JPS5938777B2 - Communication network using optical wavelength division multiplexing transmission - Google Patents

Communication network using optical wavelength division multiplexing transmission

Info

Publication number
JPS5938777B2
JPS5938777B2 JP54051472A JP5147279A JPS5938777B2 JP S5938777 B2 JPS5938777 B2 JP S5938777B2 JP 54051472 A JP54051472 A JP 54051472A JP 5147279 A JP5147279 A JP 5147279A JP S5938777 B2 JPS5938777 B2 JP S5938777B2
Authority
JP
Japan
Prior art keywords
optical
terminal
wavelength
light waves
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54051472A
Other languages
Japanese (ja)
Other versions
JPS55143853A (en
Inventor
潔 野須
哲也 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54051472A priority Critical patent/JPS5938777B2/en
Publication of JPS55143853A publication Critical patent/JPS55143853A/en
Publication of JPS5938777B2 publication Critical patent/JPS5938777B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は、光波長分割多重伝送技術を用いた通信網に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a communication network using optical wavelength division multiplexing transmission technology.

光ファイバを用いた環状通信網として、従来、光分岐
回路を各端末のアクセサリ−とするものが知られている
2. Description of the Related Art Conventionally, a ring communication network using optical fibers is known in which an optical branch circuit is used as an accessory for each terminal.

第1図は、その構成例を示す。FIG. 1 shows an example of its configuration.

1はセンタ制御ステーション、2〜5は端末アクセサリ
−、105は光ファイバ、12〜15は端末制御装置、
22、22’、22”、23、23’、23”、25、
25’、25”は端末装置である。
1 is a center control station, 2 to 5 are terminal accessories, 105 is an optical fiber, 12 to 15 are terminal control devices,
22, 22', 22", 23, 23', 23", 25,
25' and 25'' are terminal devices.

端末アクセサー2〜5には光分岐結合回路、光電気変換
装置が用いられる。センタからの光信号は、環状光ファ
イバ伝送路を伝搬する。端末アクセサー2〜5の光分岐
結合回路によつて、伝送路を伝搬する光波のパワーの一
部は、各端末に分配される。一方、各端末装置22〜2
5”の信号は、各端末の端末制御装置12〜15を介し
て端末アクセサー・に人り、ここで電気信号が光信号に
変換され環状光ファイバ伝送路内を伝搬する。第2図は
、端末アクセサー内の分岐結合回路の構造例を示す。
Optical branching and coupling circuits and photoelectric conversion devices are used for the terminal accessors 2 to 5. Optical signals from the center propagate through a circular optical fiber transmission line. A part of the power of the light wave propagating through the transmission path is distributed to each terminal by the optical branching and coupling circuits of the terminal accessors 2 to 5. On the other hand, each terminal device 22-2
The 5" signal is transmitted to the terminal accessor via the terminal controllers 12 to 15 of each terminal, where the electrical signal is converted into an optical signal and propagated within the circular optical fiber transmission line. FIG. An example of the structure of a branching and coupling circuit in a terminal accessor is shown.

30は光分岐結合回路への環状伝送路からの入力信号、
31は分岐信号、32は環状伝送路通過信号、33は端
末から環状伝送路への入力信号、4口は半透過鏡である
30 is an input signal from the circular transmission line to the optical branching and coupling circuit;
31 is a branch signal, 32 is a signal passing through the annular transmission path, 33 is an input signal from the terminal to the annular transmission path, and 4 ports are semi-transparent mirrors.

半透過鏡40へ入射した環状伝送路入力信号の一部分は
分岐されて分岐信号31になり端末へ分配される。端末
入力信号33は半透過鏡40で一部反射して、半透過鏡
40を通過した環状伝送路通過信号32と合流して環状
伝送路内を伝搬する。第1図のシステムにおいて、セン
タ1と各端末間の双力向通信は可能となる。
A portion of the annular transmission line input signal incident on the semi-transmissive mirror 40 is branched to become a branch signal 31 and distributed to the terminals. The terminal input signal 33 is partially reflected by the semi-transmissive mirror 40, merges with the annular transmission path passing signal 32 that has passed through the semi-transmissive mirror 40, and propagates within the annular transmission path. In the system shown in FIG. 1, bidirectional communication between the center 1 and each terminal is possible.

