JPS5935643A - Production of contact point material - Google Patents

Production of contact point material

Info

Publication number
JPS5935643A
JPS5935643A JP57143844A JP14384482A JPS5935643A JP S5935643 A JPS5935643 A JP S5935643A JP 57143844 A JP57143844 A JP 57143844A JP 14384482 A JP14384482 A JP 14384482A JP S5935643 A JPS5935643 A JP S5935643A
Authority
JP
Japan
Prior art keywords
powder
component
mixed
component material
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57143844A
Other languages
Japanese (ja)
Other versions
JPS6248737B2 (en
Inventor
Isao Okutomi
功 奥富
Hideo Suzuki
秀夫 鈴木
Shigeaki Sekiguchi
関口 薫旦
Ikuo Matsuura
松浦 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57143844A priority Critical patent/JPS5935643A/en
Publication of JPS5935643A publication Critical patent/JPS5935643A/en
Publication of JPS6248737B2 publication Critical patent/JPS6248737B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce a sintered type contact point material having a uniform contact point characteristic by mixing a part of the main componet material powder of roughly the same amt. as the amt. of auxiliary component material powder with the auxiliary powder then mixing the remaining main component material powder therewith. CONSTITUTION:A main component material is constituted of about 15-65% highly conductive components consisting of at least 1 kind of Cu and Ag, and the balance an arc resistant component of at least 1 kind among W, Mo, Cr, Ti, WC, MoC, Cr3C2, TiC. An auxiliary component material is constituted of a component for preventing melt sticking consisting at least 1 kind among Bi, Te, Sb, and a component for improving sintering property consisting of at least 1 kind among Ni, Fe, Co, B. The content of the auxiliary component material in the product, i.e., contact point material, is set at <=3wt%, and part of the main component material of roughly the same amt. as the amt. of the auxiliary component material is first mixed with the auxiliary component material to prepare a primary powder mixture; further, the remaining main component material is mixed therewith. Such powder mixture is molded under about 1-10 tons/ cm<2> pressure and is sintered at about 1,000-1,300 deg.C in a non-oxidative atmosphere, whereby the contact point material is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、粉末冶金法(焼結法)による接点材料の製造
方法に係シ、特に均質な接点特性を有する焼結型接点材
料の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a contact material by a powder metallurgy method (sintering method), and particularly a method for manufacturing a sintered contact material having homogeneous contact characteristics. Regarding.

〔発明の技術的背量とその問題点] 接点に要求される特性としては、(イ)耐電圧が高いこ
と、(ロ)しゃ断性がよいこと、(ハ)耐消耗性がよい
こと、に)接触抵抗が低ぐ安定していること、などがあ
る。しかしながら、これらの特性の全てを満足する接点
利料を得ることは現実にはながなが困峻である。したが
って現実の接点においては、使用される回路あるb//
′i機器が要求する特に重要な特性を優先させ、他の特
性を幾分犠牲にしているのが実情である。
[Technical weight of the invention and its problems] Characteristics required for contacts include (a) high withstand voltage, (b) good interrupting properties, and (c) good wear resistance. ) The contact resistance is low and stable. However, it is actually very difficult to obtain a contact point that satisfies all of these characteristics. Therefore, in actual contacts, the circuit used is b//
The reality is that particularly important characteristics required by i-devices are given priority, and other characteristics are sacrificed to some extent.

なかでも、W等の耐アーク性成分とCu、Ag等の高導
電性成分とからなシ、両者の混合粉末の粉末冶金法によ
る合金化、あるいは前者の仮焼体(多孔質焼結体)に後
者を溶浸させることにより得られる焼結型接点材料は、
耐電圧特性および耐消耗性が優れており、現在広く使用
されているが、仁の接点材料にも耐溶着性、しゃ断性、
接触抵抗特性等の点において未だ不満足な点がある。し
たがって、上記した主要成分材に加えて、Bj、Pb。
Among these, it is possible to combine an arc-resistant component such as W with a highly conductive component such as Cu or Ag, alloying a mixed powder of both by powder metallurgy, or a calcined body (porous sintered body) of the former. The sintered contact material obtained by infiltrating the latter into
It has excellent withstand voltage characteristics and wear resistance, and is currently widely used.
There are still some unsatisfactory points in terms of contact resistance characteristics, etc. Therefore, in addition to the above-mentioned main component materials, Bj and Pb.

To 、 Sb等の耐溶着性成分あるいはNl、 Fe
、 Co、 B等の焼結性改善成分等からなる補助成分
Iを添加して、上記諸物件を改善する試みも検討されて
bる。
Welding resistant components such as To, Sb or Nl, Fe
Attempts have also been made to improve the above-mentioned properties by adding an auxiliary component I consisting of sinterability-improving components such as , Co, and B.

これら補助成分材の添加は、それなシに効果的なもので
あるが、それによる焼結型接点材料の特性の改善は必ず
しも満足すべきものとはいいがたい。それは、接触抵抗
、耐電圧性、耐溶着性、しゃ断時性に影響するさい断電
流値等の特性がばらつき、不安定となることである。
Although the addition of these auxiliary components is effective in its own way, it cannot be said that the improvement in the properties of the sintered contact material is necessarily satisfactory. This is because the properties such as contact resistance, voltage resistance, welding resistance, and cutting current value that affects cut-off performance vary and become unstable.

上述した焼結型接点材料の特性の不安定性は、本発明者
らの当初の研究によれば、焼結型接点であるための接触
面における表面荒れ、焼結過程における補助成分相の揮
発等による逸散などの要因が寄与しているものと考えら
れた。しかしながら、本発明者らが更に研究した結果、
上記特性のばらつきの少なからぬ部分が、補助成分材の
添加量が少量であることに伴い生ずる分布の不均一性に
起因することが見出された。すなわち、主要成分材の与
える接点材料の基本的特性を損なわずに諸物件の改善を
行うためには加えられるjrlJ助成分助成分添4量は
、通常、数チないしそれ以下の少ないし微景である。と
ころが、従来は、このような少量の補助成分材粉末を大
量の主要成分材粉末と一括して混合していたため、両粉
末を充分に微細化し、また両者の充分な混合を行ったつ
もシであっても、補助成分材が製品中に偏析して接点特
性のばらつきの原因となっていることが判明した。
According to the inventors' initial research, the instability of the characteristics of the sintered contact material described above is due to surface roughness on the contact surface due to the sintered contact, volatilization of the auxiliary component phase during the sintering process, etc. It was thought that factors such as dissipation caused by However, as a result of further research by the present inventors,
It has been found that a significant portion of the above-mentioned variations in properties are due to non-uniformity in distribution caused by the small amount of the auxiliary component added. In other words, in order to improve various properties without impairing the basic characteristics of the contact materials provided by the main component materials, the amount of JRLJ subsidy supplement added is usually a small to small amount of several inches or less. It is. However, in the past, such a small amount of auxiliary component material powder was mixed with a large amount of main component material powder at once, so it was difficult to make both powders sufficiently fine and to mix them sufficiently. It has been found that even if there is, the auxiliary component materials segregate in the product and cause variations in contact characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した粉末冶金法による焼結型接点材料の
製造技術における欠点に@み、主要成分材の与える基本
的特性を維持しつつ受蓋添加される補助成分材の効果を
効果的に発揮させて均質に特性の改善された焼結型接点
材料を製造するための方法を確立することを目的とする
The present invention takes into consideration the drawbacks of the manufacturing technology of sintered contact materials using the powder metallurgy method described above, and aims to effectively enhance the effect of the auxiliary component material added to the cover while maintaining the basic properties provided by the main component material. The purpose of this study is to establish a method for producing sintered contact materials with uniformly improved properties.

