JPS5938416B2 - engine intake system - Google Patents

engine intake system

Info

Publication number
JPS5938416B2
JPS5938416B2 JP57077274A JP7727482A JPS5938416B2 JP S5938416 B2 JPS5938416 B2 JP S5938416B2 JP 57077274 A JP57077274 A JP 57077274A JP 7727482 A JP7727482 A JP 7727482A JP S5938416 B2 JPS5938416 B2 JP S5938416B2
Authority
JP
Japan
Prior art keywords
load
valve
intake passage
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57077274A
Other languages
Japanese (ja)
Other versions
JPS58195012A (en
Inventor
博之 小田
泰之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kogyo Co Ltd filed Critical Toyo Kogyo Co Ltd
Priority to JP57077274A priority Critical patent/JPS5938416B2/en
Publication of JPS58195012A publication Critical patent/JPS58195012A/en
Publication of JPS5938416B2 publication Critical patent/JPS5938416B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【発明の詳細な説明】 この発明はエンジンの吸気装置に関する。[Detailed description of the invention] This invention relates to an engine intake system.

従来、エンジンの吸気装置としては、少なくとも燃焼室
近傍において独立した低負荷用吸気通路と高負荷用吸気
通路とを備え、その高負荷用吸気通路に設定負荷以上で
開作動する開閉弁を備えて、吸入空気量の少ない低負荷
時には低負荷用吸気通路からのみ空気を供給して、その
流速を早めて、スワールを強化し、燃料の霧化、気化を
促進して、燃焼性能、燃費性能、運転性を向上させる一
方、吸入空気量の多い高負荷時には低負荷用吸気通路お
よび高負荷用吸気通路から空気を供給するようにして、
充填効率、出力性能を向上させるようにしたものが提案
されている(実開昭54−61118号)。
Conventionally, an engine intake system has been equipped with an independent low-load intake passage and a high-load intake passage at least near the combustion chamber, and the high-load intake passage is equipped with an on-off valve that opens and closes when the load exceeds a set load. , At low loads when the amount of intake air is small, air is supplied only from the low-load intake passages, increasing the flow velocity, strengthening swirl, and promoting fuel atomization and vaporization, improving combustion performance, fuel efficiency, and While improving drivability, during high loads with a large amount of intake air, air is supplied from the low load intake passage and the high load intake passage.
A device with improved filling efficiency and output performance has been proposed (Utility Model Application No. 54-61118).

ところで、燃料の霧化・気化の良否は、エンジンの温度
に依存し、エンジン温度が高(なると、燃料は霧化、気
化しやすくなり、エンジン温度が低くなると、燃料は霧
化、気化しにくくなる。
By the way, the quality of atomization and vaporization of fuel depends on the temperature of the engine; when the engine temperature is high, the fuel is more likely to atomize and vaporize, and when the engine temperature is low, the fuel is difficult to atomize and vaporize. Become.

したがって、エンジン温度が低いときには、エンジン温
度が高いときに比べて、開閉弁を開き始めるべき設定負
荷をエンジン温度の低下に応じて大きくして、開閉弁を
閉じている領域を大きくしたり、あるいは開閉弁の開度
を小さくするように補正制御して、低負荷用吸気ポート
の分担比率を増大させて、吸入空気の流速を早め、燃料
の霧化、気化を良好にする必要がある。
Therefore, when the engine temperature is low, compared to when the engine temperature is high, the set load at which the on-off valve should start to open is increased in accordance with the decrease in engine temperature, and the area where the on-off valve is closed is increased, or It is necessary to perform correction control to reduce the opening degree of the on-off valve, increase the sharing ratio of the low-load intake port, increase the flow velocity of the intake air, and improve the atomization and vaporization of the fuel.

しかるに、上記従来のエンジンの吸気装置は、エンジン
の温度如何に拘らず、上記開閉弁を負荷のみに応じて開
閉制御しているために、エンジンの低温時に燃料の霧化
性、気化性が悪くなり、特に、開閉弁が開き始めて吸入
空気量が増大する低負荷から中負荷への移行領域におい
て、エンジンの霧化性、気化性が悪(なって、燃焼性、
運転性および燃費性能が悪化するという欠点がある。
However, in the conventional engine intake system, the opening/closing valve is controlled to open and close only according to the load, regardless of the engine temperature, so that the atomization and vaporization of the fuel are poor when the engine is low temperature. In particular, in the transition region from low to medium load where the on-off valve begins to open and the amount of intake air increases, the atomization and vaporization properties of the engine are poor (and the combustibility and
This has the disadvantage that drivability and fuel efficiency deteriorate.

そこで、この発明の目的は、開閉弁の開き始めの時期や
開度をエンジン温度に応じて補正制御することにより、
燃料の霧化、気化を良好にして、燃焼性能を改善して、
トルク変動をなくし、運転性を向上させ、かつ、混合気
を薄くすることを可能にして、燃費性能を向上し得るエ
ンジンの吸気装置を新規に提供することにある。
Therefore, an object of the present invention is to correct and control the opening timing and opening degree of the on-off valve according to the engine temperature.
Improves fuel atomization and vaporization, improves combustion performance,
An object of the present invention is to provide a new intake device for an engine that can improve fuel efficiency by eliminating torque fluctuations, improving drivability, and making it possible to make the air-fuel mixture leaner.

