JPS5937446A - Irradiance monitor device for light-proof test equipment - Google Patents

Irradiance monitor device for light-proof test equipment

Info

Publication number
JPS5937446A
JPS5937446A JP14874882A JP14874882A JPS5937446A JP S5937446 A JPS5937446 A JP S5937446A JP 14874882 A JP14874882 A JP 14874882A JP 14874882 A JP14874882 A JP 14874882A JP S5937446 A JPS5937446 A JP S5937446A
Authority
JP
Japan
Prior art keywords
irradiance
light
ultraviolet
monitor
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14874882A
Other languages
Japanese (ja)
Other versions
JPH0216982B2 (en
Inventor
Yoichi Minematsu
峰松 陽一
Kanji Yusa
遊佐 莞次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14874882A priority Critical patent/JPS5937446A/en
Publication of JPS5937446A publication Critical patent/JPS5937446A/en
Publication of JPH0216982B2 publication Critical patent/JPH0216982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/004Investigating resistance of materials to the weather, to corrosion, or to light to light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To monitor an aging decrease in the irradiance of an ultraviolet part and the lighting condition of a lamp, by measuring the irradiance of the ultraviolet and that of a visible part through >=2 photosensors in a metallic block case controlled at constant temperature. CONSTITUTION:While ultraviolet rays with a specific wavelength from a light source is made incident to a photosensor 4 in the metallic block 7 controlled at the constant temperature through a diffusing plate 1, interference filter 2, and light guide 2, visible light with a specific wavelength is made incident to a photosensor 4'. Those incident light beams are converted by current-voltage converters 18 and 18' into electric signals, which are further converted by voltage-frequency converters 12 and 12' into frequencies, thereby displaying the irradiances on display devices 15 and 15' through arithmetic circuits 13 and 13' and integrating circuits 14 and 14'. A measurement of the visible part is utilized to monitor the lighting condition of the lamp, and a measurement of the ultraviolet part is utilized to monitor the deterioration of the lamp and the photodetection amount of a sample.

Description

【発明の詳細な説明】 本発明は、人工光源を用い友耐光性試験装置において光
源から試験片にあたる特定波長の紫外線の分光放射照度
の経時変化および試験中の積算値を求めると共に、ラン
プの点灯条件が適正に保たれているか否かを監視するた
めの耐光性試験装置用放射照度モニター装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an artificial light source to determine the change over time in the spectral irradiance of ultraviolet rays of a specific wavelength that hits a test piece from the light source and the integrated value during the test. The present invention relates to an irradiance monitor device for a light resistance test device for monitoring whether conditions are being maintained appropriately.

このような目的のために従来から光電式光センサーを用
いた光モニター装置が用いらnているが、種々な欠点を
持っている。例えば光電式光センサーの分光感度が温度
の影響全骨けその影響が波長によって異ること、又暗電
流が温度によって変ること1等が知られているにもかか
わらず従来のものは光センサーの温度について注意が払
われていなかった。
Although optical monitoring devices using photoelectric optical sensors have been used for this purpose, they have various drawbacks. For example, although it is known that the spectral sensitivity of photoelectric photosensors is affected by temperature, the effects of whole bones differ depending on the wavelength, and that dark current changes depending on temperature, conventional photosensors No attention was paid to temperature.

本発明においては光センサーの温度を一定に調節制御す
ることによってこのような欠点を除いたものである。
The present invention eliminates this drawback by controlling the temperature of the optical sensor to be constant.