〔発明の概要〕[Summary of the invention]

本発明者らは、上述した補助成分材の接点材料中におけ
゛る偏析を避けるためには、主要成分材との最初の混合
過程が重要な影響を有することを見出した。すなわち、
少量の補助成分相粉末と大量の主要成分材粉末とを一括
混合するのではなく、最初は補助成分材粉末と主要成分
相粉末とをほぼ等量混合し、その後、更に所定配合とな
るように残部の主要成分材粉末と混合して得た混合粉末
を粉末冶金に供することにより、接触抵抗、耐電圧性、
耐溶着性、さい断電流値等のばらつきが著しく減少する
ことが見出された。本発明の接点材料の製造方法の第1
は、このような知見に基づくものであり、より詳しくは
、高導電性成分と耐アーク性成分とからなる主要成分材
と、溶着防止成分および焼結性改善成分より選ばれた補
助成分拐と、の混合粉氷を粉末償金法によって合金化し
て接点4=4料を製造するに際し、まず、補助成分14
粉末とこれとほぼ同量の主要成分材の一部の粉末とを混
合して/水混合粉末を得、この/水混合粉末と残余の主
要成分材粉末とを混合して混合粉末を得、これを粉末冶
金に供することを特徴とするものである。
The inventors have discovered that the initial mixing process with the main component material has an important influence in order to avoid segregation of the above-mentioned auxiliary component materials in the contact material. That is,
Rather than mixing a small amount of auxiliary component phase powder and a large amount of main component material powder all at once, the auxiliary component material powder and main component phase powder are mixed in approximately equal amounts at first, and then further mixed to obtain a predetermined blend. By subjecting the mixed powder obtained by mixing it with the remaining main component material powder to powder metallurgy, contact resistance, voltage resistance,
It has been found that variations in welding resistance, cutting current values, etc. are significantly reduced. First method for manufacturing contact material of the present invention
is based on such knowledge, and more specifically, consists of a main component material consisting of a highly conductive component and an arc-resistant component, and an auxiliary component selected from a welding prevention component and a sinterability improving component. When producing a contact point 4=4 material by alloying the mixed powdered ice of
The powder is mixed with approximately the same amount of a part of the main component powder to obtain a water-mixed powder, and the water-mixed powder and the remaining main component powder are mixed to obtain a mixed powder; This is characterized by subjecting it to powder metallurgy.

また、上述の主要成分材と補助成分材の初期の等量混合
に伴なう効果は、耐アーク性成分を主成分とする仮焼結
体に溶浸させるべき溶浸材の形成のための混合工程に適
用しても製品接点相料に顕著に現われることが見出され
た。すなわち、本発明の接点材料の製造方法の第2は、
耐アーク性成分単独又はこれと高導電性成分もしくは焼
結性改善成分との混合粉末の成形体からなる多孔質成形
体と、高導電性成分と溶着防止成分との混合粉末の成形
体からなる溶浸材成形体とを積層し、積層体を加熱して
溶融した溶浸材を多孔質成形体に含浸させて接点材料を
製造するに際し、溶浸材成形体形成用混合粉末を得るた
めに、まず溶着防止成分粉末とこれとほぼ同量の高導電
性成分とを混合して1水温合粉末を得、との1水温合粉
末と残余の高導電性成分粉末とを混合することを特徴と
するものである。
In addition, the effect associated with the initial mixing of equal amounts of the main component material and the auxiliary component material described above is effective for forming the infiltrant material to be infiltrated into the preliminary sintered body whose main component is the arc-resistant component. It has been found that even when applied to the mixing process, it appears prominently in the product contact phase material. That is, the second method for manufacturing a contact material of the present invention is as follows:
A porous molded body consisting of a molded powder of an arc-resistant component alone or a mixed powder of this and a highly conductive component or a sinterability improving component, and a molded body of a mixed powder of a highly conductive component and a welding prevention component. In order to obtain a mixed powder for forming an infiltrant molded body when manufacturing a contact material by laminating a porous molded body with an infiltrant molded body and heating the laminate to impregnate the porous molded body with the melted infiltrant. First, a welding prevention component powder and approximately the same amount of a highly conductive component are mixed to obtain a 1-water temperature mixed powder, and the 1-water temperature mixed powder and the remaining highly conductive component powder are mixed. That is.

以下、本発明を更に詳細に説明する。以下の記載におい
て、組成を表わす「チ」は特に断らない限り重量基準と
する。
The present invention will be explained in more detail below. In the following description, "chi" representing the composition is based on weight unless otherwise specified.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明法で原料として使用する主要成分材は、高導電性
成分と耐アーク性成分とからなる。高導電性成分として
は、Cu、 Agあるいはこれらの両者を組合せて、通
常、接点材料の1s−xtlをなす量で用いられる。ま
た耐アーク性成分としては。
The main components used as raw materials in the method of the present invention consist of a highly conductive component and an arc-resistant component. As the highly conductive component, Cu, Ag, or a combination of both are usually used in an amount to form 1s-xtl of the contact material. Also, as an arc-resistant component.

W、 Mo 、 Cr 、 WC、MoC、Cr3C2
等が、上記高導電性成分および後述する補助成分材の残
部をなす量で用いられる。
W, Mo, Cr, WC, MoC, Cr3C2
etc. are used in amounts forming the balance of the highly conductive component and the auxiliary components described below.

