JPS5935741A - Solar cooling/heating system - Google Patents

Solar cooling/heating system

Info

Publication number
JPS5935741A
JPS5935741A JP57145271A JP14527182A JPS5935741A JP S5935741 A JPS5935741 A JP S5935741A JP 57145271 A JP57145271 A JP 57145271A JP 14527182 A JP14527182 A JP 14527182A JP S5935741 A JPS5935741 A JP S5935741A
Authority
JP
Japan
Prior art keywords
hydrogen
tank
heating
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57145271A
Other languages
Japanese (ja)
Inventor
Daizo Takaoka
大造 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57145271A priority Critical patent/JPS5935741A/en
Publication of JPS5935741A publication Critical patent/JPS5935741A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To provide the titled system adapted to heat or cool an air even at the shortage in an insolation energy, by arranging such that when there is an ample insolation energy, the heat and electricity of solar ray are taken out simultaneously for their respective purposes of heating and cooling, while a surplus electricity is utilized to generate a hydrogen inside an electrolytic tank for its storage, and when an insolation energy becomes shortage the stored hydrogen is utilized to drive a fuel cell for generating an electricity which may be used for the cooling operation, or burnt by a hydrogen boiler for generating a heat which may be used for the heating operation. CONSTITUTION:An electricity obtained by a solar battery 55 is conductive to an anode and a cathode inside an electrolytic tank 39 for generating an oxygen and a hydrogen at the anode and the cathode respectively. The hydrogen thus generated is subject to a compression by means of a hydrogen compressor 44 and raised its pressure for storage inside a hydrogen tank 41. To operate the system in a cooling mode during a summer season, the hydrogen compressed and stored inside the hydrogen tank 41 is caused to release its pressure by means of a pressure reducing valve 50 and guided into a fuel battery 46 through a three-way valve 47 adapted to switchover the replenishment of hydrogen, while an oxygen of oxygen tank 42 or an atmospheric air (oxygen) is introduced as the oxidizing agent thereof into the fuel battery wherein an electric power generation is performed. The electricity thus generated is introduced into a DC compressor 38 for driving a steam compression refrigerator which may produce a cold water for use in a cooling operation. To operate the system in a heating mode during a winter season, a hot water is converted into a thermal energy inside a heat accumulative tank 2 by means of a hybrid collector 37 and used to heat the air.

Description

【発明の詳細な説明】 この発明は、太陽エネルギー全利用して冷暖房を行う太
陽冷暖房システムに関する。さらに詳しくは、太陽光か
ら熱と電気とを同時に取り出して熱で暖房を行い電気で
冷房を行う太陽エネルギー利用システムであって、かつ
余剰の電気を使って電解槽で水素を発生させこれを貯蔵
することでエネルギー貯蔵を行い、日射によるエネルギ
ーが不足したとき、貯蔵きれた水素により燃料電池を駆
動し1発電しその電気で冷房を行うかもしくけ貯蔵され
た水素を燃焼させる水素ボイラーで熱を発生させて暖房
を行うようにした太陽冷暖房システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar heating and cooling system that utilizes all solar energy for heating and cooling. More specifically, it is a solar energy utilization system that extracts heat and electricity from sunlight at the same time, heats the room with the heat, and cools the room with the electricity, and also uses the surplus electricity to generate hydrogen in an electrolyzer and store it. When there is a shortage of energy from sunlight, the stored hydrogen can be used to drive a fuel cell to generate electricity, which is then used to cool the room.The hydrogen boiler that burns the stored hydrogen generates heat. This invention relates to a solar heating and cooling system that performs heating by heating.

第1図は、太陽光から熱エネルギーを得°C冷房時には
吸収冷凍機を使用して冷房を行う太陽エネルギー利用冷
暖房給湯シスデムの代表的な従来例のシステム系統図で
ある。
FIG. 1 is a system diagram of a typical conventional example of a solar energy-utilizing air-conditioning, heating, and hot-water supply system that obtains thermal energy from sunlight and uses an absorption chiller when cooling the room.

(1)祉太陽熱コレクター、(2)は蓄熱槽、(3)は
集熱ポンプ、(4)は集熱系用弁で、以上で熱源系を構
成する。太陽光から熱エネルギーを得る集熱運転り、日
射があるとき、集熱系用弁(4)が開かれ、蓄熱槽(2
)内の水が焦熱ポンプ(3)により太陽熱コレクター(
1)に導かれ、太陽熱コレクター(1)内を通る間に太
陽光によって加熱され、再び蓄熱槽(2)に戻ることを
繰り返されることによって行われる。
(1) A solar heat collector, (2) a heat storage tank, (3) a heat collection pump, and (4) a heat collection system valve, which together constitute a heat source system. During heat collection operation that obtains thermal energy from sunlight, when there is sunlight, the heat collection system valve (4) is opened and the heat storage tank (2
) is pumped by the pyrothermal pump (3) to the solar collector (
1), is heated by sunlight while passing through the solar collector (1), and returns to the heat storage tank (2), which is repeated.

(5)は吸収冷凍機、(6)は冷却塔、(7)は冷温水
槽、181 Fi冷暖房駆動用ポンプ(以下、駆動用ポ
ンプと称す。) 、+91は冷水ポンプ、曲)(」冷却
水ポンプ、(lJけ冷凍機人口弁、(14)は冷凍捜出
L1弁、(15)は冷暖房切換用三方弁、(11;田冷
水人11′11、(17)は冷水出1−1弁、(181
ハ温水人11弁、(+91 tt−h iA水出II−
/+[、0fil−(1!l !:I。
(5) is an absorption chiller, (6) is a cooling tower, (7) is a cold/hot water tank, 181 Fi air conditioning drive pump (hereinafter referred to as a drive pump), +91 is a cold water pump, (song) ("cooling water Pump, (1J) Refrigerator population valve, (14) is Refrigeration search L1 valve, (15) is 3-way valve for switching between air conditioning and heating, (11; Tareishuijin 11'11, (17) is cold water outlet 1-1 valve , (181
HA warm water person 11 valves, (+91 tt-h iA Mizuide II-
/+[,0fil-(1!l!:I.

冷温水槽(7)への冷水、渇水の出入を基準としている
。)llldファンコイルユニット、(2+16廿)T
ンコ・rル用ポンプであり、以上で冷暖房系を構成する
。(11)は補助ボイラ、02)は熱源uノ換用三方弁
で一1以上で補助熱源系を構成する。
This is based on the flow of cold water into and out of the hot and cold water tank (7) during periods of drought. )lld fan coil unit, (2+16 廿)T
This is a pump for indoor and outdoor use, and the above constitutes a heating and cooling system. (11) is an auxiliary boiler, 02) is a three-way valve for switching the heat source U, and 11 or more constitute an auxiliary heat source system.

