JPS5937702A - Faraday rotary polarizer type reversible phase shifter - Google Patents

Faraday rotary polarizer type reversible phase shifter

Info

Publication number
JPS5937702A
JPS5937702A JP14725582A JP14725582A JPS5937702A JP S5937702 A JPS5937702 A JP S5937702A JP 14725582 A JP14725582 A JP 14725582A JP 14725582 A JP14725582 A JP 14725582A JP S5937702 A JPS5937702 A JP S5937702A
Authority
JP
Japan
Prior art keywords
magnetic flux
magnetic
ferrimagnetic material
circuit
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14725582A
Other languages
Japanese (ja)
Other versions
JPS6341243B2 (en
Inventor
Hideki Asao
英喜 浅尾
Makoto Matsunaga
誠 松永
Fumio Takeda
武田 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14725582A priority Critical patent/JPS5937702A/en
Priority to GB08322534A priority patent/GB2129227B/en
Publication of JPS5937702A publication Critical patent/JPS5937702A/en
Publication of JPS6341243B2 publication Critical patent/JPS6341243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/19Phase-shifters using a ferromagnetic device

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE:To obtain the invariably necessary amount of phase shifting even against fluctuations of temperature by winding a conductor for detecting magnetic flux near the center of a ferrimagnetic body through a hole made in a yoke, and detecting only the amount of magnetic flux variation corresponding to the amount of phase shifting. CONSTITUTION:The hole 16 having a rectangular opening which divides a magnetic circuit 14 corresponding to the inner circumferential side of a magnetic circuit and a magnetic circuit 15 corresponding to the outer circumferential side at a specific section ratio is formed at a part of the yoke 13. Then, the conductor for detecting the magnetic flux near the center of the ferrimagnetic body 1 is wound around the circuit 1 through the hole 16. When the magnetic circuit is magnetized by flowing a setting current through a conductor 6 for magnetization, the magnetic flux near the center of the magnetic body 1 penetrates the circuit 15. Therefore, the conductor 7 wound around the circuit 15 of the yoke 13 detects a voltage proportional to the variation of the magnetic flux near the center of the magnetic body 1.

Description

【発明の詳細な説明】 この発明は、移相量の温度特性改善を図ったファラデー
旋波子形可逆移相器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Faraday rotary waveform type reversible phase shifter that improves the temperature characteristics of the amount of phase shift.

第1図は従来の772デー旋波子形可逆移相器の一例を
示したもので、側面を金属被覆した正方形断面フェリ磁
性体(11の周囲に、N極とS極とを所定の方向に対向
するように4個の永久磁石(2)を配置してなる第1.
第2の円偏波発生器+31. +41と。
Figure 1 shows an example of a conventional 772-day rotary waveform reversible phase shifter. The first magnet is made up of four permanent magnets (2) arranged to face each other.
Second circularly polarized wave generator +31. +41.

上記7工リ磁性体11)の側面に磁気回路を形成するた
めのヨーク(5)を配置し、フェリ磁性体(1)には磁
化用導線(6)、ヨーク(5)には総磁束を検出するだ
めの導線(71を巻いてなるファラデー旋波子+81と
から構成される。
A yoke (5) for forming a magnetic circuit is arranged on the side surface of the above-mentioned 7-magnetic material 11), a magnetization conductor (6) is placed on the ferrimagnetic material (1), and a total magnetic flux is provided on the yoke (5). It consists of a Faraday rotary wave element +81 made by winding a conductive wire (71) to be detected.

次に、第1図に示したファラデー旋波子形可逆移相器の
動作説明を行なう。
Next, the operation of the Faraday rotary waveform reversible phase shifter shown in FIG. 1 will be explained.

第1図中、第1.第20円偏波発生器131.141は
移相器に入射する直線偏波(TEIOモード波)を円偏
波に変換する働きと、ファラデー旋波子(8)全通過し
た円偏波全再び直線偏波に変換する働きを持つ。
In Figure 1, 1. The 20th circularly polarized wave generator 131 and 141 has the function of converting the linearly polarized wave (TEIO mode wave) incident on the phase shifter into a circularly polarized wave, and the circularly polarized wave that has passed through the Faraday rotary wave element (8) is completely linear again. It has the function of converting into polarized waves.