このため、この発明のエンジンの吸気装置は、高負荷用
吸気通路に設けられて設定負荷以上で開作動する開閉弁
を制御する制御装置に、エンジン温度を検出する温度セ
ンサの出力を入力して、上記制御装置からの出力によっ
て上記開閉弁をエンジン温度の低下に応じて閉方向に補
正制御することにより、エンジン温度の低下に応じて、
低負荷用吸気通路の分担比率を高め、特に、低負荷から
中負荷への領域、中負荷から高負荷への領域において低
負荷用吸気通路の分担比率を高めて、空気の流速を早め
、スワールを強化して、燃料の霧化、気化を促進し、燃
焼性能を向上させて、運転性を向上し得、さらに燃費性
能を向上し得るようにしたことを特徴としている。
Therefore, in the engine intake system of the present invention, the output of the temperature sensor that detects the engine temperature is input to the control device that controls the on-off valve that is provided in the high-load intake passage and opens and closes when the load exceeds a set load. , by correcting and controlling the opening/closing valve in the closing direction according to the decrease in engine temperature using the output from the control device, so that according to the decrease in engine temperature,
Increasing the sharing ratio of the low-load intake passage, especially in the range from low to medium load and from medium to high load, increases the air flow velocity and improves swirl. It is characterized by enhancing fuel atomization and vaporization, improving combustion performance, improving drivability, and further improving fuel efficiency.

以下、この発明を図示の実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図において、1はシリンダ、2はシリンダヘッド、
3はピストン、4は燃焼室、5は吸気通路、6は吸気通
路5の上流部に形成したベンチュリ部、γはベンチュリ
部6に設げたメインノズル、8はベンチュリ部6の下流
に設けたスロットルバルブ、11は上記吸気通路5を燃
焼室4の近傍において低負荷用吸気通路12と高負荷用
吸気通路13とに仕切る仕切り壁、14は上記高負荷用
吸気通路13の上流端部において回動軸15に固定され
、高負荷用吸気通路13を開閉する開閉弁、16は上記
吸気通路5の燃焼室4への開口部を開閉して低負荷用吸
気通路12および高負荷用吸気通路13を共に開閉する
吸気弁、17は排気通路、18は排気弁である。
In Fig. 1, 1 is a cylinder, 2 is a cylinder head,
3 is a piston, 4 is a combustion chamber, 5 is an intake passage, 6 is a venturi part formed upstream of the intake passage 5, γ is a main nozzle provided in the venturi part 6, and 8 is a throttle provided downstream of the venturi part 6. A valve 11 is a partition wall that partitions the intake passage 5 into a low-load intake passage 12 and a high-load intake passage 13 in the vicinity of the combustion chamber 4, and 14 is a rotating valve at the upstream end of the high-load intake passage 13. An on-off valve 16 is fixed to the shaft 15 and opens and closes the high-load intake passage 13. The on-off valve 16 opens and closes the opening of the intake passage 5 to the combustion chamber 4 to open the low-load intake passage 12 and the high-load intake passage 13. Intake valves open and close together, 17 is an exhaust passage, and 18 is an exhaust valve.

また、21は上記開閉弁14を作動させるアクチュエー
タ、22は排気通路17の排気圧力を検出する排圧セン
サー、23はシリンダ1に形成したウォータジャケット
24内に突出して冷却水温を検出する温度センサー、2
5は排圧センサー22と温度センサー23との出力を受
けてアクチュエータ21を後記するように制御する制御
装置である。
Further, 21 is an actuator that operates the on-off valve 14, 22 is an exhaust pressure sensor that detects the exhaust pressure of the exhaust passage 17, 23 is a temperature sensor that protrudes into the water jacket 24 formed in the cylinder 1 and detects the cooling water temperature. 2
Reference numeral 5 denotes a control device that receives outputs from the exhaust pressure sensor 22 and temperature sensor 23 and controls the actuator 21 as described later.

上記アクチュエータ21はダイヤフラム装置27と電磁
弁28とからなる。
The actuator 21 includes a diaphragm device 27 and a solenoid valve 28.

上記ダイヤフラム装置はケーシング31内をダイヤフラ
ム32で大気室33と負圧室34とに区画し、上記ダイ
ヤフラム32に一端を固定した作動ロッド35を大気室
33を貫通させてケーシング31から突出させる一方、
負圧室34にバネ36を縮装して、上記作動ロッド35
を負圧室34の負圧に応じてケーシング31から出没さ
せるようにしている。
The diaphragm device divides the interior of the casing 31 into an atmospheric chamber 33 and a negative pressure chamber 34 by a diaphragm 32, and an actuating rod 35 having one end fixed to the diaphragm 32 penetrates the atmospheric chamber 33 and projects from the casing 31.
A spring 36 is compressed in the negative pressure chamber 34, and the above-mentioned operating rod 35
is made to appear and disappear from the casing 31 according to the negative pressure in the negative pressure chamber 34.