夏の冷房時には、渇水人口弁(Ift+、温水出目弁(
1!1は閉じられ、冷暖房切換用三方弁051は図上で
左右方向2・開とし下方向には閉じらfl 、 1?7
熱槽(21と冷温水槽(7)の間での水の直接の移動は
ない。冷凍機人[1弁(131、冷凍抄出1−1弁04
)は開となり、また冷水人口弁(1暇冷水出目弁(17
+ +1.開である。蓄熱槽(2)内の水温が吸収冷凍
機(5)を駆動するのに十分高温であるときには、熱源
切換用弁02)か図で左右方向を開とし、下方向には閉
じられ、補助ボイラ0】)を通る水の流路は遮断される
。このとき蓄熱槽(2)内の温水は駆動用ポンプ(8)
により吸収冷凍機用熱源として吸収冷凍機(5)に熱を
与え、また冷却塔(6)の水が吸収冷凍機(5)内の吸
収器、凝縮器に与えられ、吸収冷凍機(5)が作動する
。このようにして作動している吸収冷凍機(5)に冷温
水槽(7)内の水が冷水ポンプ(9)によって導かれ、
冷却され、冷温水槽(7)に戻ることを繰り返し、冷水
を得る。一方、蓄熱槽(2)内の水温が吸収冷凍機(5
)を駆動するために十分には高温でないときには、熱源
切換用弁04は図で右〜下の方向に開かれ左方向は閉じ
られて、吸収冷凍機(5)から出て来た温水は蓄熱槽(
2)には戻らずに補助熱源01)を通り、加熱され、駆
動用ポンプ(8)九より吸収冷凍機(5)に入ることに
よつで、吸収冷凍機(5)を駆動し、以下同様にして冷
房用冷水を得る。冷温水槽(7)内の冷水はファンコイ
ル用ポンプt21+にヨリファンコイルユニット■nに
導かね、ファンコイルユニット(社)内を通る室内空気
と熱交換し、室内空気を冷却し、冷房システムは完結す
る。
When cooling the air conditioner in summer, the water shortage valve (If+) and hot water output valve (
1!1 is closed, and the three-way air conditioning/heating switching valve 051 is opened in the left and right direction 2 in the diagram and closed in the downward direction fl, 1?7.
There is no direct movement of water between the heat tank (21) and the cold/hot water tank (7).
) is open, and the cold water valve (17) is open.
+ +1. It is open. When the water temperature in the heat storage tank (2) is high enough to drive the absorption chiller (5), the heat source switching valve 02) is opened in the left and right directions as shown in the figure, closed in the downward direction, and the auxiliary boiler is closed. 0]) is blocked. At this time, the hot water in the heat storage tank (2) is pumped by the driving pump (8).
gives heat to the absorption chiller (5) as a heat source for the absorption chiller, and water from the cooling tower (6) is fed to the absorber and condenser in the absorption chiller (5). is activated. The water in the cold/hot water tank (7) is guided by the cold water pump (9) to the absorption refrigerator (5) which is operating in this manner.
The water is cooled and returned to the cold/hot water tank (7) repeatedly to obtain cold water. On the other hand, the water temperature in the heat storage tank (2) is
), the heat source switching valve 04 is opened from right to bottom in the figure and closed to the left, and the hot water coming out of the absorption chiller (5) is stored as heat. Tank (
It passes through the auxiliary heat source 01) without returning to 2), is heated, and enters the absorption refrigerator (5) from the drive pump (8) 9, thereby driving the absorption refrigerator (5). Cold water for air conditioning is obtained in the same manner. The cold water in the cold/hot water tank (7) is guided to the fan coil pump t21+ to the fan coil unit ■n, where it exchanges heat with the indoor air passing through the fan coil unit (company), cools the indoor air, and the cooling system Complete.

冬の暖房時には次のようにして暖房を行う。即ち、冷凍
機人口弁(13)、冷凍損出[1弁(141i、i閉で
、濡水入口弁0榎温水出ロ弁(1!l) a開である。
During winter heating, heating is performed as follows. That is, the refrigerating machine population valve (13), the refrigerating loss output valve (141i, i closed), the wet water inlet valve 0 and the warm water outlet valve (1!l) a open.

冷暖房切換用三方弁(内は図で右〜下方向に開で左方向
は閉じられる。冷水入[]弁(161,冷水出目弁(1
7jは閉とする。
Three-way valve for heating/cooling switching (opens from right to bottom in the figure and closes to the left. Cold water inlet valve (161), cold water outlet valve (161)
7j is closed.

このようにし又吸収冷YM機(5)への水の出入りはな
くなるようにされる。蓄熱槽(2)内の水温が暖房を行
うのに十分高温であると+!!には1、熱焼切換用三方
弁(1つは図で左右方向に開か−1、下方向には閉じら
れ、蓄熱槽(2)内の濁水か駆動用ホンダ(8)により
冷温水槽(7)内の水と4換され、冷温水槽(7)内の
水の温度を上ける。また、蓄熱槽(2)内の水温が暖房
を行うのに十分には高くないときには、熱源切換用三方
弁021を図では右・〜下方向に開と1−左方向に閉じ
て、冷温水槽(7)内の水を蓄熱槽(2)を通さずに補
助ボイラ01)を通して加熱し1.水の温度を上げる。
In this way, no water flows into or out of the absorption cooling YM machine (5). +! If the water temperature in the heat storage tank (2) is high enough for heating! ! 1. The three-way valve for thermal sintering switching (one opens left and right in the figure - 1, and is closed downward, and the turbid water in the heat storage tank (2) is connected to the cold and hot water tank (7) by the driving Honda (8) ), raising the temperature of the water in the cold/hot water tank (7).Also, when the water temperature in the heat storage tank (2) is not high enough for heating, the three-way heat source switching In the figure, the valve 021 is opened to the right/downward and closed to the left (1), and the water in the cold/hot water tank (7) is heated through the auxiliary boiler 01) without passing through the heat storage tank (2).1. Increase the temperature of the water.

このようにして得られた暖房するの忙十分高温である冷
温水槽(7)内の水は、ファンコイル用ポンプc!1)
によりファンコイルユニット(4)に導かれ、ファンコ
イルユニッ) (20+を通る室内空気を暖めて暖房を
行う。
The water in the cold/hot water tank (7), which is sufficiently hot for heating, is pumped by the fan coil pump c! 1)
The air is guided to the fan coil unit (4), and indoor air passing through the fan coil unit (20+) is heated to perform heating.

冷房時において、冷温水槽(7)内の冷水温度が冷房を
行なうために十分低いとき社、吸収冷凍機(5)は停止
される。また暖房時において、冷温水槽(7)内の水の
温度が暖房を行うのに十分高いときけ、冷温水槽(7)
の水のやりとりは停止される。
During cooling, when the temperature of the cold water in the hot/cold water tank (7) is low enough for cooling, the absorption refrigerator (5) is stopped. Also, during heating, if the temperature of the water in the cold/hot water tank (7) is high enough to perform heating, the cold/hot water tank (7)
water exchange will be suspended.

給湯は次のようにして行う。(221は給湯用タンク、
c!31は給湯用ポンプ、(24)は給湯タンク人口弁
、(ホ)は給湯タンク出口弁で、給湯タンク(2)内の
水が給湯用ポンプ(財)により蓄熱槽(2)内に導かれ
、蓄熱槽(2)内の温水り熱交換して暖められ、給湯タ
ンク0シ内に戻り、この水が給湯に供せられる。
Hot water is supplied as follows. (221 is a hot water tank,
c! 31 is a hot water supply pump, (24) is a hot water tank population valve, and (E) is a hot water tank outlet valve, the water in the hot water tank (2) is guided into the heat storage tank (2) by the hot water supply pump (goods). The hot water in the heat storage tank (2) is heated by heat exchange and returned to the hot water tank 0, where this water is used for hot water supply.

第2図も太陽エネルギーによって冷暖房給湯を行う従来
例で、第1N−おける吸収式冷凍機(5)の代り忙ラン
キンエンジン駆動蒸気圧縮式冷凍機を使用した代表的表
従来システムのシステム、l[[である。この冷凍機は
図中で一点鎖線で囲んだ部分である。第2図の中で第1
図のシステムと同じ働きをする部分には同一の符号を付
1−同一の名称とし説明を省略する。
Figure 2 also shows a conventional example of heating, cooling, and hot water supply using solar energy; [is. This refrigerator is the part surrounded by a dashed line in the figure. The first in Figure 2
Parts that function in the same way as in the system shown in the figure are given the same reference numerals and names, and their explanations will be omitted.

