JPS5937704B2 - Manufacturing method for continuous casting molds - Google Patents

Manufacturing method for continuous casting molds

Info

Publication number
JPS5937704B2
JPS5937704B2 JP7472180A JP7472180A JPS5937704B2 JP S5937704 B2 JPS5937704 B2 JP S5937704B2 JP 7472180 A JP7472180 A JP 7472180A JP 7472180 A JP7472180 A JP 7472180A JP S5937704 B2 JPS5937704 B2 JP S5937704B2
Authority
JP
Japan
Prior art keywords
anode
main
mold
main body
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7472180A
Other languages
Japanese (ja)
Other versions
JPS571543A (en
Inventor
康治 鈴木
豊久 得丸
篤美 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7472180A priority Critical patent/JPS5937704B2/en
Publication of JPS571543A publication Critical patent/JPS571543A/en
Publication of JPS5937704B2 publication Critical patent/JPS5937704B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 この発明はブルームタイプの連続鋳造用鋳型の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a bloom type continuous casting mold.

一般にブルームタイプの連続鋳造用鋳型は銅または銅合
金製の二対の鋳型片から断面・矩形状の鋳型本体を組立
て、この本体の内壁面にニッケルなどの金属メッキ層を
形成することによって溶湯ないし凝固殻(こよる鋳型内
壁面の腐触ないし摩損を防ぐようにしている。
In general, bloom type continuous casting molds are made by assembling a rectangular cross-sectional mold body from two pairs of mold pieces made of copper or copper alloy, and forming a metal plating layer of nickel or other metal on the inner wall of this body. This is to prevent corrosion or abrasion of the inner wall surface of the mold due to solidified shells.

従来、金属メッキ層の形成に際し、組立てられた鋳型本
体内に断面矩形状の不溶解性筒状ネットを同軸的に配設
してこのネット内一部tこニッケルの如き粒状の溶解性
陽極を装填し、上記本体内にメッキ液を供給する一方上
記本体を陰極として陰陽両極間に通電する電気メツキ法
が採用されている。
Conventionally, when forming a metal plating layer, an insoluble cylindrical net with a rectangular cross section was placed coaxially within the assembled mold body, and a part of the net was filled with a granular soluble anode such as nickel. An electroplating method is employed in which the main body is loaded and a plating solution is supplied into the main body, while the main body is used as a cathode and current is applied between the negative and positive electrodes.

ところがこの電気メツキ法により形成される金属メッキ
層は鋳型本体内壁面のコーナ一部がコーナ一部以外の平
面部に較べて著るしく薄くなる傾向があった。
However, the metal plating layer formed by this electroplating method tends to be significantly thinner at the corner portions of the wall surface within the mold body than at the flat portions other than the corner portions.

たとえば平面部がLmm程度にされた場合コーナ一部は
約0.3 mm以下の厚みしか得られない。
For example, if the flat portion is approximately L mm thick, the corner portion will only have a thickness of approximately 0.3 mm or less.

このためコーナ一部からの鋳型の腐触ないし摩損がおこ
り鋳型の寿命が短かくなるとともに鋳片にブレークアウ
トが発生するなどの欠陥を招いていた。
As a result, corrosion or abrasion of the mold from a portion of the corner occurs, shortening the life of the mold and causing defects such as breakouts in the slab.

また粒状陽極がニッケルの場合ニッケルメッキ層にピン
ホールないしブツが発生してメッキ層全体の耐腐触性、
耐摩耗性などに劣る問題もあった。
In addition, if the granular anode is nickel, pinholes or bumps may occur in the nickel plating layer, reducing the corrosion resistance of the entire plating layer.
There were also problems with poor wear resistance.