また、ファラデー旋波子(8)は、フェリ磁性体(1)
内の軸方向の磁化の強さを変えることにより2円偏波に
対する透磁率を変化させ9円偏波の位相を変える働きを
持つ。
In addition, the Faraday rotation wave element (8) is a ferrimagnetic material (1)
By changing the strength of magnetization in the axial direction within, the magnetic permeability for 2-circularly polarized waves changes and the phase of 9-circularly polarized waves changes.

したがって、第1図に示した移相器は、その一端から入
射した直線偏波が円偏波に変換され、ファラデー旋波子
(8)内の磁化の強さに応じ、°位相変化を受け、再度
直線偏波に変換されることにより移相器として動作する
Therefore, in the phase shifter shown in FIG. 1, the linearly polarized wave incident from one end is converted into a circularly polarized wave, which undergoes a degree phase change depending on the strength of magnetization in the Faraday rotator (8). It operates as a phase shifter by being converted into linear polarization again.

ファラデー旋波子形可逆移相器では1位相変化量すなわ
ち移相量は、フェリ磁性体111内の磁束変化量に比例
するため、この磁束変化量を制御することによシ移相量
が制御できる。
In the Faraday spiral waveform reversible phase shifter, the amount of one phase change, that is, the amount of phase shift, is proportional to the amount of magnetic flux change in the ferrimagnetic material 111, so the amount of phase shift can be controlled by controlling this amount of magnetic flux change. .

第1図に示したファラデー旋波子形可逆移相器の移相量
制御方式としては、従来、ヨーク(5)に巻いた導線(
7;によりフェリ磁性体11)内の総磁束変化量を検出
し、この総磁束変化量を制御する方式が用いられていた
Conventionally, as a method for controlling the amount of phase shift of the Faraday spiral waveform reversible phase shifter shown in Fig. 1, a conducting wire (
A method has been used in which the total amount of magnetic flux change within the ferrimagnetic material 11) is detected by 7; and this total amount of magnetic flux change is controlled.

第2図に、従来のファラデー旋波子形可逆移相器の移相
量制御に用いられる駆動回路のブロック図を示す。
FIG. 2 shows a block diagram of a drive circuit used to control the amount of phase shift of a conventional Faraday rotary waveform type reversible phase shifter.

この駆動回路は、励磁器(91,積分器a■、比較器u
11から構成されておシ、以下に順を追って駆動回路の
動作説明を行なう。
This drive circuit includes an exciter (91, integrator a, comparator u
The operation of the drive circuit will be explained below in order.

第1に励磁器(91により、磁化用導m 163に電流
を流し、従来のファラデー旋波子形可逆移相器のフェリ
磁性体(1)とヨーク(51よりなる磁気回路を飽和磁
化状態とする。
First, an electric current is applied to the magnetization conductor m 163 by an exciter (91), and the magnetic circuit consisting of the ferrimagnetic material (1) and the yoke (51) of the conventional Faraday rotary waveform reversible phase shifter is brought into a saturated magnetized state. .

この場合の電流をリセット電流と呼ぶことにする。The current in this case will be called a reset current.

第2に、リセット電流を遮断し、磁気回路に飽和磁化を
残留させる。
Second, the reset current is cut off and saturation magnetization remains in the magnetic circuit.

第3に、磁化用導線(6)に、リセット電流とは逆方向
に電流を流す。
Thirdly, a current is passed through the magnetization conducting wire (6) in the opposite direction to the reset current.

この場合の電流をセット電流と呼ぶことにする。The current in this case will be called a set current.

この時、同時に、フェリ磁性体(1)と磁気回路を形成
しているヨーク(5)に巻いた総磁束を検出するだめの
導H171により、総磁束の時間変化に対応した誘起電
圧Vを検出する。
At this time, at the same time, the induced voltage V corresponding to the time change of the total magnetic flux is detected by the conductor H171 that detects the total magnetic flux wound around the yoke (5) forming a magnetic circuit with the ferrimagnetic material (1). do.