@け冷房用補助ボイラ、a)は冷房熱源切換用三方弁、
(ハ)は加圧ポンプ、@け膨張機(一般にtjフロンタ
ービンが使用される。)、(311)けランキンライフ
ル凝縮器、Gυは圧縮機、(財)は冷凍ライフル凝縮器
、(ト)は膨張弁、c(4)Fi蒸発器、粥)は暖房用
補助ボイラ、(ト)は暖房熱源切換用三方弁である。加
圧ポンプ(支))により−Cランキンサイクル内を循環
するランキンエンジンの作動流体U、一般には、水より
も低温高庄で蒸発するフレオンか用いられる。
@ke Auxiliary boiler for cooling, a) is a three-way valve for switching the cooling heat source,
(c) is a pressurizing pump, an expander (TJ Freon turbine is generally used), (311) a Rankine rifle condenser, Gυ is a compressor, (Foundation) is a refrigeration rifle condenser, (g) is an expansion valve, c(4)Fi evaporator, porridge) is a heating auxiliary boiler, and (g) is a three-way valve for heating heat source switching. The working fluid U of the Rankine engine, which is circulated within the -C Rankine cycle by a pressurizing pump (support), is generally Freon, which evaporates at a lower temperature and higher strength than water.

集熱運転、給湯、冷温水槽(7)とファンフィルユニッ
ト@)の間の冷温水のやりとりは、第1図の吸収冷凍機
を使用したシステムと同じであるので、説明を省略する
The heat collection operation, hot water supply, and exchange of cold and hot water between the cold and hot water tank (7) and the fan fill unit @) are the same as in the system using the absorption refrigerator shown in FIG. 1, so their explanation will be omitted.

夏の冷房時には、冷暖房切換用三方弁05)は図で右〜
・下方向を開とし左方向は閉じられ、蓄熱槽(2)内の
温水と冷温水槽(7)内の水の直接のやりとりをなくし
、冷温水槽(7)内の水が蒸発器の4)のみを通過する
ようにする。蓄熱槽(2)内の温水温度がランキンエン
ジンを駆動し冷房を行うのに十分高温であるききには、
冷房熱源切換用三方弁@は図で左右方向に開、下方向に
閉じられる。ランキンライフル内の作動流体は加圧ポン
プ(ハ)で液体のまま加圧され、蓄熱槽(2)内を通過
するとき加熱さ−1、高圧の蒸気となり膨張機(至)に
導かれる。ここで作動流体は膨張し圧力がさがり、膨張
機129)は動力を得る。
During summer cooling, the three-way valve 05) for switching between air conditioning and heating should be
・The bottom side is open and the left side is closed, eliminating the direct exchange of hot water in the heat storage tank (2) and water in the cold/hot water tank (7), so that the water in the cold/hot water tank (7) flows into the evaporator (4). only pass through. When the temperature of the hot water in the heat storage tank (2) is high enough to drive the Rankine engine and perform air conditioning,
The cooling heat source switching three-way valve @ opens in the left and right directions in the figure and closes in the downward direction. The working fluid inside the Rankine rifle is pressurized as a liquid by the pressurizing pump (c), and when it passes through the heat storage tank (2), it is heated -1 and becomes a high-pressure vapor and is led to the expander (to). Here, the working fluid expands and its pressure decreases, and the expander 129) gains power.

作動流体は更にランキンサイクル凝縮器001に入り液
化し、ランキンサイクルを完結する。膨張機C!(支)
と圧縮機61)は連結されているので、圧縮機C’ll
l k″ii仕事、冷凍サイクルの作動流体を気体のま
ま圧縮し冷凍サイクル凝縮器国に導く。冷凍サイクルの
作動流体は冷凍サイクル凝縮器0シで、冷却塔(6)か
ら送られてくる水と熱交換し1放熱し、高圧のまま液化
して膨張弁曽に導かれ、ここで膨張して、低If、低温
の液体となる。更に冷凍サイクルの作動流体は、蒸発器
04)で冷混水槽(7)から送られてくる水と熱交換し
、気化する一方、冷温水槽(7)から送られてくる水を
冷却し、冷房に供する温度まで下げる。蓄熱槽(2)内
の温水がランキンエンジンを駆動するのに十分には高温
でないときは、冷暖房切換用三方弁勾が図では右〜下方
向が開、左方向が閉じられ、加圧ポンプ(ハ)により送
られてきたランギンサイクル作動流体は蓄熱槽(21に
は送られず、冷房用補助ボイラ怖)を通り加熱され、蒸
発し、膨張機C2’%Kまわされることにより、ランギ
ンエンジンを駆動して冷房用冷水を作る。
The working fluid further enters the Rankine cycle condenser 001 and is liquefied, completing the Rankine cycle. Expansion machine C! (support)
and compressor 61) are connected, so compressor C'll
l k''ii work, the working fluid of the refrigeration cycle is compressed as a gas and guided to the refrigeration cycle condenser. The working fluid of the refrigeration cycle is the water sent from the cooling tower (6) in the refrigeration cycle condenser 0. The working fluid of the refrigeration cycle is cooled in the evaporator 04), where it liquefies at high pressure and is guided to the expansion valve, where it expands and becomes a low-temperature liquid with a low If. It exchanges heat with the water sent from the mixed water tank (7) and vaporizes, while cooling the water sent from the cold/hot water tank (7) and lowering it to a temperature suitable for cooling.Hot water in the heat storage tank (2) When the temperature is not high enough to drive the Rankine engine, the three-way air conditioning/heating switching valve is open on the right to bottom side and closed on the left side in the figure, and the air conditioner is not hot enough to drive the Rankine engine. The Gin cycle working fluid passes through a heat storage tank (not sent to 21, but is used as an auxiliary boiler for cooling), is heated, evaporates, and is passed through an expander C2'%K, thereby driving the Langin engine and producing cold water for cooling. make.

冬の暖房時においては、冷暖房切換用三方弁(15!け
図では左右方向が開、下方向が閉じられる。蓄熱槽(2
)内の温水温度が暖房を行うのに十分高温であるときに
は、暖房熱源切換用三方弁(イ)は図では左右方向が開
、下方向が閉じらね、蓄熱槽(2)内の温水と冷温水槽
(7)内の水が駆動用ポンプ(8)により直接置換され
ることにより暖房用渇水を作る。蓄熱槽(2)内の温水
温度が暖房を行うのに十分には高温でないときには、暖
房熱源切換用三方弁06)は図では右〜下方向が開、左
方向が閉とし、冷温水槽(7)内の水は駆動用ポンプ(
8)により暖房用補助ボイラ05)を通過する間に加熱
され、暖房に使用ネれる温度まで昇温され、冷温水槽(
7)に戻り、暖房に供せられる。
During heating in winter, the three-way valve for switching between heating and cooling (15! In the figure, the left and right sides are open and the bottom side is closed.
) When the temperature of the hot water in the heat storage tank (2) is high enough to perform heating, the heating heat source switching three-way valve (a) opens in the left and right directions in the figure and does not close in the downward direction, causing the hot water in the heat storage tank (2) to Water in the cold/hot water tank (7) is directly replaced by the driving pump (8) to create a heating drought. When the hot water temperature in the heat storage tank (2) is not high enough for heating, the heating heat source switching three-way valve 06) is open from the right to the bottom in the figure, closed to the left, and the cold/hot water tank (7) is opened. ) The water in the drive pump (
8), it is heated while passing through the heating auxiliary boiler 05), and the temperature is raised to a temperature that can be used for heating.
Return to step 7) and use for heating.