この発明者らは、かかる金属メッキ層の厚み変化が主に
陽極の形状に基づくコーナ一部と平面部とにおける電流
密度の差異に起因し、また粒状ニッケル陽極がメッキ液
によって一部不溶性の酸化物からなるスラッジとなりこ
れがメッキ層に付着してピンホールなどの原因となるも
のであるとの考えのもとに、コーナ一部と平面部とで均
一な電流密度が得られかつメッキ液によってスラッジを
形成することのない陽極を探究することによって、前記
問題を解決するべく鋭意検討した結果、この発明を完成
するに至ったものである。
The inventors discovered that this change in the thickness of the metal plating layer is mainly due to the difference in current density between the corner part and the flat part based on the shape of the anode. Based on the idea that the sludge becomes a sludge made up of materials and adheres to the plating layer and causes pinholes, it is possible to obtain a uniform current density in some corners and flat areas, and to remove the sludge from the plating solution. The present invention was completed as a result of intensive study to solve the above problem by searching for an anode that does not form.

以下この発明法を図面に基づいて説明する。This invention method will be explained below based on the drawings.

第1図において、1は二対の搗型片2(2a、2b)、
3(3a、3b)から組立てられた断面矩形状のブルー
ムタイプの鋳型本体、4はこの本体1内に同軸的に配設
された断面矩形状の筒状ネットからなる不溶解性の主陽
極、5はこの主陽極4と鋳型本体1との間に配設された
鋳型本体1のコーナ一部6に対向する棒状の不溶解性の
補助陽極である。
In FIG. 1, 1 indicates two pairs of hammer-shaped pieces 2 (2a, 2b),
3 (3a, 3b); 4 is an insoluble main anode made of a cylindrical net with a rectangular cross section disposed coaxially within the main body 1; Reference numeral 5 designates a rod-shaped insoluble auxiliary anode that is disposed between the main anode 4 and the mold body 1 and faces a corner portion 6 of the mold body 1.

主陽極4は連結部材7によって連結されたチタン製の筒
状ネット全体に白金メッキが施こされており、また補助
陽極5は第2図に示される如くチタン製の棒状基材8の
コーナ一部6に対向する面9をコーナ一部6のR形状に
応じた形状にするとともにこの面9に均一に白金メッキ
10が施こされている。
The main anode 4 is formed by platinum plating on the entire titanium cylindrical net connected by a connecting member 7, and the auxiliary anode 5 is formed from a corner of a titanium rod-shaped base material 8, as shown in FIG. A surface 9 facing the portion 6 is shaped in accordance with the rounded shape of the corner portion 6, and this surface 9 is uniformly plated with platinum 10.

第2図において、鋳型本体1の下端開口は基台11に支
持された合成樹脂製からなるじょうご状部材12で覆わ
れており、この部材12の下部開口から上記本体1内に
メッキ液が供給される。
In FIG. 2, the lower end opening of the mold body 1 is covered with a funnel-shaped member 12 made of synthetic resin supported by a base 11, and the plating solution is supplied into the body 1 from the lower opening of this member 12. be done.

また上記本体1の上部開口には上記本体1からオーバー
フローするメッキ液を受ける合成樹脂製からなる環状の
とゆ部材13が固定されており、その一部に排出口14
が設けられている。
Further, an annular tow member 13 made of synthetic resin is fixed to the upper opening of the main body 1 to receive the plating solution overflowing from the main body 1, and a discharge port 14 is attached to a part of the annular tow member 13 made of synthetic resin.
is provided.

すなわち、じょうご状部材12、とゆ部材13および鋳
型本体1によってメッキ浴槽15が構成されている。
That is, the funnel-shaped member 12, the funnel member 13, and the mold body 1 constitute a plating bath 15.

このメッキ浴槽15において、主陽極4はその上部がブ
ラケット16を介してとゆ部材13に取りつけられ、下
部を当て部材17によってじょうご状部材12に押し当
てて固定させている。
In this plating bathtub 15, the upper part of the main anode 4 is attached to the bowl member 13 via a bracket 16, and the lower part is pressed against the funnel-shaped member 12 by a backing member 17 to fix it.