上記作動ロッド35の先端は、ピン38、レバー39を
介して上記開閉弁140回動軸15に連結して、作動ロ
ッド35の出没により、開閉弁14を開閉し得るように
している。
The tip of the operating rod 35 is connected to the rotating shaft 15 of the on-off valve 140 via a pin 38 and a lever 39, so that the on-off valve 14 can be opened and closed by moving the operating rod 35 in and out.

また上記ダイヤフラム装置27の負圧室34は、通路4
1を介してスロットルバルブ8下流の吸気通路5に連通
させている。
Further, the negative pressure chamber 34 of the diaphragm device 27 is connected to the passage 4
1 to the intake passage 5 downstream of the throttle valve 8.

上記通路41の中間からは、電磁弁28の弁体43に対
向する先端開口44を有する分岐通路45を分岐させて
いる。
A branch passage 45 having a tip opening 44 facing the valve body 43 of the electromagnetic valve 28 is branched from the middle of the passage 41 .

上記電磁弁28は制御装置25からの信号で弁体43を
作動させて、その弁体43と開口44との間の開度を制
御し、上記負圧室34の負圧を制御するようになってい
る。
The solenoid valve 28 operates the valve body 43 in response to a signal from the control device 25 to control the opening between the valve body 43 and the opening 44, thereby controlling the negative pressure in the negative pressure chamber 34. It has become.

なお、上記分岐通路45の中間には絞り46を設けて、
負圧室34の負圧の制御を安定させている。
In addition, a throttle 46 is provided in the middle of the branch passage 45,
Control of the negative pressure in the negative pressure chamber 34 is stabilized.

一方、上記制御装置25は、第2図に示すように、演算
増巾器51、補正回路52およびエミッタフォロア回路
53を備える。
On the other hand, the control device 25 includes an operational amplifier 51, a correction circuit 52, and an emitter follower circuit 53, as shown in FIG.

上記演算増巾器51の非反転入力端子には、排圧センサ
ー22からの信号を入力する一方、その演算増巾器51
0反転入力端子には、陰極をアースした電池55の陽極
を抵抗R1を介して接続すると共に、その演算増巾器5
1の出力端子を帰還抵抗R2を介して接続している。
A signal from the exhaust pressure sensor 22 is input to the non-inverting input terminal of the operational amplifier 51, while the operational amplifier 51
The anode of a battery 55 whose cathode is grounded is connected to the 0 inversion input terminal via a resistor R1, and the operational amplifier 5
1 output terminal is connected via a feedback resistor R2.

このため、演算増巾器51は、排圧センサー22から第
3図中曲線りで示すような排圧に応じてレベルが高くな
る信号が入力されると、第4図中曲線Mに示すような信
号を増巾して出力する。
Therefore, when a signal whose level increases according to the exhaust pressure as shown by the curved line in FIG. 3 is input from the exhaust pressure sensor 22, the operational amplifier 51 operates as shown by the curve M in FIG. 4. Amplifies and outputs the signal.

上記曲線Mで示す出力信号は排圧P1から立上って、曲
線M1に示すようにリニアに増太し、排圧P2になると
、曲線M2で示すように横軸と平行な値となる。
The output signal shown by the curve M rises from the exhaust pressure P1, increases linearly as shown by the curve M1, and when the exhaust pressure reaches P2, becomes a value parallel to the horizontal axis as shown by the curve M2.

上記排圧P1 つまり曲線Mの立上る点P1は電池55
の電位と抵抗R2,R1のR2/R1により定まるもの
であり、また曲線M2は演算増巾器51のの電源電圧と
なる飽和領域を示すものである。
The above exhaust pressure P1, that is, the rising point P1 of the curve M is the battery 55
It is determined by the potential of R2 and R2/R1 of the resistors R2 and R1, and the curve M2 shows the saturation region where the power supply voltage of the operational amplifier 51 becomes.

一方、上記補正回路52は、図示しないが関数発生器と
演算回路からなり、上記関数発生器は水温センサー23
から入力される温度に応じて第5図中曲線Nに示すよう
な係数Nを発生させ、上記演算回路は上記係数Nと上記
演算増巾器52から入力される信号Mとに乗算等の演算
処理を行なって信号を作成して、エミッタフォロア回路
53に出力する。
On the other hand, the correction circuit 52 includes a function generator and an arithmetic circuit (not shown), and the function generator is connected to the water temperature sensor 23.
The arithmetic circuit generates a coefficient N as shown by the curve N in FIG. Processing is performed to create a signal, which is output to the emitter follower circuit 53.

上記関数発生器の作成する係数Nは、第5図に示すよう
に、温度センサー23で検出した温度が0℃以下の場合
には零となり、0°〜60℃の間においてリニアに増大
し、60℃以上になると一定値1になる。
As shown in FIG. 5, the coefficient N created by the function generator becomes zero when the temperature detected by the temperature sensor 23 is 0°C or less, and increases linearly between 0°C and 60°C. When the temperature exceeds 60°C, it becomes a constant value of 1.