冷温水槽(7)内の水温が冷暖房と行なうのに、適切な
温度のときVま、冷温水槽(7)内の水だけで冷暖房が
行われる。
When the temperature of the water in the hot and cold water tank (7) is appropriate for heating and cooling, only the water in the hot and cold water tank (7) is used for heating and cooling.

第3図も太陽エネルギーによって冷暖房給湯を行う従来
例で、第2図におけるランキンエンジン駆動蒸気圧縮式
冷凍機の代りにDC圧縮機による蒸気圧縮式冷凍機を使
用した従来システムのシステム系統図である。図中で第
1図または第2図と同じ働きをする部分社同−符号を付
してあり、説明を省略する。
Figure 3 also shows a conventional example of heating, cooling, and hot water supply using solar energy, and is a system diagram of a conventional system that uses a vapor compression refrigerator using a DC compressor instead of the Rankine engine-driven vapor compression refrigerator in Figure 2. . In the figure, parts having the same functions as those in FIG. 1 or 2 are given the same reference numerals, and their explanation will be omitted.

い)は太陽電池で、電源系を構成する。+481 &ま
配線切換用スイッチ、64)は鉛蓄電池で、以−ヒC補
助電源系を構成する。国はDC圧縮機である。太陽電池
(へ)と太陽熱コレ々ター(1)とは、・\イブリッド
ールクター(9)として一体に構成されている。
A) is a solar cell that constitutes the power supply system. +481 & 64) is a lead-acid battery, and constitutes an auxiliary power supply system. The country is a DC compressor. The solar cell (1) and the solar collector (1) are integrally constructed as an hybrid collector (9).

集熱運転、給湯、暖房、冷温水槽(7)とファンコイル
ユニッ)囲の間の冷温水q)やりと沙は、第2図のシス
テムと同り一であるので説明を省略する。
The heat collection operation, hot water supply, heating, cold and hot water (q) and sha between the cold and hot water tank (7) and the fan coil unit are the same as in the system shown in FIG. 2, so their explanation will be omitted.

このシステムでは、エネルギーを鉛蓄14j、池儲)に
貯めることができるので、まずこのエネルギー貯蔵運転
について説明すると、配線切換用スイッチ(481は左
右方向に導通され、下方向には通しないようにされる。
In this system, energy can be stored in the lead acid 14j, pond storage, so to begin with, I will explain this energy storage operation. be done.

太陽電池(転))で出力された電力は、鉛蓄電池拐)の
充電、に使用される。すなわち鉛蓄電池(54)に貯蔵
される。
The electricity output by the solar cells is used to charge the lead-acid batteries. That is, it is stored in a lead acid battery (54).

さて夏の冷房時は、配線切換用スイッチ148)は図で
左〜下方向に通じ右方向d通1.tないように七・・ト
されているので、太陽電池(ツi)に上り得られた1イ
Now, when cooling the air conditioner in summer, the wiring changeover switch 148) connects from the left to the bottom in the figure and connects to the right (d). 7. Since it is set so that it does not occur, the solar cell (tsui) was able to get up to 1.

気は直接DC圧縮機弼に導かJl、蒸気11.縮式冷凍
機を駆動する。、オた、冷暖房切換用モ方弁(1!l’
lが図で右−1一方向に開、左方向に閉じC)第1てい
る1、冷温水槽(7)内の水は昭仙ボングtFl) K
より、蒸気)ト、縮式冷凍機の蒸発器411に導かね冷
オとなり冷温水槽(7)に戻る。仁の冷水により冷房か
行われろのは従来のシステムと同じである。冷房負荷上
tあるが、日射がなく太陽電池(至))によって電気が
得られないときには、配線切換用スイッチ(481は図
で右〜F方向に通じ左方向社運じないようにセットされ
るので、鉛蓄電池←4)の電気でDCIr:、縮機(支
))がπ(動さJl、以下同様に冷房が行われる。
The air is directly led to the DC compressor, steam 11. Drives a compression refrigerator. , Ota, heating/cooling switching valve (1!l'
In the figure, the water in the hot and cold water tank (7) is opened in one direction (right-1) and closed in the left direction (C).
As a result, the steam cannot be led to the evaporator 411 of the compression refrigerator and returns to the cold/hot water tank (7). Cooling is performed using cold water, which is the same as in the conventional system. When the cooling load is high, but there is no sunlight and electricity cannot be obtained from the solar cells, the wiring changeover switch (481 is set so that it runs from right to F in the figure and does not run to the left. Therefore, DCIr:, compressor (support)) is moved by π(Jl) with electricity from the lead-acid battery←4), and cooling is performed in the same manner.

冷温水槽(7)内の水温が冷暖房と行なうのに適切な温
度のときは、冷湛水槽(7)内の水だけで冷暖房が行わ
れる。
When the temperature of the water in the cold/hot water tank (7) is appropriate for heating and cooling, heating and cooling is performed only with the water in the cold water tank (7).

この他にも太陽エネルギーを利用した冷暖房給湯システ
ムと[7てはシリカゲル、ゼオライト等の吸着剤を使用
したデシカント冷暖房システムがあるO しかし、第1図、第2図の例あるいはデシカント冷暖房
システムにおいては、一応蓄熱槽を有するので、日射が
ない日でも蓄熱槽に貯えられた熱エネルギーにより冷暖
房を行えるが、日射がない日が数日続くと、冷暖房を行
うことと、蓄熱槽温度が周囲温度より高いためにおこる
放熱により蓄熱槽内の温水温度が低下陣、蓄熱されたエ
ネルギーだけでは冷暖房ができず、どうしても補助のエ
ネルギーが必要となる。また第3図の例においても、太
陽電池による余剰電力を蓄電池に貯えたとしても、冷房
を行うことと、蓄電池の自己放電により、数日で冷房が
行えな、くなる。また暖房においては、他のシステム同
様、補助のエネルギーが必要上なる。
In addition to this, there are also air-conditioning and hot-water supply systems that utilize solar energy and desiccant air-conditioning and heating systems that use adsorbents such as silica gel and zeolite. Since it has a heat storage tank, even on days when there is no sunlight, heating and cooling can be performed using the thermal energy stored in the heat storage tank. However, if there is no sunlight for several days, it becomes necessary to perform heating and cooling, and the temperature of the heat storage tank becomes lower than the ambient temperature. Due to the heat dissipation caused by the high temperature, the temperature of the hot water in the heat storage tank decreases, and heating and cooling cannot be performed using the stored energy alone, so supplementary energy is inevitably required. Also in the example shown in FIG. 3, even if surplus power from the solar cells is stored in the storage battery, cooling will no longer be possible within a few days due to air conditioning and self-discharge of the storage battery. Also, in heating, as with other systems, supplementary energy is required.

さらに、冷暖房給湯システムのエネルギー負荷は夏の冷
房時と冬の暖房時に偏り、春と秋の中間期は給湯のみで
、集められた太陽エネルギーは余ってしまうが、この余
剰エネルギーを夏と冬にシフトすることを考えても、従
来のシステムでは上記したように長期にわたってエネル
ギーを貯蔵することができないため、実現困難である。
Furthermore, the energy load on air conditioning, heating, and hot water systems is unevenly distributed between summer cooling and winter heating, and in the middle of spring and autumn, only hot water is used, and the collected solar energy is left over. Even if a shift is considered, it would be difficult to implement because conventional systems cannot store energy for a long period of time as described above.

この発明け、このような事情に鑑みてなされたものであ
る。以下、第4図〜第6図に示す実施例により、この発
明を詳説する。
This invention was made in view of these circumstances. The present invention will be explained in detail below with reference to embodiments shown in FIGS. 4 to 6.