また補助陽極5は上記主陽極4と同様の手段で取りつけ
固定されるかまたは主陽極4に電気的に非接続に取りつ
け固定されている。
Further, the auxiliary anode 5 is attached and fixed by the same means as the main anode 4, or is attached and fixed to the main anode 4 without being electrically connected.

18は主陽極4に電気的に接続するリード端子片である
18 is a lead terminal piece electrically connected to the main anode 4.

この構成において、メッキ浴槽15内にじょうご状部材
12の下部開口からメッキ液を供給させるとともに、と
ゆ部材12にオーバーフローさせて排出口14から排出
させ、循環経路19によって新たなメッキ液を補給しな
がら循環させる一方、鋳型本体1を陰極として、この陰
極と主陽極とをリード端子片18を介して電気回路20
で接続して通電し、かつ陰極と補助陽極とを電気回路、
21で接続して通電する。
In this configuration, the plating solution is supplied into the plating bath 15 from the lower opening of the funnel-shaped member 12, and is caused to overflow into the funnel member 12 and discharged from the discharge port 14, and new plating solution is replenished through the circulation path 19. While circulating the mold body 1 as a cathode, this cathode and the main anode are connected to an electric circuit 20 via a lead terminal piece 18.
connect and energize, and connect the cathode and auxiliary anode to an electric circuit,
Connect with 21 and turn on the power.

電気回路20,21において、22.23は電流計、2
4,25は電源である。
In the electric circuits 20 and 21, 22.23 is an ammeter;
4 and 25 are power supplies.

このように、この発明法においては、鋳型本体1内に同
軸的に配設された断面・矩形状の筒状ネットからなる主
陽極4とともに、鋳型本体1のコーナ一部6に対向する
棒状の補助陽極とを設けて、コーナ一部6とコーナ一部
6以外の平面部26とにおける陰極両極間の距離がほぼ
等しくなるかあるいはコーナ一部6において短かくなる
ようにし、かつ陰極と主陽極並びに陰極と補助陽極との
間にそれぞれ独自に通電させるようにしているから、電
気回路20.21の電流容量を調節することによって、
コーナ一部6と平面部26との電流密度が等しくなるよ
うに制御でき、結果さして鋳型本体1の内壁面全体に亘
って均一厚みの金属メッキ層27を形成することができ
る。
As described above, in the method of the present invention, along with the main anode 4 made of a cylindrical net with a rectangular cross section and coaxially disposed inside the mold body 1, a rod-shaped anode facing the corner part 6 of the mold body 1 is used. An auxiliary anode is provided so that the distance between the cathodes at the corner part 6 and the plane part 26 other than the corner part 6 is approximately equal, or is short at the corner part 6, and the distance between the cathode and the main anode is In addition, since the cathode and the auxiliary anode are individually energized, by adjusting the current capacity of the electric circuits 20 and 21,
The current density in the corner portion 6 and the flat portion 26 can be controlled to be equal, and as a result, a metal plating layer 27 having a uniform thickness can be formed over the entire inner wall surface of the mold body 1.

しかも上記の主陽極4および補助陽極5はいずれもメッ
キ液に対して不溶解性であるためにメッキ工程中に溶出
して経時的に陽極機能を失なったり、従来の粒状ニッケ
ル陽極の如きメッキ層へのスラッジの付着によるピンホ
ールないしブツが発生するという心配もない。
Moreover, since both the main anode 4 and the auxiliary anode 5 are insoluble in the plating solution, they may be eluted during the plating process and lose their anode function over time, or they may not be as well plated as conventional granular nickel anodes. There is no need to worry about pinholes or bumps occurring due to sludge adhesion to the layer.

またこのように不溶解性の陽極を使用したことによって
生じるメッキ液の浴組成変化は循環経路19で新たなメ
ッキ液を絶えず供給することによって回避できる。
Furthermore, changes in the bath composition of the plating solution caused by the use of an insoluble anode can be avoided by constantly supplying new plating solution through the circulation path 19.