一方、補助成分材は、溶着防止成分および焼結性改善成
分より選ばれる。溶着防止成分としては、Bi、 Pb
、 Te、 Sb等が、また、焼結性改善成分としては
、Nl、 Fe、 Co、 B  等が挙げられる。
On the other hand, the auxiliary component material is selected from a welding prevention component and a sinterability improving component. Welding prevention components include Bi, Pb
, Te, Sb, etc., and sinterability improving components include Nl, Fe, Co, B, etc.

これら補助成分は、一般に接点材料の1Oq6以下の量
で使用されるが、本発明の効果は特に3チ以下の微量で
添加されたときに顕著である。
These auxiliary components are generally used in an amount of 1 Oq6 or less of the contact material, but the effects of the present invention are particularly remarkable when they are added in a trace amount of 3 Oq or less.

本発明の第1の方法にしたがい、まず上記補助成分材粉
末とこれとほぼ同量の主要成分材の一部の粉末とを混合
して/水混合粉末を得る。ここでほぼ同級とは、補助成
分材粉末と主要成分材粉末との重量比がt:μ〜弘:6
の範囲を包含する趣旨で用いる。また混合すべき主要成
分材の一部は、高導電性成分および耐アーク性成分の混
合物あるいはいずれか一方のみのどちらでもよい。混合
装置としては、リボンブVンダー、V型プVンダー、回
転円筒型ブVンダー等の通常の粉体混合装置に加えてボ
ールミル、梱潰機等の摩砕効果を伴なう混合装置が効果
的に使用できる。
According to the first method of the present invention, first, the auxiliary component material powder is mixed with approximately the same amount of a part of the main component material powder to obtain a water/water mixed powder. Here, approximately the same grade means that the weight ratio of the auxiliary component material powder and the main component material powder is t: μ ~ Hiro: 6.
It is used to encompass the scope of. Further, a part of the main components to be mixed may be a mixture of a highly conductive component and an arc-resistant component, or only one of them. As a mixing device, in addition to normal powder mixing devices such as a ribbon binder, a V-type binder, and a rotating cylindrical binder, mixing devices with a grinding effect such as a ball mill and a crusher are effective. can be used.

次いで、上記1水温合粉末の全部あるいは一部を取シ出
して、これを残金の主要成分材粉末と混合して粉末冶金
用の原料粉末を得る。接点材料中における主要成分成材
と補助成分材の量比が大である場合には、との1水温合
粉末と残余の主要成分材粉末との混合自体を複数の工程
に分けることもできる。すなわち、まず1水温合粉末と
残余の主要成分材粉末の一部とを混合し、との混合粉末
と更に残る主要成分材粉末とを混合する工程を繰シ返す
ことができる。一般に、n次混合粉末(n=/、J・・
・)と残余の主要成分材粉末とを混合して(n+・l)
状況合粉末を得る場合、混合すべき粉末相互の量比はl
:5以内であることが好ましい。但し、主要成分材粉末
と補助成分材粉末とを最初に混合して第1法理合粉末を
得るとき程の影響は少ない。
Next, all or part of the water temperature mixture powder is taken out and mixed with the remaining main component material powder to obtain a raw material powder for powder metallurgy. If the ratio of the main component material to the auxiliary component material in the contact material is large, the mixing itself of the water-temperature mixture powder and the remaining main component powder can be divided into multiple steps. That is, it is possible to repeat the process of first mixing the water temperature mixture powder with a portion of the remaining main component material powder, and then mixing the mixed powder with the remaining main component material powder. Generally, n-order mixed powder (n=/, J...
・) and the remaining main component material powder are mixed (n+・l)
When obtaining mixed powder, the ratio of amounts of powders to be mixed is l
: Preferably within 5. However, the effect is less than when the first legal powder is obtained by first mixing the main component material powder and the auxiliary component material powder.

上記混合を行うにあたっての主要成分材粉末および補助
成分材粉末の粒径は一般に細かい程好ましく、130μ
以下、特にiooμ以下が好ましい。
In general, the finer the particle size of the main component material powder and the auxiliary component material powder in performing the above mixing, the better, and 130 μm.
Below, in particular below iooμ is preferable.

また主要成分材粉末と補助成分材粉末との粒径(針状の
場合は長さ)の比も近似していることが好ましく、一般
にl:lO〜/にl:/の範囲、特にl:3〜3二lの
範囲が好ましい。
It is also preferable that the ratio of the particle diameters (or lengths in the case of acicular shapes) of the main component material powder and the auxiliary component material powder is similar, generally in the range of l:lO to / to l:/, particularly l: A range of 3 to 32 liters is preferred.

このようにして得られた混合粉末を、たとえば1−7O
トン/l1M+12の圧力で圧粉成形し、非酸化性雰囲
気中1000〜13oo”c程度の温度で焼結する等の
通常の粉末冶金法により接点材料が得られる。
The mixed powder thus obtained is, for example, 1-7O
The contact material is obtained by conventional powder metallurgy methods, such as compacting at a pressure of t/l1M+12 and sintering at a temperature of about 1000 to 13 oo''c in a non-oxidizing atmosphere.

また、本発明の第2の方法では、溶浸を伴う焼結型接点
材料の製造方法に関し、上記第1の方法における粉体混
合の均質化の手法を溶浸利を構成する高導電性粉末と溶
着防止成分粉末との混合に適用するものである。
In addition, in the second method of the present invention, regarding a method for manufacturing a sintered contact material that involves infiltration, the method of homogenizing the powder mixing in the first method is applied to the highly conductive powder constituting the infiltration. It is applied to the mixing of the powder and the welding prevention component powder.

すなわち、この第コの方法においては、まず、溶着防止
成分粉末とこれとほぼ同量の高導電性成分粉末とを混合
して1法理合粉末を得、これを更に溶浸材を構成する残
余の高導電性成分粉末と混合して溶浸材形成用混合粉末
を得る。この1法理合粉末から溶浸材形成用混合粉末を
得るための混合を複数の工程で行うことができることも
第1の方法と同様である。
That is, in this method, first, a welding prevention component powder and approximately the same amount of highly conductive component powder are mixed to obtain a one-method powder, and this is further mixed with the remaining powder constituting the infiltrant. A mixed powder for forming an infiltrant is obtained by mixing with highly conductive component powder. Similar to the first method, mixing for obtaining a mixed powder for forming an infiltrant material from this one-method rational powder can be performed in a plurality of steps.

このようにして得られた溶浸材形成用混合粉末な圧粉成
形して溶浸材成形体を得る。この溶浸材成形体を更に焼
結に付してもよいが、その必要性はない。
The thus obtained mixed powder for forming an infiltrant is compacted to obtain an infiltrant molded body. This infiltrant compact may be further subjected to sintering, but this is not necessary.