第4図に示す@は、この発明の太陽冷暖房システムの一
実施例である。このシステ・ム(!11において、第1
図〜・第3図に示すシステムにおける構成要素と同一の
働きをする部分には同一の符号を符し、同一の名称とし
、説明を省略する。
@ shown in FIG. 4 is an embodiment of the solar heating and cooling system of the present invention. In this system (!11), the first
Components that function in the same way as the components in the system shown in FIGS.

@は電解槽、+401は水の精製装置、(41)は水素
タンク、(47Jは酸累タンク、(431は給水ポンプ
、(44)は水素圧縮機、偵5)は精製水温度調節用玉
方介で、以上でエネルギー貯蔵系を構成する。@け減圧
弁、(471は水素補給切換用三方弁、(佃は燃料電池
で、以上で補助電源系を構成する。また(側は水素ボイ
ラで、補助熱源系を構成する。
@ is an electrolytic cell, +401 is a water purification device, (41) is a hydrogen tank, (47J is an acid accumulation tank, (431 is a water supply pump, (44) is a hydrogen compressor, and 5) is a purified water temperature adjustment ball. The above constitutes an energy storage system.@ke pressure reducing valve, (471 is a three-way valve for hydrogen replenishment switching, (Tsukuda is a fuel cell, and the above constitutes an auxiliary power supply system. This constitutes an auxiliary heat source system.

集熱運転、給湯、冷温水槽(7)とファンコイルユニッ
ト(イ)の間の冷温水のやりとりは第1図のシステムと
同じであるので説明を省略する。
The heat collection operation, hot water supply, and exchange of cold and hot water between the cold and hot water tank (7) and the fan coil unit (A) are the same as in the system shown in FIG. 1, so their explanation will be omitted.

このシステム0IIL、給湯を除いて考えると、夏に冷
房運転、冬に暖房運転、中間期にエネルギー貯蔵運転を
行うものといえる。
Considering this system 0IIL, excluding hot water supply, it can be said that it performs cooling operation in summer, heating operation in winter, and energy storage operation in the intermediate period.

まず、中間期のエネルギー貯蔵運転について説明する。First, energy storage operation during the intermediate period will be explained.

水が給水ポンプ(43)により水の精製装置側に送られ
純水となり、電解槽09)に送られる前に精製水温度調
節用三方弁09により純水を蓄熱槽(2)内を通過する
ものき蓄熱槽(2)をバイパスするものに分け、電解槽
01))の純水入[1温度を所定の湿度(約70℃)K
調節する。このように純水の温度を」二げるのは後述す
る電解操作で雷、留液温度が高いと電力効率がよくなる
ためで、蓄熱槽(2)内の温水温度が低く所定温度に達
しないとしてもさしつかえない。純水は電解槽09)に
入り電解液となる。配線切換用ス・fツチ(4ル社電解
槽41!j側に通じ、DC圧縮機(支))側には通じて
いないようにされる。太陽電池(へ)で得られた電気は
電解槽鉤の@極と陰極に通じているので、陽極側に酸素
、陰極側領水素が発生する。発生した水素は、水素圧縮
機(441により圧縮され高圧となり、水素タンク(4
11に貯えられる。一方、酸素は、圧縮せずに酸素タン
ク(42Iに貯蔵されるようになっている。これは、燃
料電池−が空気中の酸素で作動できるので、酸素全大量
に貯蔵しなくてもよいからである。したが−〕て酸素タ
ンク(仰を設置せず、全く貯蔵しなくてもよい。しかし
、逆に圧縮機を入れて大量に貯蔵1.でもよい。貯蔵さ
れる水素が、水素タンク(41)を満すと即座にエネル
ギー貯蔵運転を停止し1、水素の発生を止める。
Water is sent to the water purification device side by the water supply pump (43) to become pure water, and the purified water is passed through the heat storage tank (2) by the three-way valve 09 for temperature adjustment before being sent to the electrolytic tank 09). Divide the heat storage tank (2) into a bypass type, and fill the electrolytic tank 01) with pure water [1 temperature and specified humidity (approximately 70°C) K
Adjust. The reason why the temperature of pure water is lowered in this way is because the electrolytic operation described later improves power efficiency when the distillate temperature is high, and the temperature of the hot water in the heat storage tank (2) is low and does not reach the specified temperature. That's fine, though. The pure water enters the electrolytic tank 09) and becomes an electrolyte. The wiring switching switch (connects to the electrolytic tank 41!j side and does not connect to the DC compressor (support) side). Since the electricity obtained from the solar cell is connected to the @ pole and cathode of the electrolytic tank hook, oxygen is generated on the anode side and hydrogen is generated on the cathode side. The generated hydrogen is compressed by a hydrogen compressor (441) to high pressure, and is then transferred to a hydrogen tank (441).
It can be stored in 11. On the other hand, oxygen is stored in an oxygen tank (42I) without being compressed. This is because the fuel cell can operate on oxygen in the air, so there is no need to store the entire amount of oxygen. However, it is not necessary to install an oxygen tank (on top of the tank) and store it at all. However, it is also possible to store a large amount of hydrogen by installing a compressor. When (41) is satisfied, the energy storage operation is immediately stopped and hydrogen generation is stopped.

これは浄発などの危険があるためである。以」二がエネ
ルギー貯蔵運転である。
This is because there is a risk of oxidation. The second is energy storage operation.

夏の冷房時、太陽電池−)の出力(でより冷房を行う動
作は、前記第3FAのシステムと同じである。
During summer cooling, the operation of cooling the air conditioner using the output of the solar cells (-) is the same as the third FA system.

冷房負荷はあるが、日射がなく、かつ太陽電池によって
冷房に必要な電気出力が得られないとき(これは電圧が
所定以下であること等により知りうる。)には、水素タ
ンク(411に貯蔵された圧縮水素か減圧弁(7)によ
って減圧され、水素補給切換用三方弁(旬を通って燃料
電池(461K導かれ、またその酸化剤として、酸素タ
ンク(4渇内の酸素又は人気中の空気(空気中の酸素)
が燃料電池に導かれ、燃料電池で発電が行われる。この
ようにして作られた電気は、DC圧縮機@に導かれて蒸
気圧縮式冷凍機を駆動し、冷水が作られ冷房が行われる
。冷温水槽(7)内の冷水が冷凍機を駆動しなくても十
分に冷房を行うことができる温度で、しかも太陽の日射
があるときには、冷凍機は停止し、冷温水槽(7)の冷
水を用いた冷房運転とエネルギー貯蔵運転上が行われる
When there is a cooling load, but there is no sunlight and the solar cells cannot provide the necessary electrical output for cooling (this can be known because the voltage is below a specified level, etc.), the hydrogen tank (411) stores hydrogen. The compressed hydrogen is depressurized by the pressure reducing valve (7), and is led to the fuel cell (461K) through a three-way hydrogen replenishment switching valve (461K). Air (oxygen in the air)
is guided to the fuel cell, which generates electricity. The electricity generated in this way is led to a DC compressor @ to drive a vapor compression refrigerator, producing chilled water and performing air conditioning. When the cold water in the hot and cold water tank (7) is at a temperature that allows sufficient cooling without driving the refrigerator, and when there is sunlight, the refrigerator stops and the cold water in the hot and cold water tank (7) is turned off. Cooling operation and energy storage operation are carried out.

冬の暖房時、ハイブリッドコレクター(9)によって熱
エネルギーに変換された蓄熱槽(2)内の温水が暖房を
行うのに十分高温である場合には、前記第2図のシステ
ムと同じようにして暖房が行われる。
During heating in winter, if the hot water in the heat storage tank (2) converted into thermal energy by the hybrid collector (9) is high enough for heating, the system is operated in the same manner as in the system shown in Fig. 2 above. Heating takes place.