また従来のものは耐光性を試験する材料が表化する波長
領域の紫外線の放射照度またはその時間積算値をモニタ
ーしているが、可視部の狭い特定波長のモニターは行な
われていない、一般に人工光源の放射照度は点灯条件を
一定に保った場合に点灯時間の経過に従って低下するが
、その傾向すなわち動程曲線は第1図のようである。可
視部のある波長の放射照度は第1図のaのようにわずか
の低下を示し、紫外部のある波長は第13図すのように
可視部にくらべてはるかに大きな低下を示す。
In addition, conventional methods monitor the irradiance of ultraviolet rays in the wavelength range expressed by the material being tested for light resistance, or its time-integrated value, but monitoring of specific wavelengths in the narrow visible region is not carried out.Generally, artificial When the lighting conditions are kept constant, the irradiance of the light source decreases as the lighting time elapses, and the tendency, that is, the movement curve, is as shown in FIG. The irradiance at a certain wavelength in the visible region shows a slight decrease as shown in a in FIG. 1, and the irradiance at a certain wavelength in the ultraviolet region shows a much larger decrease compared to the visible region as shown in FIG. 13.

点灯条件が一定に保たれない場合、例えば電源電圧が変
動する場合には放射照度は電源電圧の二乗秒度に比例し
て変化するので、可視部でも第1図のaにくらべて大き
な変動を示す。更に光源として紫外線螢光ランプを用い
た場合にはランプの周囲温度と風速とによってランプ温
度が変化し、全波長域の放射温度の影響を受ける。
If the lighting conditions are not kept constant, for example if the power supply voltage fluctuates, the irradiance will change in proportion to the square second of the power supply voltage, so even in the visible area there will be large fluctuations compared to a in Figure 1. show. Furthermore, when an ultraviolet fluorescent lamp is used as a light source, the lamp temperature changes depending on the ambient temperature of the lamp and the wind speed, and is affected by the radiation temperature in the entire wavelength range.

このように点灯条件を監視するためには紫外部だけでな
く可視部の変化の少ない波長の光をモニターする必要が
あり、そのためには可視部全領域でなく変化の少ない波
長領域をモニターしなければならない。
In order to monitor the lighting conditions in this way, it is necessary to monitor not only the ultraviolet region but also the visible region, which has wavelengths that do not change much.To do this, it is necessary to monitor not only the entire visible region but also the wavelength region that does not change much. Must be.

これらを満足させるために、本発明においては2個以上
の光電式光センサーを、自動温度制御装置を備えた同一
の例へばアルミニウム製の金属ノコツク中に取付けるこ
とによって、全ての光センサーが一定温度に保之れるよ
うにして複数波長での放射照度を同時に測定し、可視部
の一波長での測定を点灯条件の監視に利用し、紫外部の
一波長または複数波長での測定をランプの劣化の監視と
試験試料の受光部のモニターに利用し次。又、放射照度
とその時間積算値は共に重要なので、両者を同時にモニ
ターできるようにしtものである。
In order to satisfy these requirements, in the present invention, two or more photoelectric light sensors are installed in the same example, such as a metal saw socket made of aluminum, equipped with an automatic temperature control device, so that all the light sensors can be kept at a constant temperature. The irradiance can be measured at multiple wavelengths at the same time, and measurements at one wavelength in the visible range can be used to monitor lighting conditions, and measurements at one or multiple wavelengths in the ultraviolet range can be used to monitor lamp deterioration. Used for monitoring and monitoring of the light receiving part of the test sample. Furthermore, since both the irradiance and its time integrated value are important, it is desirable to be able to monitor both at the same time.

以下に第2図及び第8図に基いて本発明の実施例を具体
的に説明する。
Embodiments of the present invention will be specifically described below with reference to FIGS. 2 and 8.

第2図は本発明に係る受光部の断面であって、本実施例
では紫外部と可視部と全夫々−波長づつの放射照度を測
定することが出来るものである。
FIG. 2 is a cross section of the light receiving section according to the present invention, and in this embodiment, it is possible to measure the irradiance of each wavelength in the ultraviolet region and the visible region.

■及び1′は受光部のコサイン特性改善のための拡散板
で、焼結アルミナ板又は砂すり石英板を採用しである。
2 and 1' are diffuser plates for improving the cosine characteristics of the light receiving section, which are made of sintered alumina or sanded quartz.