一方、これとは別に、耐アーク性成分単独またはこれと
高導電性成分および/または焼結性改善成分および/ま
たはパラフィン等のバインダー兼気孔形成材の粉末をた
とえば/−10トン/♂で圧粉成形し、非酸化性雰囲気
中1000−7200℃で焼結して空隙率50−ざO容
量チ程度の仮焼結体からなる多孔質成形体を得る。
On the other hand, apart from this, the arc-resistant component alone or together with the highly conductive component and/or sinterability improving component and/or powder of a binder and pore-forming material such as paraffin may be compressed at a pressure of, for example, -10 tons/♂. It is powder-molded and sintered at 1000-7200°C in a non-oxidizing atmosphere to obtain a porous molded body consisting of a pre-sintered body having a porosity of about 50 and a capacity of about 1.

次いで前記溶浸材成形体とこの多孔質成形体とを積層し
、更に非酸化性雰囲気中/100−/J(70℃に加熱
することにより溶浸材を溶融させ多孔質成形体中に含浸
させたのち固化させ必要に応じて整形加工することによ
り第2の方法による接点材料が得られる。このように溶
浸材は、一旦溶融後多孔質成形体に含浸する過程を伴う
にも拘らず、その原料粉末混合工程における混合の適否
は製品接点材料の特性にまで影響する。
Next, the infiltrant molded body and this porous molded body are laminated, and the infiltrant is melted and impregnated into the porous molded body by heating to /100-/J (70°C) in a non-oxidizing atmosphere. After that, the contact material is obtained by the second method by solidifying and shaping as necessary.In this way, although the infiltrant material involves the process of impregnating the porous molded body after it has been melted, The suitability of mixing in the raw material powder mixing process affects the characteristics of the product contact material.

以下、実施例、比較例により、本発明を更に具体的に説
明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

〔発明の実施例、比較例〕[Examples of the invention, comparative examples]

比較例1 平均粒径3メ1のW粉末に/%のパラフィンを加えλト
ン/crn!のブレス圧にて圧縮し所定形状に成形後、
水素雰囲気巾約1/!0℃で焼結して所定の空隙率を有
する仮焼結体を得た。
Comparative Example 1 /% paraffin was added to W powder with an average particle size of 3m1, and λton/crn! After compressing with the press pressure and forming into the specified shape,
Hydrogen atmosphere width approximately 1/! A pre-sintered body having a predetermined porosity was obtained by sintering at 0°C.

一方、所定割合のCu粉末(平均粒径lθμ)とsb粉
末(平均粒径lIOμ)とを枯潰機を用い/IAOOr
、 plm、  の条件で20分間混合し、得られた混
合粉末をlトン/−2の圧力でプレスして溶浸材圧粉成
形体を得た。
On the other hand, a predetermined ratio of Cu powder (average particle size lθμ) and sb powder (average particle size lIOμ) was crushed using a crusher/IAOOr
, plm, for 20 minutes, and the resulting mixed powder was pressed at a pressure of 1 ton/-2 to obtain an infiltrant compact.

次いで、上記で得られた仮焼結体(厚さ約j ynm)
上に溶浸材成形体(厚さ約、2. ! 闘)を重ね、両
者を水素雰囲気中/2000で40分間保持することに
より仮焼結体への溶浸を行い、冷却固化して目標組成W
(残) −Cu (−2j、J % ) −Sb (0
,11%)の接点素材を得た。
Next, the temporary sintered body obtained above (thickness about j ynm)
The infiltrant molded body (approximately 2.0 mm thick) is placed on top, and both are kept in a hydrogen atmosphere at 2,000 ℃ for 40 minutes to infiltrate the temporary sintered body, which is then cooled and solidified to reach the target. Composition W
(Remaining) -Cu (-2j, J %) -Sb (0
, 11%) was obtained.

このようにして得られた200個の接点素材の全数につ
いて導電率を測定したところ平均値が331g% 1.
A、C8S、に対して、第22 io分位がl!Li、
r (1゜1、 A、 C,S、 、第1@lo分位が
#、J % 1.A、C,S、テあった(表−1)。
When the electrical conductivity of all 200 contact materials thus obtained was measured, the average value was 331g% 1.
For A, C8S, the 22nd io quantile is l! Li,
r (1゜1, A, C, S, , the first @lo quantile was #, J % 1. A, C, S, Te (Table 1).

次いで導電率によって200個の接点素材を3つのグル
ープに区別した。すなわち、導電率が高いグループから
低いグループへと順に第1.第コ、第3グループと区別
し、それぞれのグループから10個ずつの接点素材を抜
取シ、化学分析によってsb量を測定した。各グループ
について最大、最小の値を下表−lに示す。
The 200 contact materials were then divided into three groups according to their conductivity. That is, the first group is selected in order from the group with the highest conductivity to the group with the lowest conductivity. After distinguishing between the first and third groups, 10 contact materials were extracted from each group, and the amount of sb was measured by chemical analysis. The maximum and minimum values for each group are shown in Table 1 below.

一方、・導電率によって区別した上記第1、第2゜第3
のグループから抜き取りで代表素材を定め、耐溶着性お
よび絶縁破壊特性を測定した。
On the other hand, the above-mentioned first, second and third
A representative material was selected from the group and its welding resistance and dielectric breakdown characteristics were measured.

耐溶着性は、素材を一対の径、75IIIlφの円板状
試料に加工し、更にその一方を平板のまま、他方を10
ORの球面にしたものを対向させ100〜の荷重を加え
7..2 KV X 、?/ KAの短時間通電後に一
対の試料間の引きはずしに要する力をもって測定した。
Welding resistance was determined by processing the material into a pair of disc-shaped samples with a diameter of 75IIIlφ, and further, one of them was kept flat and the other was 10mm in diameter.
7. Place the OR spherical surfaces facing each other and apply a load of 100~. .. 2 KV X,? / The force required to separate a pair of samples after energizing KA for a short time was measured.

一方、絶縁破壊特性は、同じく径、75朋φの平面状接
点素材と、先端が/0.tHの球面を有する径3朋φの
純銅円柱を0.j 龍1111して対向させたときの絶
縁破壊電圧を測定して評価した。試料をかえて行った各
を回の測定の結果の分布状況をあわせて表−lに記す。
On the other hand, the dielectric breakdown characteristics are the same for a flat contact material with a diameter of 75 mm and a tip of /0. A pure copper cylinder with a diameter of 3 mm and a spherical surface of tH is 0. J Ryu 1111 was evaluated by measuring the dielectric breakdown voltage when facing each other. Table 1 also shows the distribution of the results of each measurement conducted with different samples.

