA3/GaAs solar cell of the present invention was subjected to a preliminary thermal shock cycle of 196°C to 160°C, no defects such as cell breakage occurred when the sample was placed on the sample for 20g. Ta.

向、同一条件にて@記従来のAlGaAs/GaAs太
陽電池に於て各電極金属層と同一サイズの予備パンダを
実施したものについて上記熱シヨツク試験を実施した所
、試N数10ケに対し、第2図(b)に示したようなセ
ル破壊が8ヶ発生した。
The above thermal shock test was conducted on a conventional AlGaAs/GaAs solar cell with a preliminary expander of the same size as each electrode metal layer under the same conditions. Eight cell breakdowns as shown in FIG. 2(b) occurred.

上記の事柄より明らかなように、本発明になる半導体装
置は、従来のものと比較し熱歪に対して優れた耐址を有
する。
As is clear from the above, the semiconductor device of the present invention has superior durability against thermal strain compared to conventional devices.

本発明けAlGaAs/G経B太陽電池のみならず全て
の半導体素子に適用できるが特にGaAs()aP等I
II −V°族化合物半導体や1ト」族化合物半導体の
g口き開件の強い半導体基体を用いた半4体素子に有効
である。
The present invention can be applied not only to AlGaAs/G-type B solar cells but also to all semiconductor devices, especially GaAs()aP etc.
This method is effective for semi-quadramid elements using semiconductor substrates with strong g-opening properties, such as II-V° group compound semiconductors and 1-T' group compound semiconductors.

以上説明のように本発明は・・シダ層の周縁部を衣面電
画層の周縁部よりも内側に位置するよう)でハンダ1−
を形成したつで、熱歪による劣化か生じない半導体装置
(il−得ることがでさるという優れた幼果を有する。
As explained above, the present invention... solders 1-
It has an excellent young fruit that can be obtained by forming a semiconductor device (IL-) which does not suffer from deterioration due to thermal strain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図けAlGaAs/GaAs太陽電池の概略断面図
、第2図(a)は従来のAIC)aAs/()aAs太
陽電池の斜視図、第2図(b)はその熱シヨツク試験後
のセル破壊の状態を示す斜視図、第3図(a) (b)
は本発明の一実施例になるAlGaA3/()aAs太
陽電池の斜視図を示す。 (110) Vi半導体基板、(111)tl′in形
GaAs基板、(112)l−1tP形GaAs層、(
113)はP形AlGaAs層、(114) H反射防
止膜である。 (120)はP形電極金属層、(130)はn杉奄惟今
属ノ−であり、(140)はP膨面側予備ハンダ層、(
150)はn膨面側予備ハンダ層である。 代 理 人  葛  野    信  −第1図 第2図 (θ) (b) 第3図 CO) Cb) 手続補正書(自発) 特許庁長官殿 1、事件の表示    特願昭57−114252号2
、発明の名称   半導体装置 3、補正をする者 事件との関係   特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称(601)   三菱電機株式会社代表者片山仁
八部 4、代理人 住 所     東京都千代田区丸の内二丁目2番3号
5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書をつぎのとおり訂正する。
Figure 1 is a schematic cross-sectional view of an AlGaAs/GaAs solar cell, Figure 2 (a) is a perspective view of a conventional AIC) aAs/() aAs solar cell, and Figure 2 (b) is a cell after a thermal shock test. Perspective views showing the state of destruction, Figure 3 (a) (b)
1 shows a perspective view of an AlGaA3/()aAs solar cell according to an embodiment of the present invention. (110) Vi semiconductor substrate, (111) tl'in type GaAs substrate, (112) l-1tP type GaAs layer, (
113) is a P-type AlGaAs layer and (114) H antireflection film. (120) is the P-type electrode metal layer, (130) is the n-type electrode metal layer, (140) is the P-type electrode metal layer, (140) is the P-type electrode metal layer, (140) is the P-type electrode metal layer, (
150) is a preliminary solder layer on the n-bulk surface side. Agent Makoto Kuzuno - Figure 1 Figure 2 (θ) (b) Figure 3 CO) Cb) Procedural amendment (spontaneous) Mr. Commissioner of the Japan Patent Office 1, Indication of case Patent application No. 114252/1986 2
, Title of the invention Semiconductor device 3, Relationship to the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Hitachi Katayama 4, Agent Address: 2-2-3-5 Marunouchi, Chiyoda-ku, Tokyo, Column 6 of the detailed description of the invention in the specification subject to amendment, Contents of amendment (1) The specification is amended as follows.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と、この半導体基板の主面に形成さ八た表面
電極l#Ii七この表面電極層に形成されたハンダ層と
(f−備えたものに放て、前記ハンダ層はその周縁部が
前記表面電極層の周縁部よりも内側に位置するように形
成されたことを特徴とする半導体装置。
A semiconductor substrate, a surface electrode l#Ii formed on the main surface of this semiconductor substrate, and a solder layer formed on this surface electrode layer (f), the solder layer has a peripheral edge thereof. A semiconductor device characterized in that the semiconductor device is formed so as to be located inside a peripheral portion of the surface electrode layer.
JP57114252A 1982-06-29 1982-06-29 Semiconductor device Pending JPS593954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57114252A JPS593954A (en) 1982-06-29 1982-06-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114252A JPS593954A (en) 1982-06-29 1982-06-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS593954A true JPS593954A (en) 1984-01-10

Family

ID=14633113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114252A Pending JPS593954A (en) 1982-06-29 1982-06-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS593954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270250A (en) * 1985-05-24 1986-11-29 神戸材料株式会社 Manufacture of sulfur concrete

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459080A (en) * 1977-10-19 1979-05-12 Nec Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459080A (en) * 1977-10-19 1979-05-12 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270250A (en) * 1985-05-24 1986-11-29 神戸材料株式会社 Manufacture of sulfur concrete

Similar Documents

Publication Publication Date Title
JP3139426B2 (en) Semiconductor device
JP5266235B2 (en) Method for providing an electrical connection in an electrical device
US4032363A (en) Low power high voltage thermopile
US5248345A (en) Integrated photovoltaic device
US3657611A (en) A semiconductor device having a body of semiconductor material joined to a support plate by a layer of malleable metal
JP4425917B2 (en) Solar cell and manufacturing method thereof
US4059837A (en) Glass-moulded type semiconductor device
JPS593954A (en) Semiconductor device
JPS6141135B2 (en)
JPH0260171A (en) Solar cell
US20220069141A1 (en) Low temperature metallic interconnect for solar cell shingling
JP4951932B2 (en) Power module substrate manufacturing method
JPS55107238A (en) Semiconductor device and method of manufacturing the same
JP2802615B2 (en) Method for brazing a semiconductor substrate on a support plate
US4921158A (en) Brazing material
US8018042B2 (en) Integrated circuit with flexible planar leads
JPH04225575A (en) Photovoltaic power device
JP3520607B2 (en) Peltier module and manufacturing method thereof
JPH1197618A (en) Bonding of silicon wafer
JPS60123072A (en) Photoelectric conversion semiconductor device
JPS6031264Y2 (en) DHD glass sealed diode
JP3968001B2 (en) Method for forming solar cell element
JPS6222452B2 (en)
JPS59132685A (en) Solar battery module
JPH0750309A (en) Manufacture of semiconductor device