2及びτはモニターすべき波長の光を通過させる友めの
干渉フィルターで、該干渉フィルター2としては紫外用
で最大透過波長の誤差土面以内、透過中値幅10nm程
度のものを用いである。
2 and τ are companion interference filters that allow light of the wavelength to be monitored to pass through. The interference filter 2 is for ultraviolet use, and has a maximum transmission wavelength within an error range of about 10 nm, and a median transmission width of about 10 nm.

最大透過波長は光源の分光特性、試験試料の光劣化の作
用波長、フィルターの入手し易さ、などから決定するも
のである。318nm、 865nmなど水銀輝線スペ
クトルに相当する波長のものが入手し易い。光源として
紫外線螢光ランプを使う場合には螢光体から発光する連
続スペクトル光と上記輝線スペクトル光とをまとめて測
定することになる。ここでは818nmのものを用いた
が、313土10nmすなわち808nm から828
nmまでの紫外線放射照度を求めるとは考えず、818
nmにおける分光放射照度vi−10nmの波長幅で測
定するものと考えて値付けした・ただし紫外部干渉フィ
ルターの分光透過率は最大透過波長を中心として左右不
対称である。
The maximum transmission wavelength is determined based on the spectral characteristics of the light source, the wavelength at which the test sample undergoes photodegradation, the availability of filters, etc. Those with wavelengths corresponding to the mercury emission line spectrum, such as 318 nm and 865 nm, are easily available. When an ultraviolet fluorescent lamp is used as a light source, the continuous spectrum light emitted from the fluorescent material and the bright line spectrum light described above are measured together. Here, 818 nm was used, but 313 nm is 10 nm, or 808 nm to 828 nm.
Without thinking of finding the ultraviolet irradiance down to 818 nm,
The spectral irradiance in nm was determined based on the assumption that it was measured in a wavelength width of vi - 10 nm.However, the spectral transmittance of an ultraviolet interference filter is asymmetrical with respect to the maximum transmission wavelength.

前記した干渉フィルターゾは可視部用干渉フィルターで
、紫外線螢光ランプ光源の場合に最大透過波長546±
lnm、透過中値幅8nm透過率の左右対称性のよいも
のを用いた。これは螢光ランプの株色の水銀輝線に相当
する波長を監視するもので、この波長の光は第1図で示
すようにランプの劣化にともなう経時変化が少ない。
The interference filter mentioned above is an interference filter for the visible region, and has a maximum transmission wavelength of 546± when using an ultraviolet fluorescent lamp light source.
1 nm, transmission median width 8 nm, and good left-right symmetry of transmittance were used. This monitors the wavelength corresponding to the mercury emission line of the stock color of a fluorescent lamp, and as shown in FIG. 1, light of this wavelength changes little over time as the lamp deteriorates.

紫外線螢光ランプではこの領域に螢光体発光はなく55
46簡における輝線の放射照度だけを測定していること
になる。
In ultraviolet fluorescent lamps, there is no phosphor emission in this region55
This means that only the irradiance of the bright line at 46 points is measured.

8及びぎは光センサーへの斜入射を防止するための光ガ
イドでハニカム状に形成しである。干渉フィルター2及
びτは斜入射によって透過波長が変るので、測定する波
長領域を正確に保ち九い場合に必要であるが、相対的モ
ニターで充分な場合には省略することもできる。
The eighth beam is a light guide formed in a honeycomb shape to prevent oblique incidence on the light sensor. Since the transmission wavelength of the interference filter 2 and τ changes due to oblique incidence, they are necessary to accurately maintain the wavelength range to be measured, but can be omitted if relative monitoring is sufficient.

4及び4′は光センサーとしてのシリコンフォトダイオ
ードで、同一性能のものを前記干渉フィルター2及びゾ
との組合せによって4は紫外部4′は可視部用とする。
Reference numerals 4 and 4' designate silicon photodiodes as optical sensors, which have the same performance and are combined with the interference filters 2 and 2 for use in the ultraviolet region and 4' in the visible region.