蓄熱槽(2)内の温水温度が所定温度以下で暖房を行う
のに十分には高温でない場合には、暖房熱源切換用三方
弁(イ))が図で右〜下方向に開、左方向に閉じられ、
水素補給切換用三方弁軸ηが図で一ヒ下方向に開、右方
向に閉じられ、水素タンク(41)内の水素が減圧弁(
イ)k通り減圧され水素ポイン(価に導かれる。冷温水
槽(7)内の水は駆動用フ+:コ、グ(8)にょ−]チ
ー水素ボイラ四を′a過する間に加ρ(され昇温し、冷
温水槽(71K戻り、暖房に供ネれる1、冷温水槽(7
)内の水の温度が暖房をするのに十分高温である場合k
i、駆動用ポンプ(8+Fi停止し、冷温水槽(7)の
渇水のみで暖房が行われ、その間、集熱運転が継続され
る。また、暖房時には冷凍機を運転する必要がないので
図のシステムでは太陽電池によるエネルギー貯蔵運転が
継続される。
If the hot water temperature in the heat storage tank (2) is below a predetermined temperature and is not high enough for heating, the heating heat source switching three-way valve (A) opens from right to downward in the figure, and opens toward the left. closed to
The three-way valve shaft η for hydrogen replenishment switching opens downward one step in the figure and closes toward the right, and the hydrogen in the hydrogen tank (41) flows through the pressure reducing valve (
b) The pressure is reduced in k ways and the hydrogen point is led to the hydrogen point. (The temperature rises, the cold and hot water tank (71K returns, 1 is used for heating, and the cold and hot water tank (71K is returned.
) if the water temperature in ) is high enough to provide heating.
i. The driving pump (8+Fi) is stopped, and heating is performed only by the dry water in the cold/hot water tank (7), during which heat collection operation continues. Also, since there is no need to operate the refrigerator during heating, the system shown in the figure Energy storage operation using solar cells will continue.

第5図に示す(101)は、この発明の太陽冷暖房シス
テムの他の実施例である。このシステム(101)は、
第4図に示すシステム−における電解槽C(91のがわ
りに高圧電解槽61)を使用したシステムで、そのため
、発生する水素は高圧で、水素圧縮機(44)が省略サ
レテイル。システムの作動は第4図のシスデノ、と同じ
である。
(101) shown in FIG. 5 is another embodiment of the solar heating and cooling system of the present invention. This system (101) is
This system uses electrolytic cell C (high-pressure electrolytic cell 61 instead of 91) in the system shown in FIG. 4, and therefore the hydrogen generated is at high pressure, and the hydrogen compressor (44) is omitted. The operation of the system is the same as the system shown in FIG.

第6図に示す(102)Hlこの発明の太陽冷暖房シス
テムのさらに他の実施例である。このシステノ\(10
2)は、第4図に示すシステム四における水素タンク(
41)のかわりに金属水素化物充填槽6りを使用したシ
ステムで、水素を金属水素化物として貯蔵する。金属水
素化物充填4v?6りから水素を取り出すときにtよ、
金属水素化物の温度を」二ける必要があるので、水素取
出し用ポンプ(へ)によって蓄熱槽(2)の温水を金属
水素化物充填槽6乃に導いて、これを加熱する。それ以
外のシステムの作動は第4図のシステムと同じである。
(102)Hl shown in FIG. 6 is yet another embodiment of the solar heating and cooling system of the present invention. This cisteno\(10
2) is the hydrogen tank (
In this system, hydrogen is stored as metal hydride in a system using a metal hydride filling tank 6 instead of 41). Metal hydride filling 4v? 6 When extracting hydrogen from li, t,
Since it is necessary to lower the temperature of the metal hydride, the hot water in the heat storage tank (2) is guided to the metal hydride filling tank 6 by a hydrogen extraction pump and heated. The operation of the system other than that is the same as the system shown in FIG.

次K、以下のような仮定を行って、太陽の日射がない日
に何日間補助のエネルギーなしで冷暖房ができるかを、
第1図〜第3図に示す従来のシステムと第4図に示すこ
の発明のシステムについて比較する。ただし、給湯は行
わないものとする。
Next, make the following assumptions to find out how many days on days when there is no solar radiation, heating and cooling can be done without supplementary energy.
A comparison will be made between the conventional system shown in FIGS. 1 to 3 and the system of the present invention shown in FIG. However, hot water will not be supplied.

(1)第1図のシステム(以下、吸収冷凍システムと称
す。)と第2図のシステム(以−ト、ランキンシステム
と称す。)はともに2Rの蓄熱槽をもつとする。
(1) The system shown in FIG. 1 (hereinafter referred to as absorption refrigeration system) and the system shown in FIG. 2 (hereinafter referred to as Rankine system) both have a 2R heat storage tank.

(11)第3図のシステム(以下、鉛蓄電池システムと
称す。)では熱エネルギーをl m”の蓄熱槽で、また
電気エネルギーを1m3の鉛蓄電池で貯蔵するものとす
る。
(11) In the system shown in Fig. 3 (hereinafter referred to as a lead-acid battery system), thermal energy is stored in a 1 m'' heat storage tank, and electrical energy is stored in a 1 m3 lead-acid battery.

(++1)  第4図のシステム(以下、水素貯蔵シス
テムと称す。)゛C1蓄熱41vid: 1 m’、水
素タンクは1m3て、11:、縮水繁の圧力は17(l
atmとする。
(++1) The system shown in Figure 4 (hereinafter referred to as hydrogen storage system) ゛C1 heat storage 41vid: 1 m', the hydrogen tank is 1 m3, 11:, the water pressure is 17 (l)
ATM.

(1■)吸収冷凍機とランキンエンジン駆動蒸気圧縮式
冷凍機のCOPをともに:0.6とする。
(1) The COP of both the absorption refrigerator and the Rankine engine-driven vapor compression refrigerator are set to 0.6.

(V)  ri流電HCよる蒸気圧縮式冷凍機のcop
を3とする。
(V) Cop of vapor compression refrigerator using ri galvanic HC
Let be 3.

(vl)燃料電池の電気エネルギー−・、σノ変換効率
を0.42する。
(vl) The conversion efficiency of the electrical energy of the fuel cell -, σ is set to 0.42.

(V++)  水素ボイラ効率0.8とする。(V++) Hydrogen boiler efficiency is set to 0.8.

(Viii) 外気温度を25℃、蓄熱槽の温水温度を
90℃とし、蓄熱槽に貯蔵された熱エネルギーは外気温
度まで使用できるとする。
(Viii) It is assumed that the outside air temperature is 25°C and the hot water temperature in the heat storage tank is 90°C, and that the thermal energy stored in the heat storage tank can be used up to the outside temperature.

(1×)蓄熱槽の放熱、鉛蓄電池の自己放電、水素タン
クからの水素の漏洩はなく、貯蔵エネルギーkま全て有
効に使用されるとする。。
(1x) Assume that there is no heat dissipation from the heat storage tank, no self-discharge from the lead-acid battery, no leakage of hydrogen from the hydrogen tank, and all of the stored energy k is effectively used. .