この誘起電圧■は積分器01により第1式に示すように
時間積分され、総磁束変化量φに比例した電圧ヤに変換
される。
This induced voltage {circle around (2)} is time-integrated by an integrator 01 as shown in the first equation, and converted into a voltage Y proportional to the total magnetic flux change amount φ.

g(ocφ) −−fVdt   −−−−−−曲−−
−−−−−−11)この変換された電圧νと、所要移相
量に対応して設定された基準電圧02とが、比較器+1
1+において比較される。
g(ocφ) −−fVdt −−−−−−Song−−
--------11) This converted voltage ν and the reference voltage 02 set corresponding to the required amount of phase shift are connected to the comparator +1
Compare at 1+.

第4に、電圧νと基準電圧taSとが一致した瞬間に、
励磁器19)が、セット電流を遮断し、前記の飽和磁化
が残留していた状態から所定の量だけ磁化が変化し、再
び残留する。
Fourth, at the moment when the voltage ν and the reference voltage taS match,
The exciter 19) interrupts the set current, and the magnetization changes by a predetermined amount from the state where the saturation magnetization remains, and remains again.

そこでこの残留磁化状態のフェリ磁性体(1)内を通過
した円偏波は、総磁束変化量φにほぼ比例した位相変化
を受けることになる。
Therefore, the circularly polarized wave that has passed through the ferrimagnetic material (1) in this residual magnetized state undergoes a phase change that is approximately proportional to the total magnetic flux change amount φ.

以上説1明したように、従来のファラデー旋波子形可逆
移相器は、ヨーク(5)に巻いた総磁束を検出するだめ
の導ffs+71によりフェリ磁性体(11内の総磁束
変化量を検出し、この総磁束変化量を地軸回路により制
御し、移相量の制御を行なっている。
As explained above, the conventional Faraday rotary waveform reversible phase shifter detects the amount of change in the total magnetic flux in the ferrimagnetic material (11) using the guide ffs+71, which is used to detect the total magnetic flux wound around the yoke (5). However, this total amount of magnetic flux change is controlled by the earth axis circuit, and the amount of phase shift is controlled.

ところが、上記のように駆動される移相器では温度が磁
化すると所要の移相量が得られないという欠点があった
However, the phase shifter driven as described above has a drawback in that the required amount of phase shift cannot be obtained when the temperature becomes magnetized.

以下に、この原因について述べる。The cause of this will be described below.

第3図に、従来のファラデー旋波子形可逆移相器の温度
TI、 T2 (Tt<T2)における総磁束変化量と
移相量との関係を示す。
FIG. 3 shows the relationship between the amount of total magnetic flux change and the amount of phase shift at temperatures TI, T2 (Tt<T2) of a conventional Faraday spiral waveform reversible phase shifter.

図示のように、温゛度が低くなると、総磁束変化骨を一
定の値に保っても、移相量が少なくなる傾向がある。
As shown in the figure, as the temperature decreases, the amount of phase shift tends to decrease even if the total magnetic flux change bone is kept at a constant value.

これは、7工リ磁性体+1+内の円偏波の伝送電力密度
が、フェリ磁性体(1)横断面内において不均一に分布
すること、および残留磁束密度のフェリ磁性体(1)横
断面内における分布が温度変化するというシつの現象に
起因する。
This is because the transmission power density of circularly polarized waves in the ferrimagnetic material +1+ is unevenly distributed within the cross section of the ferrimagnetic material (1), and the residual magnetic flux density is distributed unevenly within the cross section of the ferrimagnetic material (1). This is due to the phenomenon that the distribution within the temperature changes.

以下に、この2つの現象が起こる原因について詳細に述
べるとともに、総磁束変化縫勿制側1することが、移相
量の温度変化に関係することを説明する。
In the following, the causes of these two phenomena will be described in detail, and it will be explained that the total magnetic flux change on the sewing side 1 is related to the temperature change in the amount of phase shift.

まず1円偏波の伝送電力密度分布について述べる。First, we will discuss the transmission power density distribution of single circularly polarized waves.