実施例−7 溶浸材形成用混合粉末を以下のようにして得た以外は全
く比較例−7と同様にして!Poo個の接点素材を得た
Example 7 The procedure was exactly the same as Comparative Example 7 except that the mixed powder for forming the infiltrant was obtained as follows. Poo contact materials were obtained.

すなわち、まずiso gのsb粉末と同量のCu粉末
をボールミル(ステンレス製ポット)により5Or、p
lm、の条件でAO分間混合して/状況合粉末を得た。
That is, first, the same amount of Cu powder as the iso g sb powder was milled using a ball mill (stainless steel pot) at 5 Or, p.
The mixture was mixed for AO minutes under the conditions of 1 m, to obtain a mixed powder.

次いで、この7次混合粉末に追加のCu粉末を加え、ス
テンレス製ポットに入れて、ボールミルにより、 so
 r、p、 m、の条件でAO分間混合し同量のCuを
数次にわたシ加え最終的にJJ、3Kfの混合粉末を得
た。この混合粉末をlトン/dの圧力でブレスして溶浸
材成形体を得、更にとの溶浸材成形体を用いる以外は比
較例−lと同様にして同一目標組成の接点素材を得た。
Next, additional Cu powder was added to this 7th mixed powder, placed in a stainless steel pot, and milled using a ball mill.
The mixture was mixed for AO minutes under the conditions of r, p, and m, and the same amount of Cu was added several times to finally obtain a mixed powder of JJ and 3Kf. This mixed powder was pressed at a pressure of 1 ton/d to obtain an infiltrant molded body, and a contact material with the same target composition was obtained in the same manner as in Comparative Example-1 except that the same infiltrant molded body was used. Ta.

得られた700個の接点素材について、比較例−1と同
様にして行った特性評価結果をあわせて表−lに記す。
Regarding the obtained 700 contact materials, the results of characteristic evaluation performed in the same manner as in Comparative Example 1 are also shown in Table 1.

実施例−一 210個の仮焼結体を作製した。Example-1 210 temporary sintered bodies were produced.

溶浸材形成用混合粉末は、次のようにして得た。The mixed powder for forming an infiltrant was obtained as follows.

すなわち、zoo pのSb粉末と同量のCu粉末を実
施例−/で用いたボールミルを用い、同様な条件で混合
して1次混合粉末を得た。次いで、との1次混合粉末か
ら3oo gを取出し、これに/ KPのCu粉末を加
え、拙潰機により/4100 r、pom、の条件で3
0分間混合して2次混合粉末を得、更にその全量にjK
pのCu粉末を同様の条件で混合して3次混合粉末を得
、更にlり、Ijt qのCu粉末を加えて同様の条件
で混合することによυ計、2s、a、tKlの弘次混合
粉末を得た。この弘次混合粉末を用いて実施例−lと同
様にしてりSO個の溶浸材成形体を得た0これら溶浸材
成形体と上記仮焼結体とより比較例−lと同様にして同
一目標組成の接点素材を得た0 得られた接点素材について、比較例−lおよび実施例−
7と同様にして行った特性評価の結果も併せて表−7に
示す。
That is, the same amount of Cu powder as the Sb powder of ZOO P was mixed using the ball mill used in Example-/ under the same conditions to obtain a primary mixed powder. Next, 3 oog was taken out from the primary mixed powder, and KP's Cu powder was added to it, and it was crushed in a rough crusher under the conditions of 4100 r, pom.
Mix for 0 minutes to obtain a secondary mixed powder, and add jK to the entire amount.
A tertiary mixed powder was obtained by mixing Cu powder of p under the same conditions, and then a Cu powder of Ijt and q was added and mixed under the same conditions to obtain a tertiary mixed powder of υmeter, 2s, a, and tKl. A mixed powder was obtained. Using this Koji mixed powder, SO number of infiltrant molded bodies were obtained in the same manner as in Example-1. From these infiltrant molded bodies and the above provisional sintered body, in the same manner as in Comparative Example-1. Regarding the contact materials obtained with the same target composition, Comparative Example-l and Example-
The results of the characteristic evaluation conducted in the same manner as in Table 7 are also shown in Table 7.

表−lの結果を見ると、溶浸材原料の混合を従来の方法
によって行った比較例−1の接点においては、軽い溶着
が発生したり、あるいは絶縁破壊電圧値が低下するグル
ープが存在するなど特性のばらつきが大であυ、またと
の特性のばらつきは、導電率のばらつき、Sb量のばら
つきとも対応しておυ本発明法により微量成分を厳密に
制御することの重要性を示している。
Looking at the results in Table 1, it can be seen that in the contacts of Comparative Example 1, in which the infiltrant raw materials were mixed using the conventional method, there is a group in which light adhesion occurs or the dielectric breakdown voltage value decreases. There is a large variation in the characteristics such as υ, and the variation in the characteristics also corresponds to the variation in conductivity and the amount of Sb. ing.

比較例−一 3りopの〜粉末(平均粒径jμ)、too gの1w
c粉末(平均粒径3μ)、logのTe粉末(平均粒径
/Sμ)を細潰機によりl≠00r、pom、の条件で
混合し、混合粉末を得た。この混合粉末をt、Sトン/
α2の圧力で成形し、IJ、00℃水素雰囲気中で1時
間焼結して接点素材を得た。この素材より径1rIL1
1、厚さ≠鶴の接点片を切シ出し、xoo v xlo
o Aで!×IO回の開閉テストを行ったところ、弘/
回の溶着を発生した。SO個の接点片について導電率分
布はsy〜弘3チI、 A、 C,S、の範囲を示した
Comparative example - powder of 13 OP (average particle size jμ), 1w of too g
C powder (average particle size 3μ) and log Te powder (average particle size/Sμ) were mixed using a crusher under the conditions of l≠00r, pom, to obtain a mixed powder. This mixed powder is divided into t, S ton/
It was molded at a pressure of α2 and sintered at IJ in a hydrogen atmosphere at 00°C for 1 hour to obtain a contact material. Diameter 1rIL1 from this material
1. Cut out the contact piece of thickness≠Tsuru, xoo v xlo
o In A! ×When I did the opening/closing test for IO times, I found that Hiroshi/
Welding occurred twice. The conductivity distribution for SO contact pieces showed a range of SY to HIRO3CHI, A, C, and S.

