JPS5937685Y2 - Roll spacing measuring device in continuous casting equipment - Google Patents

Roll spacing measuring device in continuous casting equipment

Info

Publication number
JPS5937685Y2
JPS5937685Y2 JP6810777U JP6810777U JPS5937685Y2 JP S5937685 Y2 JPS5937685 Y2 JP S5937685Y2 JP 6810777 U JP6810777 U JP 6810777U JP 6810777 U JP6810777 U JP 6810777U JP S5937685 Y2 JPS5937685 Y2 JP S5937685Y2
Authority
JP
Japan
Prior art keywords
movable body
rolls
continuous casting
detected
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6810777U
Other languages
Japanese (ja)
Other versions
JPS53162746U (en
Inventor
治男 坂口
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to JP6810777U priority Critical patent/JPS5937685Y2/en
Publication of JPS53162746U publication Critical patent/JPS53162746U/ja
Application granted granted Critical
Publication of JPS5937685Y2 publication Critical patent/JPS5937685Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Continuous Casting (AREA)

Description

【考案の詳細な説明】 本考案は連続鋳造設備におけるロール間隔の計測装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring roll spacing in continuous casting equipment.

連続鋳造設備においては、モールドへ注入した溶融金属
を冷却して鋳片としたものをさらに冷却しながらガイド
ロール、ピンチロール等を経て引抜くものである。
In continuous casting equipment, molten metal is injected into a mold and cooled to form a slab, which is then drawn out through guide rolls, pinch rolls, etc. while being further cooled.

この引抜き経路(搬送経路)は前記ガイドロール、ピン
チロール等を対抗設置することにより形成されており、
これら互いに対抗するロール間隔は単に鋳片のサイズを
決定するにとどまらず、その精度は製品品質に重大な影
響を及ぼす。
This extraction path (conveyance path) is formed by opposing the guide rolls, pinch rolls, etc.
The spacing between these opposing rolls not only determines the size of the slab, but also its accuracy has a significant impact on product quality.

即ち互いに対抗するロール間隔の異常は鋳片の凝固過程
における内部割れ発生の原因となる。
That is, an abnormality in the spacing between opposing rolls causes internal cracks to occur during the solidification process of the slab.

そこで、前記ロール間隔を定期的に計測しているが、従
来この種の計測はダイアルゲージを用いて行なっており
、これによると非常に長時間を要すると共に、ロール配
置構成上計測に困難を極め、また計測不可能な箇所もあ
る。
Therefore, the distance between the rolls is measured regularly, but conventionally this type of measurement has been done using a dial gauge, which takes a very long time and is extremely difficult to measure due to the roll arrangement. , and there are also areas where measurement is impossible.

本考案はかかる問題点に鑑みてなされたものであり、以
下、その一実施例を図に基づいて説明する。
The present invention has been devised in view of these problems, and one embodiment thereof will be described below with reference to the drawings.

1は多数の鋳片搬送ロール2により形成された鋳片搬送
経路A中に押し込まれて移動自在な所定のロール間隔α
よりも厚さβが犬なる弾性移動体であって、鋳片搬送ロ
ール2の長さとほぼ同一長さの横桁3と、該横桁3の両
端から鋳片搬送Aに沿って配設された縦桁4と、該両縦
桁4の互いに対向する内側面にそれぞれ配設されたプレ
ート5と、該両プレート5間に配設された梁6と、上記
横桁3の中央に突設された引張用金具Tとからなる。
1 is a predetermined roll interval α that is pushed into the slab conveying path A formed by a large number of slab conveying rolls 2 and is movable.
It is an elastic movable body having a thickness β greater than 1, and is provided with a cross beam 3 having approximately the same length as the length of the slab conveyance roll 2, and is arranged along the slab conveyance A from both ends of the cross beam 3. a longitudinal girder 4, a plate 5 disposed on the mutually opposing inner surfaces of both longitudinal girders 4, a beam 6 disposed between both plates 5, and a beam 6 protruding from the center of the transverse girder 3. It consists of a tension fitting T.

なお上記プレート5は、その前方部がボルト8により縦
桁4に連結されており、また後方部には縦桁4に沿って
スリット9を形成してあり、該スリット9を通して縦桁
4のねじ孔にねじ棒10が螺合している。
The front part of the plate 5 is connected to the longitudinal girder 4 by bolts 8, and a slit 9 is formed in the rear part along the longitudinal girder 4, and the screws of the longitudinal girder 4 are inserted through the slit 9. A threaded rod 10 is screwed into the hole.