第4図に、正方形断面のフェリ磁性体(1)横断面内に
おける円偏波の伝送電力密度分布會示す。
FIG. 4 shows the transmission power density distribution of circularly polarized waves in the cross section of the ferrimagnetic material (1) having a square cross section.

、円偏波は、T田0モード波とTEo+モード波の合成
波であるため、フェリ磁性体(1)の中心近傍に伝送電
力が集中した分布?もつ。
Since the circularly polarized wave is a composite wave of the T0 mode wave and the T0+ mode wave, the transmission power is distributed near the center of the ferrimagnetic material (1). Motsu.

このことから、フェリ磁性体(1)中心近傍の磁束変化
が1円偏波の位相変化に主に寄与することがわかる。
From this, it can be seen that the magnetic flux change near the center of the ferrimagnetic material (1) mainly contributes to the phase change of the circularly polarized wave.

次に、磁留磁束密度がフェリ磁性体(1)横断面内で不
均一に分布する理由と、この分布が温度変化する理由に
ついて述べる。
Next, the reason why the magnetic flux density is unevenly distributed within the cross section of the ferrimagnetic material (1) and the reason why this distribution changes with temperature will be described.

まず、リセット1!流を流した後のフェリ磁性体は)横
断面内飽和残留磁束密度分布を第5図中実線で示す。
First, reset 1! The saturated residual magnetic flux density distribution in the cross section of the ferrimagnetic material after flowing the current is shown by the solid line in FIG.

この状態では、残留磁束密度分布は一様である。In this state, the residual magnetic flux density distribution is uniform.

次に、前述の駆動回路により、総磁束変化量が所定の値
になるまで、リセット電流とは逆方向にセット電流を流
し、磁気回路を磁化する。
Next, the aforementioned drive circuit causes a set current to flow in the opposite direction to the reset current until the total amount of change in magnetic flux reaches a predetermined value, thereby magnetizing the magnetic circuit.

この時、フェリ磁性体+11とヨーク蝿5)より成る磁
気回路の外周側に加わる直流磁界をHout、内周側に
加わる直流磁界をHinとすると、外周側の磁路長が内
周側より長いため、  HoutはBinよりも小さく
なる。
At this time, if the DC magnetic field applied to the outer circumference side of the magnetic circuit consisting of ferrimagnetic material +11 and yoke fly 5) is Hout, and the DC magnetic field applied to the inner circumference side is Hin, then the magnetic path length on the outer circumference side is longer than that on the inner circumference side. Therefore, Hout is smaller than Bin.

このように、外周側に磁気回路を構成するフェリ磁性体
(11の中心近傍は、内周側に磁気回路を構成するフェ
リ磁性体;1)の管壁近傍に比較し・セット電流に伴な
う磁化の強さが弱いため、リセット電流遮断後の残留磁
束密度とセット電流遮断後の残留磁束密度の差、すなわ
ち残留磁束密度変化量は小さくなる。
In this way, compared to the vicinity of the tube wall of the ferrimagnetic material that forms the magnetic circuit on the outer circumferential side (near the center of 11 is the ferrimagnetic material that forms the magnetic circuit on the inner circumferential side; Since the strength of demagnetization is weak, the difference between the residual magnetic flux density after the reset current is cut off and the residual magnetic flux density after the set current is cut off, that is, the amount of change in the residual magnetic flux density becomes small.

したがって、残留磁束密度が不均一に分布する。Therefore, the residual magnetic flux density is distributed non-uniformly.

この状態のフェリ磁性体(11横断面内の残留磁束密度
分布の一例を第5図中破線で示す。
An example of the residual magnetic flux density distribution within the cross section of the ferrimagnetic material (11) in this state is shown by the broken line in FIG.

次に、第6図に、温度TI、 T2 (TI>T2)に
おいてそれぞれ等しい総磁束変化量を与えるようにセッ
ト電流を流した後のフェリ磁性体(1)横断面内の残留
密度変化量を示す。
Next, Fig. 6 shows the residual density change in the cross section of the ferrimagnetic material (1) after a set current is applied to give the same total magnetic flux change at temperatures TI and T2 (TI>T2). show.