したがって、温度センサー23の検出した温度が、たと
えば30℃である場合には、上記係数Nは0.5となっ
て、補正回路52から出力される信号■のレベルは演算
増巾器51の出力信号Mのレベルの半分となる。
Therefore, when the temperature detected by the temperature sensor 23 is, for example, 30° C., the coefficient N is 0.5, and the level of the signal (2) output from the correction circuit 52 is the output of the operational amplifier 51. This is half the level of signal M.

一方、上記エミッタフォロア回路53は、トランジスタ
61と抵抗62を備え、上記トランジスタ610ベース
に補正回路52の出力を入力し、上記トランジスタ61
のコレクタに電源Vcc を接続し、そのエミッタとア
ースとの間に上記抵抗62を接続し、さらに上記エミッ
タに電磁弁28を接続している。
On the other hand, the emitter follower circuit 53 includes a transistor 61 and a resistor 62, and inputs the output of the correction circuit 52 to the base of the transistor 610.
A power supply Vcc is connected to the collector of the power source Vcc, the resistor 62 is connected between the emitter and ground, and the solenoid valve 28 is further connected to the emitter.

したがって、上記電磁弁28はトランジスタ610ベー
ス電位に追随するそのエミッタ電位に応じて作動する。
Thus, the solenoid valve 28 operates according to its emitter potential which follows the transistor 610 base potential.

上記電磁弁28は入力がハイレベルになるほど、第1図
に示す弁体43を分岐通路45の開口部44に接近させ
て、開口部44を絞るように動作するようになってい、
る。
The solenoid valve 28 operates so that the higher the input level, the closer the valve body 43 shown in FIG. 1 is to the opening 44 of the branch passage 45 to narrow the opening 44.
Ru.

したがって、上記電磁弁28の入力が高(なるにつれて
、ダイヤフラム装置27の負圧室34の負圧が大きくな
って、ダイヤフラム32の作動で作動ロッド35が没入
して、開閉弁14が開くようになっている。
Therefore, as the input to the solenoid valve 28 becomes high, the negative pressure in the negative pressure chamber 34 of the diaphragm device 27 increases, and the operation rod 35 is retracted by the operation of the diaphragm 32, so that the on-off valve 14 opens. It has become.

上記構成のエンジンの吸気装置は次のように動作する。The intake system of the engine configured as described above operates as follows.

いま、エンジンの温度が高くて、温度センサー23の検
出する温度が60℃以上の状態であるとする。
Assume that the engine temperature is now high and the temperature detected by the temperature sensor 23 is 60° C. or higher.

このとき、制御装置25の補正回路52の関数発生器は
温度センサー23の出力に基づいて、第5図に示すよう
に、係数1を発生する。
At this time, the function generator of the correction circuit 52 of the control device 25 generates a coefficient 1 based on the output of the temperature sensor 23, as shown in FIG.

一方、制御装置25の演算増巾器51は、負荷に対応す
る排圧センサー22の出力しに基づいて、第4図に示す
ような排圧に応じた信号Mを作成して出力する。
On the other hand, the arithmetic amplifier 51 of the control device 25 creates and outputs a signal M corresponding to the exhaust pressure as shown in FIG. 4 based on the output of the exhaust pressure sensor 22 corresponding to the load.

上記補正回路52の演算回路は、上記演算増巾器51の
出力信号Mに上記係数1を乗算して、上記出力信号Mを
そのままトランジスタ610ベースに出力する。
The arithmetic circuit of the correction circuit 52 multiplies the output signal M of the arithmetic amplifier 51 by the coefficient 1, and outputs the output signal M as it is to the base of the transistor 610.

このため、電磁弁28は上記出力信号Mにより駆動され
る。
Therefore, the solenoid valve 28 is driven by the output signal M mentioned above.

したがって、第4図に示すように、排圧がPi kg/
cwt以下の低負荷状態の場合には、上記出力信号Mは
零となるため、電磁弁28の弁体43は開口部44から
離間したノーマル位置のままとなって、ダイヤフラム装
置27の負圧室34は開放された開口部44を介して大
気に連通して負圧が小さくなって、作動ロッド35はバ
ネ36のバネ力により突出して開閉弁14は閉鎖される
Therefore, as shown in Fig. 4, the exhaust pressure is Pi kg/
In the case of a low load state of less than cwt, the output signal M becomes zero, so the valve body 43 of the solenoid valve 28 remains in its normal position away from the opening 44, and the negative pressure chamber of the diaphragm device 27 34 is communicated with the atmosphere through the open opening 44, the negative pressure is reduced, the actuating rod 35 is protruded by the spring force of the spring 36, and the on-off valve 14 is closed.

このため、混合気は低負荷用吸気通路12のみを通って
高速で燃焼室4に供給され、強いスワールが生成され、
燃料の霧化、気化が良くなり、燃焼性能、運転性、燃費
性能が良くなる。
Therefore, the air-fuel mixture is supplied to the combustion chamber 4 at high speed through only the low-load intake passage 12, and a strong swirl is generated.
Improves fuel atomization and vaporization, improving combustion performance, drivability, and fuel efficiency.