したがって縦桁4を円弧状に曲げた場合には、ねじ棒1
0がスリット9内を前方部のボルト8に向って近づくの
でプレート5が縦桁4の湾曲を邪魔することはない。
Therefore, when the longitudinal girder 4 is bent into an arc shape, the threaded rod 1
0 approaches the front bolt 8 in the slit 9, the plate 5 does not interfere with the curvature of the longitudinal beam 4.

11は一方の縦桁4の外側面に沿って上下方向に配設さ
れたアームであって、該アーム11の下端部は縦桁4に
ボルト12およびナツト13により連結されている。
Reference numeral 11 denotes an arm disposed vertically along the outer surface of one of the longitudinal beams 4, and the lower end of the arm 11 is connected to the longitudinal beam 4 by bolts 12 and nuts 13.

14は縦桁4とアーム11との間に配設されたスペーサ
、15は上記アーム11の上端部に対向する縦桁4の側
面箇所に埋設された永久磁石、16は該磁石15に対向
して前記アーム11の上端部に配設された検出センサー
であって、このセンサー16は第4図に示すごとく直列
に接続された2個の磁気抵抗素子R1,R2と、該画素
子R1゜R2の端部に接続された端子1γ、18,19
とからなる。
14 is a spacer disposed between the longitudinal girder 4 and the arm 11; 15 is a permanent magnet embedded in a side surface of the longitudinal girder 4 facing the upper end of the arm 11; 16 is a permanent magnet that is opposed to the magnet 15; The sensor 16 is a detection sensor disposed at the upper end of the arm 11, and this sensor 16 consists of two magnetoresistive elements R1 and R2 connected in series as shown in FIG. terminals 1γ, 18, 19 connected to the ends of
It consists of.

このセンサー16と永久磁石15との関係を第4図およ
び第5図に基づき説明すると、上記両磁気抵抗素子R1
,R2は磁界を加えると抵抗が変化する半導体の一種で
あり、両側の端子17゜19間に入力電圧Vinを印加
し、中間の端子18と上側の端子17との間から出力電
圧Voutをとり出すとした場合、永久磁石15が下側
にあって、素子R2と対向している第5図イ状態では出
力電圧Voutは最低であり、この状態より永久磁石1
5が上昇して素子R1に近ずくにしたがって第5図口。
The relationship between this sensor 16 and the permanent magnet 15 will be explained based on FIGS. 4 and 5. Both of the magnetoresistive elements R1
, R2 is a type of semiconductor whose resistance changes when a magnetic field is applied to it.The input voltage Vin is applied between the terminals 17 and 19 on both sides, and the output voltage Vout is taken from between the middle terminal 18 and the upper terminal 17. If the output voltage Vout is the lowest in the state shown in FIG.
5 rises and approaches element R1.

ハに示すごとく出力電圧Voutが増加していくもので
ある。
The output voltage Vout increases as shown in FIG.

ところで上記永久磁石15は縦桁4に埋設されであるか
ら、この縦桁4が第3図イ2口に示すごとく計測すべき
両鋳片搬送ロール2間に押し込まれて圧縮された際にそ
の圧縮に伴なって永久磁石15も下方に移動することに
なるので、結局、出力電圧Vout、は縦桁4の圧縮量
、すなわちロール間隔βに比例することになる。
By the way, since the permanent magnet 15 is embedded in the longitudinal girder 4, when the longitudinal girder 4 is compressed by being pushed between both slab conveying rolls 2 to be measured, as shown in FIG. Since the permanent magnet 15 also moves downward with the compression, the output voltage Vout is ultimately proportional to the amount of compression of the longitudinal girder 4, that is, the roll interval β.

したがって前記弾性移動体1を引張用金具7を介してダ
□−バ、自走台車等により引張って鋳片搬送経路A中に
引き込み、移動させる。
Therefore, the elastic movable body 1 is pulled into the slab conveyance path A by being pulled by a duver, a self-propelled cart, etc. via the tension fitting 7, and is moved.

そしてたとえば第3図イに示すごとく両鋳片搬送ロール
2間の間隔α1を理想的なロール間隔であるとし、この
状態における電圧出力Voutを第5図口とするならば
、第3図口に示すごとくロール間隔α2が理想的なロー
ル間隔α1よりもγ分狭い両ロール2間に弾性移動体1
を押し込むと、永久磁石15はγ分下げられて下側の磁
気抵抗素子R2に対向することになり出力電E V o
u t、は低下することになる。
For example, if the interval α1 between both slab conveying rolls 2 is the ideal roll interval as shown in Fig. 3A, and if the voltage output Vout in this state is the opening in Fig. 5, then the opening in Fig. 3 is As shown, an elastic moving body 1 is placed between the rolls 2, where the roll interval α2 is narrower by γ than the ideal roll interval α1.
When pushed in, the permanent magnet 15 is lowered by γ to face the lower magnetoresistive element R2, and the output voltage E V o
u t, will decrease.