′$6図は、総磁束変化量を等しく制御した場合の残留
磁束密度変化量のフェリ磁性体11)横断面内における
分布が、温度により変化する様子を示している。
Figure '$6 shows how the distribution of the residual magnetic flux density change in the cross section of the ferrimagnetic material 11) changes depending on the temperature when the total magnetic flux change is controlled equally.

この様に、残留磁束密度変化量の不均一な分布が、温度
変化する理由全説明する。
In this manner, the reason why the non-uniform distribution of the amount of change in residual magnetic flux density causes temperature changes is fully explained.

第7図(a) (b)に、磁気回路に用いているフェリ
磁性体材料の温度TI、T2におけるB−8曲線の一例
を示す。低温になると、磁気回路は磁化されにくくなシ
、保持力Heが大きくなる。
FIGS. 7(a) and 7(b) show an example of the B-8 curve at temperatures TI and T2 of the ferrimagnetic material used in the magnetic circuit. At low temperatures, the magnetic circuit is less likely to be magnetized and the coercive force He increases.

このため、所定の量の総磁束変化を行なうには高温状態
に比べ、低温状態では、セット電流を大きくシ、フェリ
磁性体;1)内の直流磁界を大きくする必要がある。
Therefore, in order to change the total magnetic flux by a predetermined amount, it is necessary to increase the set current and the DC magnetic field in the ferrimagnetic material (1) in a low temperature state compared to a high temperature state.

直流磁界を大きくした場合、磁路長の比で決定されるH
outとHinの比は一定であるため、 HoutとH
inの差は、低温になると大きくなる。
When the DC magnetic field is increased, H determined by the ratio of magnetic path lengths
Since the ratio of out and Hin is constant, Hout and H
The difference in in becomes larger as the temperature becomes lower.

したがって第7図(a) Tb)中に示すように、高温
状態(T2)に比べ、低温状態(Tl)では、 Hou
t、 Hinに対応した残留磁束密度変化量Bout、
 Binの差は大きくなる。
Therefore, as shown in Figure 7(a) Tb), compared to the high temperature state (T2), in the low temperature state (Tl), Hou
t, residual magnetic flux density change amount Bout corresponding to Hin,
The difference between bins becomes larger.

すなわち、第6図に示す様に、残留磁束密度変化量のフ
ェリ磁性体山横断面内における分布が。
That is, as shown in FIG. 6, the distribution of the amount of change in residual magnetic flux density within the cross section of the ferrimagnetic material mountain.

温度により変化することになる。It will change depending on the temperature.

以上述べたように、高温状態に比較し、低温状態では2
位相変化に主に寄与するフェリ磁性体(1)中心近傍の
残留磁束密度変化量が1周辺に比べ少なくなるため、総
磁束変化量を制御する方式を用いて駆動される構成の従
来のファラデー旋波子形可逆移相器は、移相量が所要の
値より減少する。
As mentioned above, compared to high temperature conditions, 2
Since the residual magnetic flux density change near the center of the ferrimagnetic material (1), which mainly contributes to the phase change, is smaller than that around the ferrimagnetic material (1), the conventional Faraday rotary structure is driven using a method that controls the total magnetic flux change. In the waveform reversible phase shifter, the amount of phase shift is reduced from a required value.

この発明は、上記問題を解決するため、ファラデー旋波
子形可逆移相器の構造に工夫を加え位相変化に主に寄与
するフェリ磁性体中心近傍の磁束を検出できる構造とし
、移相量の温度変化を小さくしようとするもので、以下
に詳しく説明する。
In order to solve the above problems, this invention has improved the structure of the Faraday rotary waveform reversible phase shifter to detect the magnetic flux near the center of the ferrimagnetic material that mainly contributes to the phase change, and This is intended to minimize changes, and will be explained in detail below.