(×)鉛蓄雷、池のエネルギー密度は、 1.I X 
ICPKJ/1rt3である。(容積効率 30Wbr
// y電気化学協会編ゞ雷、気化学便覧′第2版S4
9.10.20発行、p685 ) (XI)  170 atmの水素の工、+ルギー密用
、は、]、、5XlOKJ/m3である。(神沢淳、′
エネルギー貯蔵技術を比較する” 、MOL 昭和56
年12月号、232表5) (Xi+) 冷房負pif9.72X 10’ KJ/
day、暖房負荷J、、06 X10’KJ/dIIy
  とする。
(×) The energy density of lead lightning and pond is: 1. IX
It is ICPKJ/1rt3. (Volume efficiency 30Wbr
// yElectrochemical Society ed. Lightning, Gas Chemistry Handbook' 2nd Edition S4
Published 9.10.20, p685) (XI) 170 atm hydrogen production + Lugie secret use is ], 5XlOKJ/m3. (Jun Kanzawa, '
“Comparing Energy Storage Technologies”, MOL 1982
December issue, 232 Table 5) (Xi+) Cooling negative pif 9.72X 10' KJ/
day, heating load J, 06 X10'KJ/dIIy
shall be.

(昭和55年2月発行のゞ叩ンシャイン泪画。(Zuta Shine Riga, published in February 1982.

太陽冷暖房・給湯システム研究開発成果′の中の新築個
人住宅用システムの研究開発における表I−6、表1−
10の値を負荷日数で割り1[1の平均負荷として上の
値を得た。) エネルギー貯蔵量は、蓄熱槽の場合は〔水の比熱」×〔
蓄熱槽濡水温度−外気温〕×〔蓄熱槽容積〕、鉛蓄電池
と水素化金属の場合は〔エネルギー貯蔵量j14)XC
エネルギー密度〕により求める。
Table I-6 and Table 1- of the research and development of systems for newly built private residences in the research and development results of solar heating, heating, and hot water systems
The above value was obtained by dividing the value of 10 by the number of load days and assuming the average load of 1. ) In the case of a heat storage tank, the amount of energy stored is [specific heat of water] x [
Heat storage tank wet water temperature - outside temperature] x [heat storage tank volume], in the case of lead-acid batteries and metal hydride, [energy storage amount j14) XC
energy density].

冷房が貯蔵エネルギーで何日行えるかは次式となる。The number of days that air conditioning can be performed using stored energy is determined by the following formula.

R)吸収冷凍システム、ランキンシステム、鉛蓄電池シ
ステム (エネルギー貯蔵量) ×rc、Or]/(冷房負?t
Ub)水素貯蔵システム 〔エネルギー貯蔵+n: 3 X [燃n m、波動率
」×(COIJ/r冷房角荷1 暖房が貯蔵エネルギーで何日11゛えるかを1次式とな
る。
R) Absorption refrigeration system, Rankine system, lead acid battery system (energy storage amount) ×rc, Or]/(cooling negative?t
Ub) Hydrogen storage system [Energy storage + n: 3 x [fuel n m, wave rate] x (COIJ/r cooling angle charge 1) A linear equation shows how many days 11゛ can be saved for heating using stored energy.

a)吸収冷凍システム、ランキンシステム\、鉛蓄電池
システム 〔エネルギー貯蔵量〕/〔暖房負荷〕 b)水素貯蔵システム 〔貯蔵エネルギー量〕×[水ヲチボイラ効率〕/〔暖房
負荷〕 引算結果を次表に示す。
a) Absorption refrigeration system, Rankine system\, lead acid battery system [energy storage amount] / [heating load] b) Hydrogen storage system [stored energy amount] x [water boiler efficiency] / [heating load] The subtraction results are shown in the table below. Shown below.

*1;鉛蓄電池エネルギーより算出 中2;蓄熱槽エネルギーより算出 傘3;水素タンクエネルギーより算出 中4;  」−七同じ 以」;のように、この発明の水素貯蔵システムは従来の
シスデノ1と比較してほぼ回し、エネルギー貯蔵容t1
1で多用のエネルギーを貯蔵でき、また長期のエネルギ
ー貯蔵ができるので、中間期の太陽エネルギーを需要期
にシフトすることかでき、他の補助エネルギー・を著し
く軽減できる。
*1; Calculated from lead-acid battery energy 2; Calculated from thermal storage tank energy 3; Calculated from hydrogen tank energy 4; As shown in the following, the hydrogen storage system of this invention is different from the conventional system deno 1. Compare and almost turn, energy storage capacity t1
1 can store energy for many uses and also can store energy for a long time, so solar energy in the intermediate period can be shifted to the demand period, and the need for other auxiliary energy can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷房時に吸1i7式冷凍機を用いる従来の太陽
エネルギー利用冷暖房給湯システムの系統図、第2図し
t?fr房時にランキンエンジン駆止り蒸気圧縮式冷凍
機を用いる従来の太陽エネルギー利用冷暖房給湯シスデ
ムの系統図、 第3図1冷房時K T) C圧縮機李用いた蒸気圧縮式
冷凍機を用いる従来の太陽エネルギー冷暖房給湯シスデ
ムの系統図、 第4図はこの発明の太陽冷暖房Sス57・σ)−・実施
例を示す系統図、 第5図りこの発明の太陽冷暖房システムの他の実施例の
系統図、。 第6図はこの発明の太陽冷暖房システムのさらに他の実
施例の系統図である。 (1)・・・・太@熱コレクタ、(2)・・・・蓄%檜
、(5)・・・・吸収式冷′R1機、(7)・・・・冷
温水槽、f211i・・・・“7アンコイルユニツト、
(乃・・・・給湯タンク、(判・・・−電解槽、悼D・
・・・水素タンク、t461・・・・燃料電池、(49
)・・・・水素ボイラ、(51)・・・・高圧電解槽、
□□□・・・金属水素化物充填槽1.□□□)・・・・
太陽飛、池、霞・・・・ランキンy−ンジン駆動蒸気圧
縮式冷凍機、倒・・・・DC)TZ縮機を用いた蒸気圧
縮式冷凍機、(100)(101)(1112)・・・
太陽冷暖房システム。 【・ノ
Figure 1 is a system diagram of a conventional solar energy-based air conditioning, heating, and hot water supply system that uses a 1i7-type refrigerator for cooling, and Figure 2 is a system diagram of a conventional air-conditioning, heating, and hot-water supply system that uses a 1i7-type refrigerator for cooling. Fig. 3 System diagram of a conventional air-conditioning, heating, and hot water supply system using solar energy that uses a Rankine engine-driven vapor compression refrigerator for cooling. Figure 4 is a system diagram of a solar energy heating and cooling water supply system; Figure 4 is a system diagram showing an embodiment of the solar heating and cooling system of the present invention; ,. FIG. 6 is a system diagram of still another embodiment of the solar heating and cooling system of the present invention. (1)...Thick @heat collector, (2)...Storage cypress, (5)...Absorption type cold 'R1 machine, (7)...Cold/hot water tank, f211i... ..."7 uncoil unit,
(No...Hot water tank, (size...-electrolytic tank, mourning D.
...Hydrogen tank, t461...Fuel cell, (49
)...Hydrogen boiler, (51)...High pressure electrolyzer,
□□□・・・Metal hydride filling tank 1. □□□)・・・・
Taiyohi, Ike, Kasumi...Ranking engine-driven vapor compression refrigerator, inverted...DC) Vapor compression refrigerator using TZ compressor, (100)(101)(1112)・・・・
Solar heating and cooling system. 【·of

Claims (1)