可視部の放射照度が大きすぎる場合には干渉フィルター
2′と光センサ−4′との間にフォトエツチングによる
金属減光板(図示せず)を入れて入射光を調節できる。
If the irradiance in the visible region is too large, a photo-etched metal attenuation plate (not shown) may be inserted between the interference filter 2' and the optical sensor 4' to adjust the incident light.

更に紫外部の測定波長の数をふやす場合には金属ブロッ
ク7としてのアルミニウムブロック内に上記と同様な受
光系を増設すればよい。
Furthermore, if the number of measurement wavelengths in the ultraviolet region is to be increased, a light receiving system similar to the above may be added within the aluminum block serving as the metal block 7.

5#′i温度センサー、6け半導体発熱体であり、金属
ブロック7としてのアルミニウムブロック内の温度を一
定に保つために用いられる。8けシリカゲルであって、
アルミニウムブロック内を乾燥させるものである。紫外
用干渉フィルター2に組合された黒色のバンドパスフィ
ルター(図示せず)は特に水蒸気によって加水分解劣化
するので、ブロック7内tfiOリングとハーメチック
シール9で完全に防湿構造としである。
5#'i temperature sensor, 6 semiconductor heating elements, used to keep the temperature inside the aluminum block as the metal block 7 constant. 8 silica gel,
This is to dry the inside of the aluminum block. Since the black bandpass filter (not shown) combined with the ultraviolet interference filter 2 is particularly susceptible to hydrolytic deterioration due to water vapor, it has a completely moisture-proof structure with the TFIO ring inside the block 7 and the hermetic seal 9.

10はブロック支持および測定回路を通すためのパイプ
である。11は熱絶縁用高分子発泡体で、表面は光劣化
を防止するためアルミニウム箔などで包んである。
10 is a pipe for passing the block support and measurement circuit. 11 is a heat insulating polymer foam whose surface is wrapped with aluminum foil or the like to prevent photodeterioration.

第8図は測光回路および温度調節回路のブロックダイヤ
グラムである。
FIG. 8 is a block diagram of the photometric circuit and temperature control circuit.

18及び18′は光センサ−(4,4′)の光電流を電
圧に変換する光電流−電圧変換回路であり、電流測定用
ICの負帰還抵抗を変えることにより又次段増幅回路の
増幅率を変えることによって感度を調整するよう成しで
ある。又感度の値付(7) けは分光放射照度標準ランプによって値付けされたハロ
ゲンランプを用いて行なう。
18 and 18' are photocurrent-to-voltage conversion circuits that convert the photocurrent of the optical sensor (4, 4') into voltage, and by changing the negative feedback resistance of the current measurement IC, the amplification of the next stage amplifier circuit is The sensitivity can be adjusted by changing the ratio. Sensitivity valuation (7) is carried out using a halogen lamp whose spectral irradiance is rated according to a standard lamp.

12及び12′は光電流−電圧変換回路(18,18’
)で測定さ几た電圧値全周波数に変換する電圧−周波数
変換回路、18及び13′は短時間の積分で瞬間の放射
照度を計算する演算回路、14及び1(は照射の開始か
ら終了まで積分をっyけて積算放射照度を計算する積分
回路である。15薦15’はそれらをディジタル表示す
る表示器である。
12 and 12' are photocurrent-voltage conversion circuits (18, 18'
18 and 13' are arithmetic circuits that calculate the instantaneous irradiance by short-time integration. This is an integration circuit that calculates the integrated irradiance by taking the integrals.15 and 15' is a display that digitally displays them.

又必要に応じてディジタルプリントすることもできる。It can also be digitally printed if necessary.

16はアナログ除算回路であり、紫外/可視の比率を求
めることができるように成しである。
Reference numeral 16 denotes an analog division circuit, which is constructed so that the ultraviolet/visible ratio can be determined.

温度センサー6としては絶対温度測定用ICを用い、温
度調節回路17によって半導体発熱体6の発熱を自動制
御してアルミニウムブロック7を一定温度に保つように
成しである。
As the temperature sensor 6, an IC for absolute temperature measurement is used, and the temperature control circuit 17 automatically controls the heat generation of the semiconductor heating element 6 to maintain the aluminum block 7 at a constant temperature.