しかし、センター端末間の通信は時分割回線変交換技術
とか、パケツト交換のような蓄積交換技術が必要となる
。このため、端末制御のコヌトが増大する。端末数が増
大すると高速変復調への要求が増大する。又、各端末へ
は、光分岐結合回路で、光信号が常に分配されるので、
通信の秘密が保持されない。又、端末を増設するとセン
タからの光送信電力を上げないと、遠い端末との通信が
できなくなるといつた欠点がある。従つて、本発明は従
来の技術の上記欠点を改善するもので、その目的は、光
波長分割多重技術を用いた安価で安定な端末アクセサ一
で構成した通信網を提供することにある。
However, communication between center terminals requires time-division circuit switching technology or store-and-forward technology such as packet switching. Therefore, the number of terminal controls increases. As the number of terminals increases, the demand for high-speed modulation and demodulation increases. In addition, since optical signals are always distributed to each terminal by an optical branching and coupling circuit,
Communication is not kept confidential. Another drawback is that when more terminals are added, communication with distant terminals becomes impossible unless the optical transmission power from the center is increased. Therefore, the present invention aims to improve the above-mentioned drawbacks of the prior art, and its purpose is to provide a communication network composed of inexpensive and stable terminal accessors using optical wavelength division multiplexing technology.

以下図面により詳細に説明する。第3図は、本発明によ
る実施例であつて、一本の環状光伝送路に右廻りと左廻
りに伝搬する二組の信号波群がある。
This will be explained in detail below with reference to the drawings. FIG. 3 shows an embodiment according to the present invention, in which there are two groups of signal waves propagating clockwise and counterclockwise in one circular optical transmission line.

各端末とセンタの双力向通信は、右廻りと左廻りの2チ
ヤンネルに対し同一の波長の光波を割り上当てる。
Bidirectional communication between each terminal and the center allocates light waves of the same wavelength to two channels, clockwise and counterclockwise.

5V′,52″,53′5は端末アクセサ一、61,6
2,63,6V,62′,63′は端末制御装置、71
〜73,71′〜73′,7V′〜73″,71″〜7
3″は端末装置、110,120,130は端末、λ1
,λ2,λ3は光信号の波長を示す。
5V', 52'', 53'5 are terminal accessors 1, 61, 6
2, 63, 6V, 62', 63' are terminal control devices, 71
~73,71'~73',7V'~73'',71''~7
3″ is a terminal device, 110, 120, 130 are terminals, λ1
, λ2, λ3 indicate the wavelengths of the optical signals.

端末アクセサ一5V′〜53′5には光合波分波回路と
光サーキユレータが組込まれている。端末110には波
長λ1の光波が、端末120には波長λ2の光波が、端
末130には波長λ3の光波が割り込まれている。
An optical multiplexing/demultiplexing circuit and an optical circulator are incorporated in the terminal accessors 15V' to 53'5. Terminal 110 is interrupted by a light wave of wavelength λ1, terminal 120 is interrupted by a light wave of wavelength λ2, and terminal 130 is interrupted by a light wave of wavelength λ3.

環状光伝送路10を波長.λ,,λ2,λ3の光波が右
廻り及ひ左廻りに・伝搬する。同じ波長であつても、右
廻りと左廻りの光波は独立に別々の信号を伝送している
。端末110とセンタ50間の双方向通信は、右廻り及
び左廻りの波長λ1の光波により二つの系統で独立に行
われる。端末120とセンタ50の間の双力向通信は、
右廻り及び左廻りの波長λ2の光波により2つの系統で
独立に行われる。端末130とセンタ50の間の双力向
通信は、右過り及び左廻りの波長λ3の光波により二つ
の系統で独立に行われる。第4図は、第3図における端
木アクセサ一の一構成例を示す。1σ,10′5は環状
光伝送路用光フアイバ、111,112,11V,11
2′は光フγイバ、113〜116,114′,116
′はレンズ、117は誘電体多層膜フイルタ、200,
201は光サーキユレータである。
The wavelength of the annular optical transmission line 10. Light waves of λ, λ2, and λ3 propagate clockwise and counterclockwise. Even though they have the same wavelength, clockwise and counterclockwise light waves independently transmit different signals. Bidirectional communication between the terminal 110 and the center 50 is performed independently in two systems using clockwise and counterclockwise light waves of wavelength λ1. Bidirectional communication between the terminal 120 and the center 50 is
This is carried out independently in two systems using right-handed and counter-clockwise light waves of wavelength λ2. Bidirectional communication between the terminal 130 and the center 50 is performed independently in two systems using right-handed and counter-clockwise light waves of wavelength λ3. FIG. 4 shows an example of the configuration of the end wood accessor 1 in FIG. 3. 1σ, 10'5 is the optical fiber for the circular optical transmission line, 111, 112, 11V, 11
2' is an optical fiber, 113-116, 114', 116
' is a lens, 117 is a dielectric multilayer filter, 200,
201 is an optical circulator.