反対に理想的なロール間隔α1よりもロール間隔が広い
両ロール2間に弾性移動体1を押し込むと、この移動体
1ばあまり圧縮されないから、永久磁石15は上側の磁
気抵抗素子R1に対向することになり出力電圧Vout
は上昇することになる。
On the other hand, when the elastic moving body 1 is pushed between both rolls 2 whose roll spacing is wider than the ideal roll spacing α1, the permanent magnet 15 faces the upper magnetic resistance element R1 because the moving body 1 is not compressed much. Therefore, the output voltage Vout
will rise.

したがって換言すれば検出センサー16からの出力電圧
Voutをチェックすることにより計測すべき各ロール
間隔αを計測することができるものである。
Therefore, in other words, by checking the output voltage Vout from the detection sensor 16, each roll interval α to be measured can be measured.

以上述べたごとく本考案の連続鋳造設備におけるロール
間隔計測装置によれば、鋳片搬送経路中に押し込まれて
移動自在な移動体の適当側面に沿わせて支持体を配設し
、該支持体の遊端とこの遊端に対向する移動体の側面箇
所とのうち、一方に被検出体を配設すると共に他方に、
移動体が計測すべき両腕片搬送ロール間に押し込まれて
圧縮された際にその圧縮に伴なって移動せしめられた前
記被検出体の移動量を電気的に検出して上記両腕片搬送
ロール間の間隔を計測する検出センサーを設けであるか
ら、該センサーの出力信号を検出するだけで、直ちに各
ロール間隔を計測することができ、計測が非常に簡単で
短時間で済み、かつ正確にロール間隔を計測することが
できるものである。
As described above, according to the roll interval measuring device for continuous casting equipment of the present invention, a support is disposed along an appropriate side of a movable body that is pushed into a slab conveyance path and is freely movable. The object to be detected is disposed on one of the free end and the side surface of the movable body facing the free end, and the object is placed on the other.
When the moving object to be measured is pushed between the two-arm transport rolls and compressed, the amount of movement of the object to be detected caused by the compression is electrically detected, and the two-arm transport is carried out. Since it is equipped with a detection sensor that measures the distance between rolls, the distance between each roll can be measured immediately by simply detecting the output signal of the sensor, making measurement very easy, quick, and accurate. It is possible to measure the roll interval.

なお上記実施例では永久磁石15と磁気抵抗素子R1,
R2とを用いてロール間隔αを計測するようにしたが、
これに限定されるわけではなく、たとえば第6図に示す
ごと(可動鉄心21とコイルを巻いたE形鉄心22とか
らなる差動変圧器20を用いて両端子23.24間の出
力電圧Vout、によりロール間隔αを計測するように
してもよい。
In the above embodiment, the permanent magnet 15 and the magnetoresistive element R1,
The roll interval α was measured using R2, but
For example, as shown in FIG. 6, the output voltage Vout between both terminals 23 and 24 is The roll interval α may be measured by .