光センサ一温度は暗電流減少の点からは低い方が望まし
いが、簡易化のため加熱保温としである。設定温度は周
囲の窒気湛度の予想最高値と(8) しである。
Although it is desirable that the temperature of the optical sensor be low from the point of view of reducing dark current, it is heated and kept warm for the sake of simplicity. The set temperature is the expected maximum value of the ambient nitrogen content (8).

次に叙上の構成から成る本発明の作用について説明する
Next, the operation of the present invention having the above configuration will be explained.

一定温度に制御され友金属ブロック7内の光センサ−4
に拡散板1、干渉フィルター2.光ガイド8を介して光
源(図示せず)からの紫外部の特定波長を入射せしめる
と同時に光センサーイに拡散板1′、干渉フィルター2
′、光ガイド8′を介して光源からの可視部の特定波長
を入射せしめる。
Optical sensor 4 inside friend metal block 7 controlled to a constant temperature
A diffuser plate 1, an interference filter 2. A specific wavelength of ultraviolet light from a light source (not shown) is made incident through a light guide 8, and at the same time a diffuser plate 1' and an interference filter 2 are applied to the light sensor.
', a specific wavelength in the visible range from the light source is made incident through the light guide 8'.

光センサ−(4,4’)に入射した光は光電流−電圧変
換回路(18,18’ )により電気信号に変換され、
次段で電圧−周波数変換回路(12゜12′)により周
波数に変換さn1演算回路o8.1 B’ ) 、積分
回路(14,14Jt−介して表示器(15,15’ 
) に放射照度がデジタル表示せしめらnる。
The light incident on the optical sensor (4, 4') is converted into an electrical signal by the photocurrent-voltage conversion circuit (18, 18'),
In the next stage, the voltage is converted into a frequency by the voltage-frequency conversion circuit (12°12'), the n1 arithmetic circuit (o8.1B'), and the display (15,15')
) The irradiance is displayed digitally.

而して1本発明は叙上の如き構成及び作用を有するもの
で、特に温度調節をした光センサーに少なくとも紫外部
と可視部の2つの特定波長の光を同時に入射すべく成し
たので、高精度の測定を簡単に行い得る等の効果がある
Therefore, 1. the present invention has the structure and function as described above, and is designed to allow light of at least two specific wavelengths, ultraviolet and visible, to simultaneously enter a temperature-controlled optical sensor. This has advantages such as being able to easily measure accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は螢光灯から放射される紫外部a及び可視部すの
放射照度の時間に対する一般的変化を表わす図で、横軸
に時間t1縦軸に放射照度Qを採っである。 第2図は本発明に係るモニター装置の概略図、第8図は
同じくその電気回路のブロックダイヤグラムである。 4.4’・iセンサー  5・・・温度センサー7・・
・金属ブロック  15.15’・・・表示器特許出願
人  峰 松 陽 − 第1図 命嘔 1−− 第2図 第3図 6
FIG. 1 is a diagram showing general changes over time in the irradiance of ultraviolet a and visible light emitted from a fluorescent lamp, with time t1 plotted on the horizontal axis and irradiance Q plotted on the vertical axis. FIG. 2 is a schematic diagram of a monitor device according to the present invention, and FIG. 8 is a block diagram of its electric circuit. 4.4'・i sensor 5...temperature sensor 7...
・Metal block 15.15'...Display patent applicant Hiroshi Minematsu - Figure 1 Meiyo 1-- Figure 2 Figure 3 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 経時変化の大きい紫外部め特定波長の放射照度と経時変
化の小さい可視部の特定波長の放射照度とを、一定温度
に調節制御された金属ブロックケース内においた二個又
はそれ以上の数の光電光センサーによって同時に測定し
、可視部を基準にして紫外部の放射照度の経時低下およ
び光源ランプの点灯条件の維持状態をモニターすること
を特徴とする耐光性試験機用放射照度モニター装置
The irradiance of a specific wavelength in the ultraviolet region, which has a large change over time, and the irradiance at a specific wavelength in the visible region, which has a small change over time, can be controlled by two or more photoelectrons placed in a metal block case whose temperature is controlled to a constant temperature. An irradiance monitoring device for a light fastness tester, characterized in that the irradiance is simultaneously measured by a light sensor and the irradiance in the ultraviolet region is monitored over time with respect to the visible region, and the lighting conditions of the light source lamp are maintained.
JP14874882A 1982-08-26 1982-08-26 Irradiance monitor device for light-proof test equipment Granted JPS5937446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14874882A JPS5937446A (en) 1982-08-26 1982-08-26 Irradiance monitor device for light-proof test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14874882A JPS5937446A (en) 1982-08-26 1982-08-26 Irradiance monitor device for light-proof test equipment