次いで、排圧が第4図中P1からP2に9/ctAO中
負荷状態の場合には、第4図中曲線M1 に示すように
電磁弁28へ入力される信号M1のレベルは排圧の上昇
に応じて高くなり、電磁弁28の弁体43は排圧に応じ
て開口部44に接近して、その開口部44を絞る。
Next, when the exhaust pressure changes from P1 to P2 in FIG. 4 in a 9/ctAO medium load state, the level of the signal M1 input to the solenoid valve 28 increases as the exhaust pressure increases, as shown by curve M1 in FIG. The valve body 43 of the solenoid valve 28 approaches the opening 44 and narrows the opening 44 according to the exhaust pressure.

そして、ダイヤフラム装置27の負圧室34は上記開口
部44の開度が小さくなるほど、負圧が大きくなって、
作動ロッド35をケーシング31内へ没入させる。
The negative pressure in the negative pressure chamber 34 of the diaphragm device 27 becomes larger as the opening degree of the opening 44 becomes smaller.
The actuating rod 35 is recessed into the casing 31.

したがって、上記開閉弁14は上記信号M1によって、
排圧が高くなるほど開度を大きくするように作動させら
れ、低負荷用吸気通路12に加えて、高負荷用吸気通路
13からも混合気が燃焼室4に供給される。
Therefore, the on-off valve 14 is activated by the signal M1.
The higher the exhaust pressure is, the larger the opening is operated, and the air-fuel mixture is supplied to the combustion chamber 4 from the high load intake passage 13 in addition to the low load intake passage 12.

したがって、燃料の霧化、気化が良好な上に、吸気抵抗
が小さくて、充填効率、出力性能が向上する。
Therefore, not only is the fuel atomized and vaporized well, but the intake resistance is small, and the filling efficiency and output performance are improved.

次いで、排圧が第4図に示すP 2 kg/crjJJ
上の場合には、電磁弁28に入力される信号M2はハイ
レベルの一定値となって、電磁弁28の弁体43は開口
部44に密着してそれを閉鎖する。
Then, the exhaust pressure is P 2 kg/crjJJ shown in FIG.
In the above case, the signal M2 input to the solenoid valve 28 has a constant high level value, and the valve body 43 of the solenoid valve 28 comes into close contact with the opening 44 to close it.

このためダイヤフラム装置27の負圧室34の負圧は吸
気通路5の負圧に等しくなって、作動ロッド35はダイ
ヤフラム32の作動に没入して、開閉弁14を全開にす
る。
Therefore, the negative pressure in the negative pressure chamber 34 of the diaphragm device 27 becomes equal to the negative pressure in the intake passage 5, and the operating rod 35 is immersed in the operation of the diaphragm 32 to fully open the on-off valve 14.

したがって、この高負荷時には、低負荷用吸気通路12
と完全に開放された高負荷用吸気通路13とによって、
混合気が燃焼室4に供給されるため、充填効率が向上し
、出力性能が向上する。
Therefore, at this high load, the low load intake passage 12
and the fully opened high-load intake passage 13,
Since the air-fuel mixture is supplied to the combustion chamber 4, charging efficiency is improved and output performance is improved.

次に、エンジンの温度が上述の場合より低(て燃料の霧
化性、気化性が悪い状態で、温度センサー23の検出温
度が0℃から60℃の間であるとする。
Next, assume that the temperature of the engine is lower than in the above case (and the atomization and vaporization properties of the fuel are poor), and the temperature detected by the temperature sensor 23 is between 0°C and 60°C.

このとき、制御装置25の補正回路52の関数発生器は
、第5図に示すように1以下で検出温度の低下につれて
リニアに小さくなる係数N1 を発生する。
At this time, the function generator of the correction circuit 52 of the control device 25 generates a coefficient N1 which is less than 1 and decreases linearly as the detected temperature decreases, as shown in FIG.

そして、上記補正回路52の演算回路は、上記係数N1
と演算増巾器51から出力される第4図中曲線Mに示
す信号とを乗算して、たとえば第4図中の曲線Vで示す
ようなレベルを有する信号Vを作成して、トランジスタ
610ベースニ出力する。
Then, the arithmetic circuit of the correction circuit 52 calculates the coefficient N1.
A signal V having a level as shown by curve V in FIG. 4, for example, is created by multiplying the signal output from the operational amplifier 51 by the signal shown by curve M in FIG. Output.

このため、電磁弁28は、前述の検出温度が60℃以上
の場合の信号Mよりもローレベルの信号Vにより駆動さ
れる。
Therefore, the solenoid valve 28 is driven by the signal V, which is lower in level than the signal M when the detected temperature is 60° C. or higher.