次にこの発明法の効果を明確にするために組立てられた
銅製鋳型本体として内寸法が横255mm×縦3tom
mx高さ645朋で内容積517からなるものを適用し
、主陽極および補助陽極として前述の如きチタン基材に
白金メッキを施こしたものを使用してメッキ処理した。
Next, in order to clarify the effects of this invention method, a copper mold body was assembled, with internal dimensions of 255 mm in width x 3 tom in height.
An anode having a height of 645 mm and an internal volume of 517 mm was used, and the titanium base material plated with platinum as described above was used as the main anode and the auxiliary anode.

メッキ液はニッケルメッキ液を用い、60〜80137
分の速度で循環させた。
The plating solution uses nickel plating solution, 60-80137
circulated at a speed of 1 minute.

また主陽極電流容量2]、OA、補助陽極電流容量20
Aで、処理時間は約17時間であった。
Also, main anode current capacity 2], OA, auxiliary anode current capacity 20
In A, the treatment time was about 17 hours.

かくして形成されたニッケルメッキ層は厚みが約0.5
mmで、コーナ一部と平面部とでほぼ均一厚みとなっ
ていた。
The thickness of the nickel plating layer thus formed is approximately 0.5
mm, and the thickness was approximately uniform between the corner portion and the flat portion.

一方上記の方法において比較のために主陽極と補助陽極
とを電気的に接続してひとつの電気回路で通電したとき
は、平面部の厚みが約0.5 mmに対してコーナ一部
では約0.3朋程度の厚みしか得られなかった。
On the other hand, in the above method, when the main anode and the auxiliary anode were electrically connected and energized in one electric circuit for comparison, the thickness of the flat part was about 0.5 mm, while the thickness of the corner part was about 0.5 mm. A thickness of only about 0.3 mm was obtained.

また補助陽極を全く設けないときは、平面部約0.5
mmに対してコーナ一部の厚みが約0、L5mmとなっ
た。
In addition, when no auxiliary anode is provided, the flat surface is approximately 0.5
The thickness of part of the corner was approximately 0, L5 mm.

以上によって明らかなように、この発明法によれば鋳型
本体の内壁面におけるコーナ一部と平面部とに均一厚み
の金属メッキ層を形成できるとともに、メッキ層にピン
ホールやブツが発生するなどの弊害を持たない連続鋳造
用鋳型の製造法を提供できる。
As is clear from the above, according to the method of the present invention, it is possible to form a metal plating layer of uniform thickness on some corners and flat parts of the inner wall surface of the mold body, and at the same time, it is possible to form a metal plating layer with a uniform thickness on the inner wall surface of the mold body. It is possible to provide a method for manufacturing a continuous casting mold that does not have any harmful effects.

そしてこの方法で得られる鋳型;こよれば鋳型の寿命な
いし鋳片の特性を大きく向上させることができる。
The mold obtained by this method can greatly improve the life of the mold and the properties of the slab.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はブルームタイプの鋳型本体内に主陽極および補
助陽極を配設した状態を示す断面図、第2図は第1図H
部分の拡大図、第3図はこの発明の詳細な説明するため
の断面図である。 1−−−−−−鋳型本体(陰極)、2(2a、2b)。 3(3a、3b)・・・・・・二対の鋳型片、4・・・
・・・主陽極、5・・・・・・補助陽極、6・・・・・
・コーナ一部、27・・・・・・金属メッキ層。
Figure 1 is a sectional view showing the main anode and auxiliary anode arranged inside the bloom type mold body, Figure 2 is Figure 1H
FIG. 3 is an enlarged partial view and a sectional view for explaining the invention in detail. 1---Mold body (cathode), 2 (2a, 2b). 3 (3a, 3b)...Two pairs of mold pieces, 4...
...Main anode, 5...Auxiliary anode, 6...
・Part of the corner, 27...Metal plating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 銅または銅合金製の二対の鋳型片から組立てられた
断面矩形状の鋳型本体内に、断面矩形状の筒状ネットか
らなる不溶解性の主陽極を同軸的に配設するとともに、
この主陽極と上記本体との間に上記本体のコーナ一部に
対向する棒状の不溶解性の補助陽極を設け、上記本体内
にメッキ液を供給する一方上記本体を陰極として陰極と
主陽極並びに陰極と補助陽極との間にそれぞれ独自に通
電して、上記本体の内壁面に金属メッキ層を形成するこ
とを特徴とする連続鋳造用鋳型の製造法。
1. An insoluble main anode made of a cylindrical net with a rectangular cross section is disposed coaxially within a mold body with a rectangular cross section assembled from two pairs of mold pieces made of copper or copper alloy, and
A rod-shaped insoluble auxiliary anode is provided between this main anode and the main body, and is opposed to a part of the corner of the main body, and while the plating solution is supplied into the main body, the main anode is used as a cathode, and the main anode and the main anode are connected to each other. A method for manufacturing a mold for continuous casting, characterized in that a metal plating layer is formed on the inner wall surface of the main body by individually applying electricity between a cathode and an auxiliary anode.
JP7472180A 1980-06-02 1980-06-02 Manufacturing method for continuous casting molds Expired JPS5937704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7472180A JPS5937704B2 (en) 1980-06-02 1980-06-02 Manufacturing method for continuous casting molds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7472180A JPS5937704B2 (en) 1980-06-02 1980-06-02 Manufacturing method for continuous casting molds