【特許請求の範囲】 1、(8)  太陽電池からなる電源系と、■ 太陽熱
フレフタおよび蓄熱槽からなる熱源系と、 (c)  前記電源系から出力される電力で作動する冷
凍機、その冷凍機で冷却された冷水または前記熱源系か
ら出力される熱で加熱された渇水を貯蔵する冷濡水槽お
よびその冷温水槽の冷水′!たけ温水で冷房もしくは暖
房を行うファンコイルユニットからなる冷暖房系とを具
備してなる太陽冷暖房システムにおいて、(Φ 前記電
源系から出力される電力で水を電気分解する?1.解槽
および電気分解で発生する水素を貯蔵する水素貯a槽か
らなるエネルギー貯蔵系と、 (C)前記電源系の出力が所定以下のときに前記冷凍機
を作動させるために前記エネルギー貯蔵系から水素を取
り出して亀カを発生する燃料類、池からなる補助電源系
と、 (f)前記熱源系の出力が所定以下のときに前記エネル
ギー貯蔵系から水素を取り出して前記冷渇水槽の水を加
熱する水素ボイラからなる補助熱源系と をさらに具備したことを特徴2−する太陽冷暖房システ
ム。 2、水素貯蔵槽が、金属水素化物充填槽てあ2)請求の
範囲第1項記載のシスデJ・。 3、熱源系から出力される熱で加熱された温水を貯蔵L
#’?湯する給湯系をさらに具備して庁Z)請求の範囲
第1項又は第2項記載のシステJ・。
[Scope of Claims] 1. (8) A power supply system consisting of a solar cell; (1) A heat source system consisting of a solar thermal flexor and a heat storage tank; (c) A refrigerator operated by electric power output from the power supply system, and its refrigeration. A cold/wet water tank that stores cold water cooled by the machine or dry water heated by the heat output from the heat source system, and cold water in the cold/hot water tank! In a solar heating and cooling system comprising a heating and cooling system consisting of a fan coil unit that performs cooling or heating with bamboo hot water, (Φ Electrolyze water using the power output from the power supply system?1. Decomposition and electrolysis) (C) An energy storage system consisting of a hydrogen storage tank for storing hydrogen generated in (f) a hydrogen boiler that extracts hydrogen from the energy storage system and heats the water in the cold water tank when the output of the heat source system is below a predetermined level; 2. The solar heating and cooling system further comprises an auxiliary heat source system. 2. The hydrogen storage tank is a metal hydride-filled tank. 2) The system according to claim 1. 3. Storage L of hot water heated by the heat output from the heat source system
#'? The system J. according to claim 1 or 2 further comprises a hot water supply system for supplying hot water.
JP57145271A 1982-08-20 1982-08-20 Solar cooling/heating system Pending JPS5935741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145271A JPS5935741A (en) 1982-08-20 1982-08-20 Solar cooling/heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145271A JPS5935741A (en) 1982-08-20 1982-08-20 Solar cooling/heating system

Publications (1)

Publication Number Publication Date
JPS5935741A true JPS5935741A (en) 1984-02-27

Family

ID=15381270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145271A Pending JPS5935741A (en) 1982-08-20 1982-08-20 Solar cooling/heating system

Country Status (1)

Country Link
JP (1) JPS5935741A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158739U (en) * 1987-04-01 1988-10-18
JPH0223938U (en) * 1988-07-28 1990-02-16
CN100337081C (en) * 2003-12-26 2007-09-12 广东科龙电器股份有限公司 Photovoltaic driving refrigerating unit and control method thereof
WO2008060196A1 (en) * 2006-11-16 2008-05-22 Gf Konsult Ab A cooling system and method including coolant accumulator and solar cells for electricity production
JP2009047373A (en) * 2007-08-21 2009-03-05 Tokyo Gas Co Ltd Power/hot-water supply system
JP2011106749A (en) * 2009-11-18 2011-06-02 Daikin Industries Ltd Air conditioning system
CN102679621A (en) * 2011-12-24 2012-09-19 河南科技大学 Solar driven combined cooling, heating and power system
CN106871483A (en) * 2017-03-31 2017-06-20 武汉地质资源环境工业技术研究院有限公司 A kind of Hydrogen Energy and the complementary heat pump of solar energy
JP2019052781A (en) * 2017-09-13 2019-04-04 矢崎エナジーシステム株式会社 Air-conditioning hot water supply system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158739U (en) * 1987-04-01 1988-10-18
JPH0525793Y2 (en) * 1987-04-01 1993-06-29
JPH0223938U (en) * 1988-07-28 1990-02-16
CN100337081C (en) * 2003-12-26 2007-09-12 广东科龙电器股份有限公司 Photovoltaic driving refrigerating unit and control method thereof
WO2008060196A1 (en) * 2006-11-16 2008-05-22 Gf Konsult Ab A cooling system and method including coolant accumulator and solar cells for electricity production
JP2009047373A (en) * 2007-08-21 2009-03-05 Tokyo Gas Co Ltd Power/hot-water supply system
JP2011106749A (en) * 2009-11-18 2011-06-02 Daikin Industries Ltd Air conditioning system
CN102679621A (en) * 2011-12-24 2012-09-19 河南科技大学 Solar driven combined cooling, heating and power system
CN102679621B (en) * 2011-12-24 2014-04-09 河南科技大学 Solar driven combined cooling, heating and power system
CN106871483A (en) * 2017-03-31 2017-06-20 武汉地质资源环境工业技术研究院有限公司 A kind of Hydrogen Energy and the complementary heat pump of solar energy
JP2019052781A (en) * 2017-09-13 2019-04-04 矢崎エナジーシステム株式会社 Air-conditioning hot water supply system
CN109579177A (en) * 2017-09-13 2019-04-05 矢崎能源***公司 Air-conditioning and hot-water supply system
CN109579177B (en) * 2017-09-13 2020-12-08 矢崎能源***公司 Air conditioner and hot water supply system

Similar Documents

Publication Publication Date Title
CN109687002B (en) Distributed combined cooling heating and power system
CN210154106U (en) Heat pipe photovoltaic photo-thermal system based on double condensers
CN110544786A (en) Combined cooling, heating and power system of high-temperature proton exchange membrane fuel cell and working method thereof
US20090178421A1 (en) Air conditioning system with multiple power selections
KR20200032345A (en) Solar heat pump system with PVT collector connected
CN206683131U (en) A kind of photovoltaic directly drives energy-storage air conditioner system
CN203823962U (en) Household photovoltaic direct current transducer air conditioner supplying hot water
JPS5935741A (en) Solar cooling/heating system
CN110159380B (en) Single-tank closed-type circulating energy storage power generation system
Seyam Energy and exergy analysis of refrigeration systems
CN108488039B (en) Ultralow-temperature cold-storage efficient geothermal power generation system based on wind power and photovoltaic power generation digestion
Singh et al. Thermodynamic study of integrated proton exchange membrane fuel cell with vapour adsorption refrigeration system
Cai et al. Performance and sustainability assessment of PEMFC/solar-driven CCP systems with different energy storage devices
CN114109524A (en) Carbon dioxide Carnot battery-based cold-heat-electricity-water combined supply system and operation method
CN217388579U (en) PVT light and heat storage type water source heat pump system
JP2896035B2 (en) Fuel cell system
CN206160551U (en) Energy -conserving heat pump device of photovoltaic of convertible solar energy
CN212054845U (en) Distributed combined cooling heating and power system
CN201152602Y (en) Cold and warm air storage apparatus having multiple power sources for selection
JP2002089991A (en) Heat storage type air conditioner
Tariq et al. Solar based space cooling system in building-a case study of Maulana Azad library, AMU
Kaygusuz et al. Theoretical performance of solar heat pump residential heating applications
KR102660333B1 (en) Complex Geothermal Heat Source Heat Pump System
CN221349247U (en) Uninterrupted heat supply system of solar photovoltaic waste heat combined heat pump
JPS605285Y2 (en) Household power unit equipment