実施例−3 1011の醸粉末と、1011のT@粉末とを細潰機に
より74L00 r、p、m、の条件で混合して、1次
混合粉末を得た。次いでとの1次混合粉末にlogの〜
粉末を加えて混合して2次混合粉末を、更に1oopの
〜粉末を加えて混合して3次混合粉末を、更にaoo 
Iの〜粉末とtoo pのWC粉末とを加えて混合して
、結果として比較例−コと全体組成を同じくする混合粉
末を得た。途中の混合条件は、1次混合粉末を得るため
の条件と同じである。
Example 3 Brewed powder of 1011 and T@ powder of 1011 were mixed using a crusher under the conditions of 74L00 r, p, m to obtain a primary mixed powder. Then the log of the primary mixed powder with ~
Add the powder and mix to make the secondary mixed powder, then add and mix 1 oop of ~ powder to make the tertiary mixed powder, and further aoo
By adding and mixing powders I and WC powder, a mixed powder having the same overall composition as Comparative Example-C was obtained. The mixing conditions during the process are the same as those for obtaining the primary mixed powder.

得られた混合粉末について、比較例−λと同様にして接
点素材を得、また同様の条件での特性評価を行ったとこ
ろ、溶着発生回数は2回と大巾に減少し、また導電率分
布は1.0−37チI、 A、 C0S、の範囲となっ
た。これら溶着発生回数の低下および導電率の・ばらつ
きの減少も、微量の補助成分材であるToの均一分散の
効果と考えられる。
Regarding the obtained mixed powder, a contact material was obtained in the same manner as in Comparative Example -λ, and when characteristics were evaluated under the same conditions, the number of welding occurrences was significantly reduced to 2, and the conductivity distribution was ranged from 1.0 to 37 CHI, A, COS. The reduction in the number of occurrences of welding and the reduction in variation in electrical conductivity are also considered to be the effects of the uniform dispersion of a small amount of To, which is an auxiliary component.

比較例−3 Cu−4j4  MoC−0,j%  B1−0.1%
 Nl  接点の製造のために、try 、9のCu粉
末(平均粒径qoμ)、13001!のMoC粉末(平
均粒径3μ)、10,9のBl粉末(平均粒径りμ)お
よびコIのN1粉末(平均粒径30μ)を慣潰機により
/4L00 r、p、m、で30分の条件で混合して混
合粉末を得た。この混合粉末を1.θトン/(!I11
”の圧力で圧粉成形後、水素雰囲気中lλ00℃で焼結
してIAOO個の接点片を得た。
Comparative example-3 Cu-4j4 MoC-0,j% B1-0.1%
For the production of Nl contacts, try, 9 Cu powders (average particle size qoμ), 13001! MoC powder (average particle size 3 μ), 10.9 Bl powder (average particle size μ), and CoI N1 powder (average particle size 30 μ) were crushed in a crusher at /4L00 r, p, m, 30 A mixed powder was obtained by mixing under the conditions of 1 minute. Add this mixed powder to 1. θton/(!I11
After compacting at a pressure of 100 mL, the contact pieces were sintered at 1λ00° C. in a hydrogen atmosphere to obtain IAOO contact pieces.

これら接点片について求めたさい断電流値および化学分
析値の分布は後表−コに示す通υである。
The distribution of cutting current values and chemical analysis values determined for these contact pieces is as shown in Table 1-C below.

実施例−弘 j、9ONl粉末と同量のCu粉末とを乳鉢による手混
合の条件で混合して1次混合粉末を得た。それぞれ同様
な混合条件により、この1次混合粉末と/(II)、9
のMoC粉末とを混合してa状況合粉末を、この2次混
合粉末と70.9B%粉末とを混合して3次混合粉末を
得た0更にこの3次混合粉末とtrt 、9のCu粉末
を拙潰機によりl≠oo r、p、m、で30分間混合
しμ状況合粉末を得た。
Example - Hiroj, 9ONl powder and the same amount of Cu powder were mixed by hand in a mortar to obtain a primary mixed powder. Under similar mixing conditions, this primary mixed powder and /(II), 9
This secondary mixed powder and 70.9B% powder were mixed to obtain a tertiary mixed powder. The powder was mixed in a rough crusher for 30 minutes at l≠oo r, p, m to obtain a μ-containing powder.

更に、この弘次混合体と12りogのMoC粉末とを混
合してj状況合粉末を、逐次径た。
Furthermore, this Koji mixture was mixed with 12 logs of MoC powder to obtain a mixed powder in successive sizes.

このようにして得た!水混合粉末を原料として比較例−
3と同様にしてxi−oo個の接点片を得、さい断電流
値および化学分析値の分布を求めた。結果は、比較例−
3の結果とともに下表−コに示す。
This is how I got it! Comparative example using water mixed powder as raw material -
In the same manner as in Example 3, xi-oo contact pieces were obtained, and the distribution of the cutting current value and the chemical analysis value was determined. The results are as follows:
The results of 3 are shown in the table below.

なお、さい断時性は、直径に關、厚さμ門で、一方は平
面、他方は、2.orhrgnの球面をなす一対の接点
をサージインピーダンス、20θΩのり、 C,回gに
組み込み、実効値HAの交流を与え接触圧10Kf/で
300回開閉した際のさい断電流値の分布を求めたもの
である。
In addition, the cutting time is related to the diameter and the thickness μ, one side is flat and the other side is 2. A pair of contacts forming a spherical surface of orhrgn is incorporated into a surge impedance, 20θΩ, C, and g, and the distribution of the cutting current value is calculated when an alternating current with an effective value HA is applied and the contact pressure is 10 Kf/ and opened and closed 300 times. It is.

上表−コの結果も本発明の方法によれば少量成分のばら
つきが少く、これに対応してさい断電流値のばらつきも
少いことがわかる。
The results shown in Table 1-C above also show that according to the method of the present invention, the variation in minor components is small, and correspondingly, the variation in the cutting current value is also small.

参考例1−弘 0.1! % Bi −Au、lfj % Tie −
331% Cuの混合焼結体の製造過程における原料粉
末粒径の影響をBi粉末の粒径(細長粒子は長さ)を下
表−3のように変化させて調べた。
Reference example 1-Hiro 0.1! % Bi −Au, lfj % Tie −
The influence of the particle size of the raw material powder in the manufacturing process of a 331% Cu mixed sintered body was investigated by changing the particle size of the Bi powder (the length of elongated particles) as shown in Table 3 below.