この信号■のレベルは、上記係数N1 がエンジン温度
の低下に応じて小さくなるために、エンジンの低下に応
じて低くなって、上記開閉弁14を下記の如(エンジン
温度の低下に応じて閉方向に補正制御する。
Since the coefficient N1 decreases as the engine temperature decreases, the level of the signal (■) decreases as the engine temperature decreases, and the on-off valve 14 is closed as described below (as the engine temperature decreases). Correction control is performed in the direction.

すなわち、第4図中曲線■で示すように、排圧がPlに
9/crrt以下の低負荷状態の場合には、上記信号V
は零レベルとなるため、電磁弁28は前述の検出温度6
0℃以上の場合と同様に、ノーマル位置に位置して、開
口部44を全開にし、ダイヤフラム装置27の作動ロッ
ド35を突出させて、開閉弁14を閉鎖する。
That is, as shown by the curve ■ in FIG.
is at zero level, so the solenoid valve 28 detects the above-mentioned detected temperature 6
As in the case where the temperature is 0° C. or higher, it is located at the normal position, the opening 44 is fully opened, the operating rod 35 of the diaphragm device 27 is protruded, and the on-off valve 14 is closed.

このため、このとき混合気は低負荷用吸気通路12のみ
を高速で燃焼室4に供給され、強いスワールが生成され
、燃料の霧化、気化が良くなり、燃焼性能、運転性、燃
費性能が良(なる。
Therefore, at this time, the air-fuel mixture is supplied to the combustion chamber 4 only through the low-load intake passage 12 at high speed, generating a strong swirl, improving fuel atomization and vaporization, and improving combustion performance, drivability, and fuel efficiency. Good (naru)

次いで、排圧が第4図中P1 からP2の中負荷状態の
場合には、第4図中曲線V1に示すように、電磁弁28
へ入力される信号V1のレベルは排圧の上昇に応じてリ
ニアに高くなるが、前述の信号M□のレベルよりも低く
なるために、電磁弁28の弁体43は開口部44に接近
して、その開口部44を前述の検出温度60℃以上の場
合よりも、より絞る。
Next, when the exhaust pressure is in a medium load state from P1 to P2 in FIG. 4, the solenoid valve 28
Although the level of the signal V1 input to the solenoid valve 28 increases linearly as the exhaust pressure increases, it becomes lower than the level of the signal M□, so the valve body 43 of the solenoid valve 28 approaches the opening 44. Therefore, the opening 44 is narrowed down more than in the case where the detected temperature is 60° C. or more.

このため、ダイヤフラム装置27の負圧室34の負圧は
前述の場合よりも大きくなって作動ロッド35は前述の
60℃以上の場合よりもケーシング31内に没入させら
れる。
Therefore, the negative pressure in the negative pressure chamber 34 of the diaphragm device 27 becomes greater than in the case described above, and the actuating rod 35 is recessed into the casing 31 more than in the case of 60° C. or more as described above.

したがって、温度センサー23の検出温度が0℃から6
0℃未満の場合には、上記開閉弁14の開度は検出温度
が60℃以上の場合よりも小さくなり、しかし検出温度
の低下に応じて小さくなって、高負荷用吸気通路13が
絞られ、低負荷用吸気通路12を通る混合気の流速が早
められ、スワールが強化され、燃料の霧化、気化がよ(
なる。
Therefore, the temperature detected by the temperature sensor 23 ranges from 0°C to 6°C.
When the temperature is below 0°C, the opening degree of the on-off valve 14 is smaller than when the detected temperature is 60°C or higher, but it becomes smaller as the detected temperature decreases, and the high-load intake passage 13 is throttled. , the flow velocity of the air-fuel mixture passing through the low-load intake passage 12 is accelerated, the swirl is strengthened, and fuel atomization and vaporization are improved (
Become.

つまり、中負荷時にエンジンの温度の低下に基づく燃料
の霧化性、気化性の悪化に対する補償が行なわれる。
In other words, compensation is made for deterioration in fuel atomization and vaporization due to a drop in engine temperature during medium load conditions.

次いで、排圧が第4図に示すP2kg/cr7L以上の
高負荷状態の場合には、電磁弁28に入力される信号V
2のレベルは、係数N1により、前述の60℃以上の場
合の信号M2のレベルよりも低くなる。
Next, when the exhaust pressure is in a high load state of P2 kg/cr7L or more shown in FIG. 4, the signal V input to the solenoid valve 28 is
Due to the coefficient N1, the level of signal M2 is lower than the level of signal M2 when the temperature is 60° C. or higher.

このため、電磁弁28の弁体43は開口部44を一定量
絞り、ダイヤフラム装置27の作動ロッド35はダイヤ
フラム32の作動で一定量ケーシング31内に没入させ
られ、開閉弁14は一定開度に絞られる。
Therefore, the valve body 43 of the solenoid valve 28 narrows the opening 44 by a certain amount, the operating rod 35 of the diaphragm device 27 is immersed into the casing 31 by a certain amount by the operation of the diaphragm 32, and the on-off valve 14 is kept at a certain opening degree. narrowed down.