第8図はこの発明の実施例であり、第9図はその長さ方
向の断面図である。この発明によるノア2デー旋波子形
可逆移相器は、ヨークu1の一部に磁気回路の内周側に
相当する第1の磁気回路(13と外周側に相当する第2
の磁気回路−を、所定の断面積比で分割するように長方
形の開口を持った孔tIlBを設け、第2の磁気回路1
151をとり囲むように。
FIG. 8 shows an embodiment of the invention, and FIG. 9 is a longitudinal sectional view thereof. The Noah 2-day rotary waveform reversible phase shifter according to the present invention has a first magnetic circuit (13) corresponding to the inner circumferential side of the magnetic circuit and a second magnetic circuit (13) corresponding to the outer circumferential side in a part of the yoke u1.
A hole tIlB having a rectangular opening is provided so as to divide the second magnetic circuit 1 at a predetermined cross-sectional area ratio.
As if surrounding 151.

孔(l[9を通してフェリ磁性体(11中心近傍の磁束
を検出するため導線(71を巻いた構造を有する。
It has a structure in which a conducting wire (71) is wound through the hole (l [9) to detect the magnetic flux near the center of the ferrimagnetic material (11).

この構造では、磁化用導線(6)にセット電流を流し、
磁気回路を磁化すると、フェリ磁性体(1)中心近傍の
磁束は、第2の磁気回路a9を貫通する。
In this structure, a set current is passed through the magnetization conductor (6),
When the magnetic circuit is magnetized, the magnetic flux near the center of the ferrimagnetic material (1) passes through the second magnetic circuit a9.

したがって、ヨーク+13の第2の磁気回路fI51を
取り囲んで巻いた導線(71により、フェリ磁性体(1
)中心近傍の磁束変化に比例した電圧が検出できる。
Therefore, the ferrimagnetic material (1
) A voltage proportional to the change in magnetic flux near the center can be detected.

前述の通り2位相変化に主に寄与するのは、フエIJ 
Ja磁性体1)中心近傍の磁束変化であるため、この磁
束変化に比例した電圧を用いて、前記の駆動回路により
位相制御を行なうと、温度の変化にかかわらず、所要の
移相量を得ることができる。
As mentioned above, the main contributor to the two-phase change is the Hue IJ.
Ja magnetic material 1) Since the magnetic flux changes near the center, if phase control is performed by the drive circuit described above using a voltage proportional to this magnetic flux change, the required amount of phase shift can be obtained regardless of temperature changes. be able to.

なお2以上は、4本のヨーク131にフェリ磁性体(1
)中心近傍の磁束を検出するだめの導線(71を巻いた
場合について説明したが、この発明はこれに限らず、1
本以上のヨーク(13にフェリ磁性体(1)中心近傍の
磁束を検出するための導線(7)巻いた場合であれは、
いずれの場合も同様の効果がある。
In addition, for 2 or more, ferrimagnetic material (1
) Although the case where the conductive wire (71) is wound to detect the magnetic flux near the center has been described, the present invention is not limited to this.
If the yoke (13) is wound with a conducting wire (7) for detecting the magnetic flux near the center of the ferrimagnetic material (1),
In either case, similar effects are obtained.

また、正方形断面のフェリ磁性体(1)を用いた場合に
ついて説明しだが、この発明はこれに限らず。
Further, although the case where the ferrimagnetic material (1) with a square cross section is used has been described, the present invention is not limited to this.

円偏波通過可能な断面をもつ金属被覆フェリ磁性体中で
あれば、いずれの場合も同様の効果がある3また以上は
、長方形開口の孔OBを設けた場合について説明したが
、この発明はこれに限らず、第10図に示すような小孔
(I?lを1つ以上設けた場合に使用してもよい。
The same effect can be achieved in any metal-coated ferrimagnetic material with a cross section that allows circularly polarized waves to pass.Although the case where a rectangular opening hole OB is provided has been described, the present invention The invention is not limited to this, and may be used when one or more small holes (I?l) as shown in FIG. 10 are provided.

以−ヒのように、この発明に係るファラデー旋波子形可
逆移相器では、ヨーク+131に孔Oeを設け、この孔
+11を通してフェリ磁性体(1)中心近傍の磁束を検
出するだめの導線(7)を巻くことにより、移相量に対
応した磁束変化量のみを検出することができ。
As shown below, in the Faraday rotary wave element reversible phase shifter according to the present invention, a hole Oe is provided in the yoke +131, and a conductive wire ( 7), it is possible to detect only the amount of magnetic flux change corresponding to the amount of phase shift.