誘電体多層膜フイルタ117は、波長λ1の光波のみ透
過し、他の波長の光波を反射する。環状光伝送路用光フ
アイバ10′?出射した波長λ,,λ2,λ3の光波は
レンズ113でコリメートされ、誘電体多層膜フイルタ
117に入射する。ここで波長λ2,λ3の光波は反射
して、レンズ115で集光され、環状光伝送路用光フア
イバ10′5に結合する。−力、光フアイバ10′を出
射した波長λ,の光波はフイルタ117を透過し、光サ
ーキユレータ201に入射し、レンズ114′を介して
光フアイバ111′に結合し、端末制御装置の光・電気
変換部へ伝送される。一力、同じ端末制御装置からの波
長λ1の光信号波は光フアイバ112′で導か瓢レンズ
116′でコリメートされ九サーキユレータ200を介
してフイルタ117に入射し、光フアイバ10′を出射
した波長λ2,λ3の光波とともに、レンズ115を介
して光フアイバ10′5に結合する。一力、光フアイバ
107′を出射した波長λ,,λ2,λ3の光波は、レ
ンズ115でコリメートされフイルタ117に入射する
が、波長λ2,λ3の光波のみここで反射し、レンズ1
17を介して光フアイバ10′に結合する。一力、光フ
アイバ10″を出射し、フイルタ117を透過した波長
λ1の光波は、光サーキユレータ200に入射し、レン
ズ114を介して光フアイバ111に結合し、端末制御
装置の光・電気変換部へ伝送される。一力、同じ端末制
御装置からの波長λ1の光波は、光フアイバ112を出
射し、レンズ116でコリメートされ、光サーキユレー
タ201を介して光フイルタ117に入射し、同フイル
タを透過後、光フアイバ1『を出射した波長λ2,λ3
の光波とともにレンズ113を介して、光フアイバ1D
′に結合する。第5図は光サーキユレータの動作概念を
示している。
The dielectric multilayer filter 117 transmits only light waves with wavelength λ1 and reflects light waves with other wavelengths. Optical fiber 10' for circular optical transmission line? The emitted light waves with wavelengths λ, λ2, and λ3 are collimated by a lens 113 and enter a dielectric multilayer filter 117. Here, the light waves of wavelengths λ2 and λ3 are reflected, condensed by a lens 115, and coupled to an optical fiber 10'5 for a circular optical transmission line. - The light wave of wavelength λ emitted from the optical fiber 10' passes through the filter 117, enters the optical circulator 201, and is coupled to the optical fiber 111' via the lens 114'. It is transmitted to the converter. First, an optical signal wave with a wavelength λ1 from the same terminal control device is guided by an optical fiber 112', collimated by a gourd lens 116', enters a filter 117 via a circulator 200, and outputted from the optical fiber 10' with a wavelength λ2. , λ3 are coupled into the optical fiber 10'5 through the lens 115. The light waves with wavelengths λ, λ2, λ3 emitted from the optical fiber 107' are collimated by the lens 115 and enter the filter 117, but only the light waves with wavelengths λ2, λ3 are reflected here,
17 to optical fiber 10'. A light wave with a wavelength λ1 that is emitted from the optical fiber 10'' and transmitted through the filter 117 enters the optical circulator 200, is coupled to the optical fiber 111 via the lens 114, and is connected to the optical-to-electrical converter of the terminal control device. A light wave with a wavelength λ1 from the same terminal control device exits the optical fiber 112, is collimated by the lens 116, enters the optical filter 117 via the optical circulator 201, and is transmitted through the filter. After that, the wavelengths λ2 and λ3 emitted from the optical fiber 1'
The optical fiber 1D passes through the lens 113 along with the light waves of
′. FIG. 5 shows the operational concept of the optical circulator.

複屈折材料とファラデー回転素子で構成されているもの
がある。ポートAへ入射した光波はポートBへ、ポート
Bへ入射した光波はポートCへ、ポートCへ入射した光
波はポートDへ、ポートDへ入射した光波はポートAへ
、それぞれ出射する。以上説明したように、本発明は光
波長分割多重伝送技術を用いて端末とセンタ、端末と端
末の同時双力向通信を町能としており、次のような利点
がある。
Some are composed of a birefringent material and a Faraday rotation element. Light waves incident on port A exit to port B, light waves incident on port B exit to port C, light waves incident on port C exit to port D, and light waves incident on port D exit to port A, respectively. As explained above, the present invention uses optical wavelength division multiplexing transmission technology to perform simultaneous bidirectional communication between a terminal and a center, and between terminals and terminals, and has the following advantages.