混合は・、まずisgのB1粉末(平均粒径りθμ)と
、同量のCu粉末(平均粒径poμ)とをボールミルに
より30r、pom、の条件で混合して7次混合粉末を
得、これに、10EのTic粉末(平均粒径30μ)を
加え、ボールミルにより!Or、p、m、の条件で混合
し、これに更に所定組成の原料粉末を与えるために必要
な、3u1.t iのCu粉末およびJ4LJj 、!
7のTIC粉末とを拙潰機にょf) /4400 r、
p、m、の条件で混合して3次混合粉末を得た。この3
次混合粉末を用いJ)ン/cIn”の圧力で成形し、更
に水素雰囲気中/ J 00 ’Cで1時間の焼結によ
り寸法、直径30w5、厚さt龍の焼結体を得、その表
面を顕微鏡観察して偏析度の調査を行った。結果は下表
−3に示す通りであった0 上記結果より使用する原料粉末の粒径はIjOμ以下で
あるととが好ましいことがわかる。
For mixing, first, ISG B1 powder (average particle size θμ) and the same amount of Cu powder (average particle size poμ) were mixed in a ball mill under the conditions of 30r, pom to obtain a 7th mixed powder, Add 10E Tic powder (average particle size 30μ) to this and use a ball mill! 3u1. which is necessary to mix under the conditions of Or, p, m, and further give a raw material powder of a predetermined composition. Cu powder of t i and J4LJj,!
7 TIC powder and crusher f) /4400 r,
A tertiary mixed powder was obtained by mixing under the conditions of p and m. This 3
The following mixed powder was molded at a pressure of 1/cIn'', and further sintered in a hydrogen atmosphere/1 hour at 00'C to obtain a sintered body with dimensions of 30W5 in diameter and 100cm in thickness. The surface was observed under a microscope to investigate the degree of segregation.The results are as shown in Table 3 below.From the above results, it can be seen that the particle size of the raw material powder used is preferably IjOμ or less.

参考例j〜り J/% To−30% Cr−4’7.りqA Cuの
混合焼結体の製造過程における原料粉末粒径比の影響を
ToおよびCu粉末の粒径を変化させて調べた。混合は
、(平均粒径グ0μ)とをボールミルにてsor、po
m、でAO分混合の条件で混合して1次混合粉末を得、
これを更に所定組成の原料粉末を与えるために必要な量
のCu粉末の一部/、tO/lおよびCr粉末の必要な
量の一部/!0.9とを拙潰機によりtaoor、p、
m、の条件で混合してλ状況合粉末を得た。λ状況合体
に更に所定の原料粉末を与えるたW)Cu粉末の残部7
A& 、9 、Cr粉末の残部got tiとを捕潰機
ニヨリl弘00 r、 p、 m、の条件で混合して第
3水温合粉末を得た。この3次混合粉末を用い、弘トン
/♂の圧力で成形し、更に真空中1aoo℃で1時間の
焼結を行い、直径3Q wm、厚さj mmの焼結体を
得た。この焼結体の表面の顕微鏡調査によるTeO偏析
度評価結果は、下表−弘の通りであった。
Reference example j~ri J/% To-30% Cr-4'7. The influence of the raw material powder particle size ratio in the manufacturing process of a mixed sintered body of riqA Cu was investigated by changing the particle sizes of To and Cu powders. For mixing, (average particle size: 0μ) was mixed with sor and po in a ball mill.
m, mixed under the conditions of AO component mixing to obtain a primary mixed powder,
This is further combined with a portion of the amount of Cu powder necessary to provide a raw material powder of a predetermined composition, tO/l and a portion of the amount of Cr powder required/! 0.9 and taoor, p,
m, to obtain a lambda mixed powder. W) Remaining part 7 of Cu powder that further gives a predetermined raw material powder to the λ situation coalescence
A&, 9, and the remainder of the Cr powder were mixed in a crusher under the conditions of r, p, m, to obtain a third water-temperature mixed powder. Using this tertiary mixed powder, it was molded at a pressure of 1/2, and further sintered in vacuum at 1 aoo°C for 1 hour to obtain a sintered body with a diameter of 3Qwm and a thickness of jmm. The results of evaluating the degree of TeO segregation by microscopic examination of the surface of this sintered body were as shown in the table below.

表−μ 上表−弘の結果によれば主要成分材/補助成分材の粒径
比はio−//10の範囲が好ましく、更に望ましくは
7〜7の範囲がよいことがわかル。
According to the results of Table 1 above, the particle size ratio of the main component material/auxiliary component material is preferably in the range of io-//10, and more preferably in the range of 7 to 7.

〔発明の効果〕〔Effect of the invention〕

上述し1こように本発明によれば、粉末冶金法による焼
結型接点材料の製造において、主要成分材粉末に比べて
微量加えられる補助成分材の偏析に伴なう接点特性の不
安定性の問題を、特に初期の混合態様に配慮して効果的
に解決し、これにより補助成分材の添加効果を効果的に
発揮させて、接触抵抗、耐電圧性、耐溶着性、しゃ断時
性などの接点特性の安定した接点材料を与えることが可
能になる。
As mentioned above, according to the present invention, in the production of sintered contact materials by powder metallurgy, instability of contact characteristics due to segregation of auxiliary components added in small amounts compared to the main component powder can be reduced. The problem is solved effectively by paying particular attention to the initial mixing conditions, and thereby effectively exhibiting the effect of adding auxiliary ingredients, improving contact resistance, voltage resistance, welding resistance, breaking performance, etc. It becomes possible to provide a contact material with stable contact characteristics.