したがって、排圧がP2kg/CrA以上である高負荷
状態であっても、温度センサー23の検出温度が60℃
未満の場合には、上記のように高負荷用吸気通路13が
開閉弁14で絞られるため、低負荷用吸気通路12を通
る混合気の流速が早められ、スワールが強化され、エン
ジン温度の低下による燃料の霧化性、気化性の悪化に対
する補償が行なわれる。
Therefore, even in a high load state where the exhaust pressure is P2kg/CrA or more, the temperature detected by the temperature sensor 23 is 60°C.
If it is below, the high-load intake passage 13 is throttled by the on-off valve 14 as described above, so the flow velocity of the air-fuel mixture passing through the low-load intake passage 12 is accelerated, the swirl is strengthened, and the engine temperature is lowered. Compensation is made for the deterioration in fuel atomization and vaporization caused by this.

次に、エンジンの温度が極く低くて、温度センサー23
の検出温度が0℃以下であるとする。
Next, if the engine temperature is extremely low, the temperature sensor 23
It is assumed that the detected temperature is 0°C or lower.

このときは、第5図に示すように、補正回路52の関数
発生器の発生する係数Nは零となって、補正回路52の
出力信号のレベルは常時零レベルとなり、電磁弁28の
弁体43はノーマル位置に位置して開口部44を常時、
完全に開放する。
At this time, as shown in FIG. 43 is located in the normal position and the opening 44 is always open.
completely open.

このため、開閉弁14はダイヤフラム装置27により常
時、完全に閉鎖される。
Therefore, the on-off valve 14 is always completely closed by the diaphragm device 27.

したがって、低負荷用吸気通路12を通る混合気の流速
が早められて、スワールが強化され、エンジン温度が極
く低いためによる燃料の霧化性および気化性の悪さが補
償される。
Therefore, the flow velocity of the air-fuel mixture passing through the low-load intake passage 12 is increased, the swirl is strengthened, and the poor atomization and vaporization properties of the fuel due to the extremely low engine temperature are compensated for.

このように、中負荷から高負荷の領域においてエンジン
温度の低下に応じて開閉弁14を閉方向に補正制御して
いるので、燃料の霧化、気化が良くなり、燃焼性が改善
される。
In this way, since the on-off valve 14 is corrected and controlled in the closing direction in accordance with the decrease in engine temperature in the medium to high load range, fuel atomization and vaporization are improved and combustibility is improved.

上記実施例では、エンジンの低下に応じて開閉弁を閉方
向に補正制御し、開閉弁の負荷に応じて開き始める時期
はエンジン温度が低下しても変化させないようにしてい
るが、開閉弁の開き始めるべき負荷をエンジン温度の低
下に応じて高くするようにしてもよい。
In the above embodiment, the on-off valve is corrected and controlled in the closing direction according to the engine temperature drop, and the timing at which the on-off valve begins to open according to the load on the on-off valve does not change even if the engine temperature drops. The load at which opening should begin may be increased in accordance with the decrease in engine temperature.

また、上記実施例では、負荷を排圧により検出したが、
ベンチュリ負圧、スロットル開度、エアフローセンサー
等により検出してもよい。
In addition, in the above embodiment, the load was detected by exhaust pressure, but
It may be detected by venturi negative pressure, throttle opening, air flow sensor, etc.

また、上記実施例ではアクチュエータは吸気通路の負圧
を利用して作動させるようにしているが、排圧を利用し
て作動させるようにしてもよい。
Further, in the above embodiment, the actuator is operated using the negative pressure in the intake passage, but it may be operated using exhaust pressure.

また、制御装置は上記実施例に限るものではなく、種々
の構成が可能なもので、ディジタル回路、アナログ回路
、機械的装置を問わない。
Further, the control device is not limited to the above embodiment, and various configurations are possible, and the control device may be a digital circuit, an analog circuit, or a mechanical device.

以上の説明で明らかなように、この発明のエンジンの吸
気装置は、高負荷用吸気通路に設定負荷以上で開作動す
る開閉弁を備えると共に、エンジン温度を検出する温度
センサーの出力を受けてエンジン温度の低下に応じて上
記開閉弁を閉方向に補正制御する制御装置を備えている
ので、エンジンの低温時に、高負荷用吸気通路を開閉弁
で閉鎖あるいは絞って、低負荷用吸気通路の分担比率を
高めて、空気の流速を早めて、スワールを強化でき、し
たがって、燃料の霧化、気化を促進できて燃焼性を向上
でき、運転性を向上でき、さらに燃費性能を向上できる
As is clear from the above description, the engine intake system of the present invention includes an on-off valve in the high-load intake passage that opens and closes when the load is higher than a set load, and receives the output of a temperature sensor that detects the engine temperature to Equipped with a control device that corrects and controls the on-off valve in the closing direction according to a drop in temperature, so when the engine is at low temperature, the high-load intake passage is closed or throttled by the on-off valve, and the low-load intake passage is shared. By increasing the ratio, the air flow velocity can be increased, and the swirl can be strengthened. Therefore, fuel atomization and vaporization can be promoted, combustibility can be improved, drivability can be improved, and fuel efficiency can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の断面図、第2図は制御装
置の回路図、第3,4図は夫々排圧−出力特性を示す各
グラフ、第5図は温度−係数特性を示すグラフである。 4・・・・・・燃焼室、12・・・・・・低負荷用吸気
通路、13・・・・・・高負荷用吸気通路、14・・・
・・・開閉弁、23・・・・・・温度センサー、25・
・・・・・制御装置。
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a circuit diagram of a control device, Figs. 3 and 4 are graphs showing exhaust pressure-output characteristics, and Fig. 5 shows temperature-coefficient characteristics. This is a graph showing. 4...Combustion chamber, 12...Intake passage for low load, 13...Intake passage for high load, 14...
...Opening/closing valve, 23...Temperature sensor, 25.
·····Control device.