(1)一本の伝送路で双力向通信を行うのにもかかわら
ず、各端末ごとに独立した通信ができる。
(1) Even though bidirectional communication is performed through a single transmission path, each terminal can communicate independently.

(2)一本の伝送路を皮長が異なる多数の光皮の伝搬路
とするため、経済的である。
(2) It is economical because one transmission path is used as a propagation path for many light skins with different skin lengths.

(3)端末と伝送路のインターフエース(結合部)は誘
電体多層膜フイルタ等の可動部分のない受動部品のみで
構成されており、信頼性が高い。
(3) The interface (coupling part) between the terminal and the transmission line is composed only of passive components without moving parts, such as a dielectric multilayer filter, and is highly reliable.

(4)環状伝送路を右廻り、左廻りの二つの力向に伝搬
させることにより伝送路を有効に利用できる。又、−ケ
所の伝送路が切断されても全端末で双力向伝送が維持で
き、信頼性が高い。
(4) The transmission line can be used effectively by propagating force in two directions, clockwise and counterclockwise, through the annular transmission line. Furthermore, even if the transmission line at one location is cut off, bidirectional transmission can be maintained at all terminals, resulting in high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光フアイバを用いた環状網の一構成例、
第2図は第1図における端末アクセサ一の構成図、第3
図は本発明による通信網の構成例、第4図は第3図にお
ける端末アクセサ一の構成例、第5図は第4図の端末ア
クセサ一に用いる光サーキユレータの概念図である。 1,50・・・・・・通信センタ、2,3,4,5,5
17′,52″,53′ξ・・・・・端末アクセサ一、
12,13,14,15,61,62,63,6V,6
2!,63′・・・・・・端末制御装置、22,22′
,22″,23,23!,23″,24,24′,24
′7,25,25′,25/′,71,71′,7V/
,72,72!,72″,73,73′,73〃,7V
″,72″′,73′7・・・・・・端末装置、40・
・・・・・半透過鏡、30・・・・・・光分岐結合回路
への環状光伝送路から入力信号、31・・・・・・分岐
信号、32・・・・・・環状光伝送路通過信号、33・
・・・・・端末から環状光伝送路への信号、10・・・
・・・光伝送路、10′,10′5・・・・・・光伝送
路用光フアイバ、117・・・・・・誘電体多層膜フイ
ルタ、113,114,115,116,114′,1
16′・・・・・ルンズ、111,112,111′,
112′・・・・・・光フアイバ、λ1,λ2,λ3・
・・・・・光波の波長、200,201・・・・・・光
サーキユレータ、110,120,130・・・・・・
通信端末。
Figure 1 shows an example of the configuration of a circular network using conventional optical fibers.
Figure 2 is a configuration diagram of the terminal accessor 1 in Figure 1;
4 is a conceptual diagram of an optical circulator used in the terminal accessor 1 shown in FIG. 4. 1, 50... Communication center, 2, 3, 4, 5, 5
17′, 52″, 53′ξ...terminal accessor one,
12, 13, 14, 15, 61, 62, 63, 6V, 6
2! , 63'... terminal control device, 22, 22'
,22″,23,23!,23″,24,24′,24
'7, 25, 25', 25/', 71, 71', 7V/
,72,72! ,72″,73,73′,73〃,7V
″, 72″′, 73′7...terminal device, 40・
... Semi-transparent mirror, 30 ... Input signal from the ring optical transmission line to the optical branching and coupling circuit, 31 ... Branch signal, 32 ... Ring light transmission Road passing signal, 33.
...Signal from the terminal to the circular optical transmission line, 10...
... Optical transmission line, 10', 10'5... Optical fiber for optical transmission line, 117... Dielectric multilayer film filter, 113, 114, 115, 116, 114', 1
16'...Luns, 111, 112, 111',
112'...Optical fiber, λ1, λ2, λ3・
...Wavelength of light wave, 200,201... Optical circulator, 110,120,130...
communication terminal.

Claims (1)