これにより、温度変化に対しても常に所要の移相量を得
ることができるという効果を有する。
This has the effect that the required amount of phase shift can always be obtained even when the temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のファラデー旋波子形可逆移相器の斜視図
、第2図は駆動回路を示す図、第3図は従来の移相器の
総磁束変化員と移相量の関係の一例を示す図、第4図は
フェリ磁性体横断面内の円偏波伝送電力密度分布を示す
図、第5図はフェリ磁性体横断面内の残留磁束密度分布
を示す図、第6図は、温度TI、T2℃におけるフェリ
磁性体横断面内の残留磁束密度分布横を示す図、弗7図
+a) (b)は磁気回路のB−H曲線を示す図、第8
図はこの発明によるファラデー旋波子形可逆移相器の斜
視図、第9図は第8図の長さ方向断面図、第10図はこ
の発明による他の実施例を示す図である。 図中(1)はフェリ磁性体、(2)は永久磁石、(3)
は第1の円偏波発生器、(4)は第2の円偏波発生器、
(5)はヨーク、(6)は磁化用導線、(7:は導線、
(81はファラデー旋波子、(91は励磁器、 (IG
は積分器、 tillは比較器、 02は基準電圧、 
LI31は孔を設けたヨーク、 +141は第1の磁気
回路、 a51は第2の磁気回路、(1eは孔。 071は小孔である。 なお図中、同一あるいは相当部分には同一符号を付して
示しである。 代理人 葛 野 信 − 第2図 第4図 スリ石肱+L参#(1*膨テ五りr14立直第5図 ti内イ立葉 第6図 )11ノMaイ本matr5itrkt信J[第7図 第8図 第9図 第10図
Figure 1 is a perspective view of a conventional Faraday spiral waveform reversible phase shifter, Figure 2 is a diagram showing the drive circuit, and Figure 3 is an example of the relationship between the total magnetic flux change member and the amount of phase shift of a conventional phase shifter. FIG. 4 is a diagram showing the circularly polarized wave transmission power density distribution in the cross section of the ferrimagnetic material, FIG. 5 is a diagram showing the residual magnetic flux density distribution in the cross section of the ferrimagnetic material, and FIG. Diagram showing the residual magnetic flux density distribution horizontally in the cross section of the ferrimagnetic material at temperature TI and T2°C, Fig. 7 + a) (b) is a diagram showing the B-H curve of the magnetic circuit, No.
9 is a perspective view of a Faraday rotary wave element reversible phase shifter according to the present invention, FIG. 9 is a longitudinal sectional view of FIG. 8, and FIG. 10 is a diagram showing another embodiment of the present invention. In the figure, (1) is a ferrimagnetic material, (2) is a permanent magnet, and (3)
is a first circularly polarized wave generator, (4) is a second circularly polarized wave generator,
(5) is a yoke, (6) is a magnetizing conductor, (7: is a conductor,
(81 is a Faraday rotation wave element, (91 is an exciter, (IG
is an integrator, till is a comparator, 02 is a reference voltage,
LI31 is a yoke with a hole, +141 is a first magnetic circuit, a51 is a second magnetic circuit, (1e is a hole, and 071 is a small hole. In the figure, the same or equivalent parts are given the same symbols Agent Shin Kuzuno - Fig. 2 Fig. 4 Suri Seishi + L san Communication J [Figure 7, Figure 8, Figure 9, Figure 10

Claims (1)