Publications (2)

Publication Number Publication Date
JPS5937446A true JPS5937446A (en) 1984-02-29
JPH0216982B2 JPH0216982B2 (en) 1990-04-19

Family

ID=15459738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14874882A Granted JPS5937446A (en) 1982-08-26 1982-08-26 Irradiance monitor device for light-proof test equipment

Country Status (1)

Country Link
JP (1) JPS5937446A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115726A (en) * 1988-10-25 1990-04-27 Matsushita Electric Works Ltd Measuring instrument for quantity of reception light
JP2016038387A (en) * 2014-08-07 2016-03-22 アトラス マテリアル テスティング テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor device including a plurality of sensors for exposure device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415783U (en) * 1990-05-29 1992-02-07

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429034U (en) * 1977-07-29 1979-02-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429034U (en) * 1977-07-29 1979-02-26

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115726A (en) * 1988-10-25 1990-04-27 Matsushita Electric Works Ltd Measuring instrument for quantity of reception light
JPH0529857B2 (en) * 1988-10-25 1993-05-06 Matsushita Electric Works Ltd
JP2016038387A (en) * 2014-08-07 2016-03-22 アトラス マテリアル テスティング テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor device including a plurality of sensors for exposure device

Also Published As

Publication number Publication date
JPH0216982B2 (en) 1990-04-19

Similar Documents

Publication Publication Date Title
US5340974A (en) Polychromatic source calibration by one or more spectrally filtered photodetector currents
CA1134644A (en) Multispectral light detection system
JP2012527779A (en) Quantum efficiency measurement system and method of use
JP3313663B2 (en) Flame detector
GB1168815A (en) Apparatus for Measuring Absorbance Differences
Cochran et al. Spectral and noise characteristics of a 300-Watt Eimac arc lamp
Ikonen et al. Radiometric realization of the candela with a trap detector
JPS5937446A (en) Irradiance monitor device for light-proof test equipment
JP2010112808A (en) Optical power meter
Ohno et al. The detector-based candela scale and related photometric calibration procedures at NIST
Toivanen et al. Realizations of the units of luminance and spectral radiance at the HUT
US5903346A (en) Analysis system
KR20190035853A (en) Photometer test system for LED
US5061066A (en) Method for realizing a primary photometric standard of optical radiation using a photodetector and photodetecting apparatus therefor
JP2013171007A (en) Optical power meter
RU2094757C1 (en) Method of determination of ultraviolet radiation intensity
JPS63127127A (en) Light power measuring device
RU2582622C1 (en) Uv luminescence dosimetry
Eghbali et al. Differential Spectral Responsivity of Solar Cells Measured with an LED Based Experimental Setup
Carr Integrating sphere calibration sources for remote sensing imaging radiometers
Nader et al. 1: FILTER-PHOTOCELL MEASUREMENTS
Liedquist et al. Comparison of luminous-intensity scales based on trap detectors and incandescent lamps
Eppeldauer et al. Luminous intensity measurements of sources using a new detector-based illuminance scale
RU2313770C1 (en) Method of stabilizing operation of photoreceiving unit of hydro-optic measuring channel
Ganiany et al. Solar photometry: Application of new silicon cell