【特許請求の範囲】 1 少なくとも一つの通信端末が光ファイバを介して、
環状に結合している通信系において、各端末と光ファイ
バの結合部のアクセサーをプリズム、回折格子、又は誘
電体多層膜フィルタ等の波長選択性を有する光分波器と
光サーキユレータで構成し、各端末に相異なる波長を一
つずつ割り当て、各波長の光波が同一環状光ファイバ伝
送路を右廻り及び左廻りに伝搬することにより、センタ
と各端末間の通信路を逆方向の2ルートずつ提供する事
を特徴とする光波長分割多重伝送技術を用いた通信網。 2 特許請求の範囲第1項の通信網において、反射透過
が相異なる光フィルタ対を光波が順次反射可能なごとく
配列し、第一の光フィルタに光ビームが斜入射する光学
手順を有し、この光フィルタ間を光波が伝搬する過程で
、光波の波長に応じて分離結合するごとき端末アクセサ
ーを用いることを特徴とする光波長分割多重伝送技術を
用いた通信網。
[Claims] 1. At least one communication terminal connects via an optical fiber,
In a communication system that is coupled in a ring, the accessor at the coupling part between each terminal and the optical fiber is composed of an optical demultiplexer and an optical circulator with wavelength selectivity such as a prism, a diffraction grating, or a dielectric multilayer filter, By assigning one different wavelength to each terminal and allowing the light waves of each wavelength to propagate clockwise and counterclockwise through the same circular optical fiber transmission line, the communication path between the center and each terminal is created using two routes in opposite directions. A communication network using optical wavelength division multiplexing transmission technology. 2. The communication network according to claim 1 has an optical procedure in which pairs of optical filters with different reflection and transmission are arranged so that light waves can be sequentially reflected, and a light beam is obliquely incident on the first optical filter, A communication network using optical wavelength division multiplexing transmission technology, which uses a terminal accessor that separates and couples light waves according to their wavelengths during the process of light waves propagating between the optical filters.
JP54051472A 1979-04-27 1979-04-27 Communication network using optical wavelength division multiplexing transmission Expired JPS5938777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54051472A JPS5938777B2 (en) 1979-04-27 1979-04-27 Communication network using optical wavelength division multiplexing transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54051472A JPS5938777B2 (en) 1979-04-27 1979-04-27 Communication network using optical wavelength division multiplexing transmission

Publications (2)

Publication Number Publication Date
JPS55143853A JPS55143853A (en) 1980-11-10
JPS5938777B2 true JPS5938777B2 (en) 1984-09-19

Family

ID=12887882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54051472A Expired JPS5938777B2 (en) 1979-04-27 1979-04-27 Communication network using optical wavelength division multiplexing transmission

Country Status (1)

Country Link
JP (1) JPS5938777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269637A (en) * 1986-05-15 1987-11-24 中原 宏作 Fishing float

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3422219A1 (en) * 1984-06-15 1985-12-19 Standard Elektrik Lorenz Ag, 7000 Stuttgart Optical data transmission system in the access network
JPS6216633A (en) * 1985-07-16 1987-01-24 Toshiba Corp Signal transfer device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039403A (en) * 1973-07-05 1975-04-11
JPS5290283A (en) * 1976-01-23 1977-07-29 Anritsu Electric Co Ltd Annular multiple wavelength light communication device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039403A (en) * 1973-07-05 1975-04-11
JPS5290283A (en) * 1976-01-23 1977-07-29 Anritsu Electric Co Ltd Annular multiple wavelength light communication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269637A (en) * 1986-05-15 1987-11-24 中原 宏作 Fishing float

Also Published As

Publication number Publication date
JPS55143853A (en) 1980-11-10

Similar Documents

Publication Publication Date Title
JP3356365B2 (en) Optical ADM device
JPH11507738A (en) Optoelectronic circuit
US4930117A (en) Wavelength division multiplexing system using optical switch
US4662715A (en) Fiber optic network with reduced coupling losses
JPH1062826A (en) Optical router
JPH1054922A (en) Optical router made of all optical fibers
EP0493132B1 (en) Waveguide-type coupler/splitter
JP2724098B2 (en) Optical wavelength filter device
JPH02168222A (en) Wavelength branching and inserting element
JPS5938777B2 (en) Communication network using optical wavelength division multiplexing transmission
JP4116244B2 (en) Transceiver for wavelength division multiplexing
EP0489525A2 (en) Improvements relating to optical sensing systems
JP2713324B2 (en) Lightwave address system
JP3308148B2 (en) Optical submarine cable branching device for WDM communication system and WDM optical submarine cable network using the same
JPH0527136A (en) Optical multiplexer/demultiplexer
JPS62171335A (en) Multiwavelength optical fiber transmission system
JP2658114B2 (en) Wavelength conversion switch
JP2003523538A (en) Optical fiber device operating at two or more wavelengths
JPH01118815A (en) Optical signal multiplexing and demultiplexing device for optical communication among many points
KR100223033B1 (en) A multi-wavelength channel transmission optical filter
JPS613024A (en) Apparatus for measuring wavelength dispersion of optical fiber
JPS6030455B2 (en) optical transmission equipment
JP2833255B2 (en) Optical demultiplexer
JPH103012A (en) Optical wavelength demultiplexing element
JPS60133407A (en) Optical switch device