Claims (1)

【特許請求の範囲】 1 少なくとも燃焼室近傍において独立した低負荷用吸
気通路と高負荷用吸気通路とを備え、該高負荷用吸気通
路に設定負荷以上で開作動する開閉弁を設け、吸入空気
量の少ない低負荷時には低負荷用吸気通路から吸入空気
を供給する一方、吸入空気量の多い高負荷時には低負荷
用吸気通路および高負荷用吸気通路から空気を供給する
ようにしたエンジンにおいて、 エンジン温度を検出する温度センサーと、該温度センサ
ーの出力を受け、エンジン温度の低下に応じて上記開閉
弁を閉方向に補正制御する制御装置とを設けたことを特
徴とするエンジンの吸気装置。
[Scope of Claims] 1. At least in the vicinity of the combustion chamber, an independent low-load intake passage and a high-load intake passage are provided, and the high-load intake passage is provided with an on-off valve that opens and closes when the load exceeds a set load. In an engine in which intake air is supplied from the low-load intake passage when the amount of intake air is small at low loads, and air is supplied from the low-load intake passage and the high-load intake passage during high loads when the intake air amount is large, the engine An intake system for an engine, comprising: a temperature sensor that detects temperature; and a control device that receives the output of the temperature sensor and corrects and controls the opening/closing valve in the closing direction in accordance with a decrease in engine temperature.
JP57077274A 1982-05-07 1982-05-07 engine intake system Expired JPS5938416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077274A JPS5938416B2 (en) 1982-05-07 1982-05-07 engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077274A JPS5938416B2 (en) 1982-05-07 1982-05-07 engine intake system

Publications (2)

Publication Number Publication Date
JPS58195012A JPS58195012A (en) 1983-11-14
JPS5938416B2 true JPS5938416B2 (en) 1984-09-17

Family

ID=13629273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077274A Expired JPS5938416B2 (en) 1982-05-07 1982-05-07 engine intake system

Country Status (1)

Country Link
JP (1) JPS5938416B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392903A (en) * 1986-10-07 1988-04-23 Matsushita Electric Ind Co Ltd Optical fiber cable
JPS63180804U (en) * 1987-05-14 1988-11-22
KR20200010256A (en) * 2017-04-20 2020-01-30 실텍트라 게엠베하 How to Produce Wafers with Corrected Lines in Defined Directions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151037U (en) * 1985-03-11 1986-09-18

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392903A (en) * 1986-10-07 1988-04-23 Matsushita Electric Ind Co Ltd Optical fiber cable
JPS63180804U (en) * 1987-05-14 1988-11-22
KR20200010256A (en) * 2017-04-20 2020-01-30 실텍트라 게엠베하 How to Produce Wafers with Corrected Lines in Defined Directions

Also Published As

Publication number Publication date
JPS58195012A (en) 1983-11-14

Similar Documents

Publication Publication Date Title
US4177777A (en) Exhaust gas recirculation control system
US6035640A (en) Control method for turbocharged diesel engines having exhaust gas recirculation
US4164206A (en) Closed loop programmable EGR with coolant temperature sensitivity
US4224912A (en) Exhaust gas recirculation system with an auxiliary valve
US9151219B2 (en) Methods and systems for surge control
JP3733281B2 (en) Supercharging pressure control device and supercharging pressure control method for internal combustion engine
US5381775A (en) System for controlling an internal combustion engine
JPH04318264A (en) Fuel control method in hydrogen engine
US4387694A (en) EGR Control system for diesel engine
JPS61169620A (en) Intake controller for internal-combustion engine
JPS6118659B2 (en)
JPS6124542B2 (en)
JPH0433381Y2 (en)
JPS5865946A (en) Intake device for internal-combustion engine
JPS5938416B2 (en) engine intake system
US4404941A (en) Electronic controlled carburetor
US4364357A (en) Air-fuel ratio control system
EP0137274A1 (en) Double carburetor
JPS6151137B2 (en)
JPS5960032A (en) Intake apparatus for engine
JPS6157455B2 (en)
JP3055378B2 (en) Control device for internal combustion engine
JPH08210195A (en) Exhaust rotary flow control device of diesel engine
US4479478A (en) Device for controlling the recirculation of exhaust gases in internal combustion engines
JPS6341622A (en) Superchargning quantity controlling method for internal combustion engine