【特許請求の範囲】 側面を金属被覆したフェリ磁性体の周囲に、N極とS極
とを所定の方向に対向するように4個の永久磁石を配置
してなる第1.第2の円偏波発生器と、上記フェリ磁性
体の側面に磁気回路を形成するだめのヨークを配置し、
フェリ磁性体に磁化用導線を巻いてなるファラデー旋波
子とから構成されるファラデー旋波子形可逆移相器にお
いて。 前記ヨークの一部に、前記磁気回路を内周と外周に分離
するように孔を設け、この外周の磁気回路内の磁束をと
り囲むように、上記孔を通してヨークに磁束検出用導線
を巻いたことを特徴とするファラデー旋波子形可逆移相
器。
[Claims] A first permanent magnet is constructed by arranging four permanent magnets around a ferrimagnetic material whose side surfaces are coated with metal so that the north pole and the south pole face each other in a predetermined direction. a second circularly polarized wave generator and a yoke forming a magnetic circuit on the side surface of the ferrimagnetic material;
A Faraday rotary wave element type reversible phase shifter comprising a Faraday rotary wave element formed by winding a magnetizing conductor around a ferrimagnetic material. A hole is provided in a part of the yoke so as to separate the magnetic circuit into an inner periphery and an outer periphery, and a magnetic flux detection conductor is wound around the yoke through the hole so as to surround the magnetic flux in the magnetic circuit on the outer periphery. A Faraday rotary waveform reversible phase shifter.
JP14725582A 1982-08-25 1982-08-25 Faraday rotary polarizer type reversible phase shifter Granted JPS5937702A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14725582A JPS5937702A (en) 1982-08-25 1982-08-25 Faraday rotary polarizer type reversible phase shifter
GB08322534A GB2129227B (en) 1982-08-25 1983-08-22 Faraday rotator type reciprocal phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14725582A JPS5937702A (en) 1982-08-25 1982-08-25 Faraday rotary polarizer type reversible phase shifter

Publications (2)

Publication Number Publication Date
JPS5937702A true JPS5937702A (en) 1984-03-01
JPS6341243B2 JPS6341243B2 (en) 1988-08-16

Family

ID=15426091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14725582A Granted JPS5937702A (en) 1982-08-25 1982-08-25 Faraday rotary polarizer type reversible phase shifter

Country Status (2)

Country Link
JP (1) JPS5937702A (en)
GB (1) GB2129227B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130835A (en) * 1987-11-13 1989-05-23 Toyota Motor Corp Lost-wax pattern assembly method for casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580429B1 (en) * 1985-04-15 1988-03-18 Dassault Electronique HYPERFREQUENCY PHASE DEVICE WITH SHARED MAGNETIC CIRCUIT

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3080536A (en) * 1959-11-02 1963-03-05 Hughes Aircraft Co Microwave phase shifter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130835A (en) * 1987-11-13 1989-05-23 Toyota Motor Corp Lost-wax pattern assembly method for casting

Also Published As

Publication number Publication date
GB8322534D0 (en) 1983-09-21
JPS6341243B2 (en) 1988-08-16
GB2129227B (en) 1986-01-02
GB2129227A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
Molcrette et al. Reduction of inrush current in single-phase transformer using virtual air gap technique
Hirosawa et al. Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Co x) 14B measured on single crystals
WO2020015302A1 (en) Consequent-pole motor
Scouten Sensor noise in low-level flux-gate magnetometers
US2946025A (en) Nonreciprocal attenuator
US2498475A (en) Saturable magnetic core
JPS5937702A (en) Faraday rotary polarizer type reversible phase shifter
US2779885A (en) Electrical apparatus in which a permanent magnet is included in the magnetic circuit
US4243903A (en) Permanent magnet stator for a DC dynamo electric machine using blocking magnets
US3961299A (en) Magnetic circuit having low reluctance
JPS599528A (en) Torque sensor
US3038131A (en) Microwave switching device
JPH0870148A (en) Magnetoresistance element
US2929017A (en) Quadripole magnetic amplifier
US3011064A (en) Electric gating device
JPS629202B2 (en)
US2680820A (en) Premagnetized magnetic pulser
Takemura et al. Control of demagnetizing field and magnetostatic coupling in FeCoV wires for zero-speed sensor
Stern et al. Design of composite magnetic circuits for temperature stabilization of microwave ferrite devices
JP2514338B2 (en) Current detector
JPH1068744A (en) Direct current sensor
JP2000055940A (en) Dc current sensor
US3003138A (en) Magnetic core memory element
Sagnis Jr et al. Effect of Geometry on Thick Film Toroids