出願人代理人   猪 股    清Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 l 高導電性成分と耐アーク性成分とからなる主要成分
材と、溶着・防止成分および焼結性改善成分より選ばれ
た補助成分材との混合粉末を粉末冶金法によって合金化
して接点材料を製造するに際し、まず、補助成分材粉末
とこれとほぼ同量の主要成分材の一部の粉末とを混合し
て1状況合粉末を得、との1状況合粉末と残金の主要成
分材粉末とを混合して混合粉末を得、これを粉末冶金に
供することを特徴とする接点材料の製造方法。 !/次混合粉末と残余の主要成分材粉末との混合が複数
の工程で行われ、まず1状況合粉末と残余の主要成分材
粉末の一部とを混合し、との混合粉末と更に残る主要成
分材粉末とを混合する特許請求の範囲第1項記載の方法
。 3、高導電性成分がCuおよびAgの少なくとも1種か
らなυ、耐アーク性成分がW、 Mo 、 Cr、TI
 、 WC、MoC、Cr3C2およびTICの少なく
とも1種からなる特許請求の範囲第7項または第2項記
載の方法。 仏溶着防止成分がBl、 Pb、 Teおよびsbの少
なくとも1種からなり、焼結性改善成分がNi、F・、
CoおよびBの少なくとも1種からなる特許請求の範囲
第1項ないし第3項のいずれかに記載の方法。 よ主要成分材粉末および補助成分材粉末の粒径がl!θ
μ以下である特許請求の範囲第1項ないし第弘項のいず
れかに記載の方法。 乙 主要成分材粉末および補助成分材粉末のうち、大な
るも、のと小なるものとの粒径比が1−10:lである
特許請求の範囲第1項ないし第5項のいずれかに記載の
方法。 7製品接点材料中の補助成分材の含有量が3重量−以下
である特許請求の範囲Wc1項ないし第を項の−いずれ
かに記載の方法。 r、耐アーク性成分単独又はこれと高導電性成分もしく
は焼結性改善成分との混合粉末の成形体からなる多孔質
成形体と、高導電性成分と溶着防止成分との混合粉末の
成形体からなる溶浸材成形体とを積層し、積層体を加熱
して溶融した溶浸材を多孔質成形体に含浸させて接点材
料を製造するに際し、溶浸材成形体形成用混合粉末を得
るために、まず溶着防止成分粉末とこれとほぼ同量の高
導電性成分粉末とを混合して1状況合粉末を得、との1
状況合粉末と残余の高導電性成分粉末とを混合するとと
を特徴とする接点材料の製造方法。
[Claims] l A mixed powder of a main component material consisting of a highly conductive component and an arc-resistant component, and an auxiliary component material selected from a welding/preventing component and a sinterability improving component is produced by a powder metallurgy method. When manufacturing a contact material by alloying, first, the auxiliary component material powder is mixed with approximately the same amount of some powder of the main component material to obtain a one-state mixed powder, and the one-state mixed powder and A method for manufacturing a contact material, which comprises mixing the remaining metal with a powder of a main component material to obtain a mixed powder, and subjecting the mixed powder to powder metallurgy. ! The mixed powder and the remaining main component powder are mixed in multiple steps. First, the mixed powder is mixed with a part of the remaining main component powder, and then the mixed powder and the remaining main component powder are mixed. 2. The method according to claim 1, wherein the component material powder is mixed with the component material powder. 3. The highly conductive component is at least one of Cu and Ag, and the arc-resistant component is W, Mo, Cr, TI
, WC, MoC, Cr3C2 and TIC. The welding prevention component consists of at least one of Bl, Pb, Te, and sb, and the sinterability improving component consists of Ni, F.,
The method according to any one of claims 1 to 3, comprising at least one of Co and B. The particle size of the main component material powder and auxiliary component material powder is l! θ
The method according to any one of claims 1 to 10, which is less than μ. B. According to any one of claims 1 to 5, in which the particle size ratio of the larger to the smaller of the main component material powder and the auxiliary component material powder is 1-10:l. Method described. 7. The method according to any one of claims Wc1 to Wc, wherein the content of the auxiliary component material in the product contact material is 3 by weight or less. r, a porous molded body made of a powder mixture of an arc-resistant component alone or a highly conductive component or a sinterability-improving component; and a molded body of a mixed powder of a highly conductive component and a welding prevention component. When manufacturing a contact material by laminating an infiltrant molded body consisting of a porous molded body by heating the laminate and impregnating the porous molded body with the melted infiltrant, a mixed powder for forming an infiltrant molded body is obtained. To do this, first, welding prevention component powder and approximately the same amount of highly conductive component powder were mixed to obtain a one-state mixed powder.
1. A method for producing a contact material, comprising: mixing a high-conductivity powder and a remaining highly conductive component powder.
JP57143844A 1982-08-19 1982-08-19 Production of contact point material Granted JPS5935643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143844A JPS5935643A (en) 1982-08-19 1982-08-19 Production of contact point material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143844A JPS5935643A (en) 1982-08-19 1982-08-19 Production of contact point material

Publications (2)

Publication Number Publication Date
JPS5935643A true JPS5935643A (en) 1984-02-27
JPS6248737B2 JPS6248737B2 (en) 1987-10-15

Family

ID=15348261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143844A Granted JPS5935643A (en) 1982-08-19 1982-08-19 Production of contact point material

Country Status (1)

Country Link
JP (1) JPS5935643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374391A (en) * 1990-02-13 1994-12-20 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles and production method thereof
US5443615A (en) * 1991-02-08 1995-08-22 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374391A (en) * 1990-02-13 1994-12-20 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles and production method thereof
US5590388A (en) * 1990-02-13 1996-12-31 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles and production method thereof
US5443615A (en) * 1991-02-08 1995-08-22 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles

Also Published As

Publication number Publication date
JPS6248737B2 (en) 1987-10-15

Similar Documents

Publication Publication Date Title
CN112126838B (en) Copper-tungsten alloy material and preparation method and application thereof
JPS6038452B2 (en) Method of manufacturing sintered contact material
JP2530484B2 (en) Contact for vacuum circuit breaker and manufacturing method thereof
CN103695682B (en) A kind of silver oxide contact material and preparation method and products thereof with strengthening substrate performance additive
JP3825275B2 (en) Electrical contact member and its manufacturing method
CN103667767A (en) Preparation method of silver-nickel contact material containing additives capable of enhancing substrate performance and product prepared with method
JPS5935643A (en) Production of contact point material
US2648747A (en) Electrical contact
JPH01261270A (en) Metal-containing titanium carbonitride-chromium carbide ceramic
KR100332513B1 (en) Contact material for vacuum valve and method for fabricating the same
RU2523156C1 (en) Charge for production of material for high-current contacts and method of its production
US5763105A (en) Sintered contact material, method for preparing it, and corresponding contact facings
JPH0470380B2 (en)
JPS6059691B2 (en) Vacuum shield contact and its manufacturing method
RU2522584C1 (en) Method of material manufacturing for arc-quenching and electric break contacts and material
US3989516A (en) Method of making silver-cadmium oxide-tin oxide type contact materials
JPS5828321B2 (en) Homogeneous mixing method of raw material powder for powder metallurgy
KR102319995B1 (en) Fabrication method of electric contact materials
KR20050072138A (en) Electrode material for electric discharge machining and method for production thereof
JPH10195556A (en) Production of electric contact material
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JPS5914218A (en) Contact material for vacuum breaker
CN109852837B (en) Preparation method of Ag/MAX electric contact material
DE19629907A1 (en) Material for contacts of vacuum circuit breaker
JPS6248408A (en) Cermet-make cutting tool having excellent wear and abrasion resistance and toughness