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本考案の一実施例を示し、第1図は斜
視図、第2図は鋳片搬送経路中を移動状態の側面図、第
3図イ2口は要部の断面図、第4図は永久磁石と検出セ
ンサーとの作動原理図、第5図は検出センサーの出力電
圧図、第6図は本考案の他の実施例を示す作動原理図で
ある。 1・・・・・・弾性移動体、2・・・・・・鋳片搬送ロ
ール、11・・・・・・アーム(支持体)、12・・・
・・・ボルト、13・・・・・・ナツト、15・・・・
・・永久磁石(被検出体)、16・・・・・・検出セン
サー、21・・・・・・可動鉄心(被検出体)、22・
・・・・・E形鉄心(検出センサー)、A・・・・・漬
汁搬送経路、α、・α1.α2・・・・・・ロール間隔
、β・・・・・・弾性移動体1の厚さ。
Figures 1 to 5 show an embodiment of the present invention. Figure 1 is a perspective view, Figure 2 is a side view of the slab moving in the conveying path, and Figure 3 shows the main parts. 4 is a diagram of the operating principle of the permanent magnet and the detection sensor, FIG. 5 is a diagram of the output voltage of the detection sensor, and FIG. 6 is a diagram of the operating principle of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Elastic moving body, 2... Slab conveyance roll, 11... Arm (support body), 12...
...Bolt, 13...Natsuto, 15...
...Permanent magnet (detected object), 16...Detection sensor, 21...Movable iron core (detected object), 22.
...E type iron core (detection sensor), A... Pickled juice conveyance path, α, ・α1. α2...Roll spacing, β...Thickness of the elastic moving body 1.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 多数の鋳片搬送ロールにより形成された鋳片搬送経路中
に押し込まれて移動自在な所定のロール間隔よりも厚さ
が犬なる弾性移動体を設け、該移動体の適当側面に沿わ
せて支持体を配設し、該支持体の一端を上記移動体に連
結し、上記支持体の遊端ととの遊端に対向する移動体の
側面箇所とのうち、一方に被検出体を配設すると共に他
方に、移動体が計測すべき両温片搬送ロール間に押し込
まれて圧縮された際にその圧縮に伴なって移動せしめら
れた前記被検出体の移動量を電気的に検出して上記両温
片搬送ロール間の間隔を計測する検出センサーを設けた
ことを特徴とする連続鋳造設備におけるロール間隔計測
装置。
An elastic movable body that is pushed into a slab conveying path formed by a large number of slab conveying rolls and is movable and has a thickness thicker than a predetermined roll interval is provided, and is supported along an appropriate side surface of the movable body. one end of the support body is connected to the movable body, and a detected body is disposed on one of the free end of the support body and a side surface of the movable body opposite to the free end. At the same time, on the other hand, when the movable body is compressed by being pushed between the two warm piece conveyor rolls to be measured, the amount of movement of the object to be detected that is moved due to the compression is electrically detected. A roll spacing measuring device for continuous casting equipment, characterized in that a detection sensor is provided for measuring the spacing between the hot piece conveying rolls.
JP6810777U 1977-05-25 1977-05-25 Roll spacing measuring device in continuous casting equipment Expired JPS5937685Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6810777U JPS5937685Y2 (en) 1977-05-25 1977-05-25 Roll spacing measuring device in continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6810777U JPS5937685Y2 (en) 1977-05-25 1977-05-25 Roll spacing measuring device in continuous casting equipment

Publications (2)

Publication Number Publication Date
JPS53162746U JPS53162746U (en) 1978-12-20
JPS5937685Y2 true JPS5937685Y2 (en) 1984-10-19

Family

ID=28975680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6810777U Expired JPS5937685Y2 (en) 1977-05-25 1977-05-25 Roll spacing measuring device in continuous casting equipment

Country Status (1)

Country Link
JP (1) JPS5937685Y2 (en)

Also Published As

Publication number Publication date
JPS53162746U (en) 1978-12-20

Similar Documents

Publication Publication Date Title
US4814705A (en) Method and apparatus for magnetic discontinuity detection in a specimen of magnetizable material
US3586963A (en) Magnetically determining mechanical properties of moving ferromagnetic materials
JPS57173701A (en) Eddy current type device and method for measuring rail displacement
JPS5937685Y2 (en) Roll spacing measuring device in continuous casting equipment
US4768600A (en) High speed weighing system
JPS5937686Y2 (en) Roll spacing measuring device in continuous casting equipment
JPS592927Y2 (en) Roll spacing measuring device in continuous casting equipment
JPS6132089B2 (en)
JPH01254360A (en) Apparatus and method for measuring roll alignment and roll interval
JPS5728206A (en) Shape measuring device
GB1360608A (en) Apparatus for indicating the profile of strip material
US3161824A (en) Method and apparatus utilizing a magnetic armature and sensing coil for determining flatness
JP2580153Y2 (en) Ruler for measuring tongue rail wear
JPH0137805Y2 (en)
KR102538203B1 (en) How to determine the location of the crater end of a cast metal product
JP2001221630A (en) Noncontact sensing method and device for property of band-shaped material
JPH0628643Y2 (en) Straightness measuring device on the side of the cylinder
KR870001745Y1 (en) Surface contacting thermometer for measuring temperature long steel
JPH0545922Y2 (en)
JPS56112602A (en) Measuring device for thickness of nonmagnetic thin metal plate
JPH02148407U (en)
KR200223087Y1 (en) Inner width measuring instrument of the tube used a mold of continuos casting machine
JPS55138606A (en) Measuring method of cross section shape correcting lateral deflection
CN2349532Y (en) Double standard rule comparator
JPS56139229A (en) Method for measuring lateral bend of material to be rolled