Publications (2)

Publication Number Publication Date
JPS571543A JPS571543A (en) 1982-01-06
JPS5937704B2 true JPS5937704B2 (en) 1984-09-11

Family

ID=13555362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7472180A Expired JPS5937704B2 (en) 1980-06-02 1980-06-02 Manufacturing method for continuous casting molds

Country Status (1)

Country Link
JP (1) JPS5937704B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106003367A (en) * 2016-07-07 2016-10-12 淮北海聚环保设备有限公司 Method for producing environmental protection equipment through inner mold and outer mold

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003236679B2 (en) * 2002-05-27 2008-08-28 Concast Ag Method for the galvanic coating of a continuous casting mould
US7560015B2 (en) 2002-05-27 2009-07-14 Concast Ag Process for electrolytic coating of a strand casting mould

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106003367A (en) * 2016-07-07 2016-10-12 淮北海聚环保设备有限公司 Method for producing environmental protection equipment through inner mold and outer mold
CN106003367B (en) * 2016-07-07 2019-09-27 泰州市梦之谷科技发展有限公司 The method of interior external mold mold production environmental protection equipment

Also Published As

Publication number Publication date
JPS571543A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
KR101818085B1 (en) Highly corrosion-resistant porous metal body and method for producing the same
US4107407A (en) Battery and grid for positive electrode for lead storage batteries
US5223354A (en) Lead-acid battery plate and its manufacturing method
US5093970A (en) Lead-acid battery plate and its manufacturing method
JPH044399B2 (en)
JPS6344820B2 (en)
US3853714A (en) Process for electroforming microparts having hollow interiors
US4935109A (en) Double-cell electroplating apparatus and method
JPS5937704B2 (en) Manufacturing method for continuous casting molds
US2713079A (en) Battery plate
US5672181A (en) Method for manufacturing a hardened lead storage battery electrode
JP5008111B2 (en) Method for electrolytic coating of continuous casting mold
JPH033750B2 (en)
US2540805A (en) Electrolytic apparatus for making radiator cores
US7560015B2 (en) Process for electrolytic coating of a strand casting mould
US2927886A (en) Electrode and manufacture thereof
US2851331A (en) Electro-deposited mold
US3247083A (en) Method of chromium electrodeposition
JPS59150094A (en) Disc type rotary plating device
US2846377A (en) Mold cavities and force plugs
JPH10317197A (en) Electric nickel for plating, cathode plate for for its production and production
JPS632253A (en) Lead-acid battery and its manufacture
US3622284A (en) Electrodeposition of metal over large nonconducting surfaces
JPS59197592A (en) Electrodeposition of tool instrument
JP2943334B2 (en) Plating method and plating rack used in the method